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Technical Note

Corrected Long-Term Time-Average Sound Level
of Amplitude-Modulated Wind Turbine Noise
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Amplitude-modulated noise from a single wind turbine is considered. The time-varying modulation depth
Dm and the short time-average sound level LAeq,τ (with τ = 20 s) are measured at the reference distance d∗.
Due to amplitude modulation, a penalty has to be added to LAeq,τ . The paper shows how to calculate the
corrected long-term time-average sound level L̂Aeq,T (with T ≫ 20 s), which accounts for amplitude modulation
at any distance d ≠ d∗ from the wind turbine. The proposed methodology needs to be tested by research.
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1. Introduction

Noise generation and the propagation of noise from
a single wind turbine are analyzed. Under certain con-
ditions, the A-weighted sound pressure level LpA of
wind turbine noise (WTN) is modulated with the blade
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Fig. 1. Amplitude modulation of wind turbine noise recorded in a far field location (Di Napoli, 

2011).

WTN usually is assessed in terms of the time-average sound level, 𝐿𝐴𝑒𝑞𝑇. It is well 

known that AM increases WTN annoyance (Almir et al., 2021; Lotinga, 2021), so a 

penalty k [dB] is to be added to the measured value of 𝐿Aeq,𝑇. In the standard (Standards 

New Zealand, 2010), amplitude modulation is deemed to exist if the measured A-

weighted peak-to-trough levels exceed 5 dB on a regularly varying basis, or if the 

measured third-octave band peak-to-trough levels exceed 6 dB on a regular basis in

respect of the blade pass frequency. Consequently, the penalty of k = 5 dB applies when

amplitude modulation are present.

Figure 2 shows the penalty scheme published in (RenewableUK, 2013). The basis 

for this scheme are results of listening tests published in (Huenerbein et al., 2012) and

(Huenerbein et al., 2013). When the amplitude depth is small, 0 < Dm < 3 dB, there is no 

penalty, k = 0. For amplitude depths, 3 dB < Dm < 10 dB, penalty k increases linearly from

3 dB to 6 dB. When 𝐷𝑚 is large and exceeds 10 dB, the penalty equals 6 dB. 

Fig. 2. The penalty scheme published in (Huenerbein at al., 2012).
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Fig. 1. Amplitude modulation of WTN recorded in a far field location (Di Napoli, 2011).

passing frequency fm. Figure 1 shows pulses of dura-
tion τ ≈ 1/fm and the time-varying modulation depth
−Dm. In two studies (von Hünerbein, Piper, 2015;
RenewableUK, 2013), Dm is defined as the difference
between the mean peak and the mean trough in the
A-weighted RMS time series for any consecutive group
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of 12 pulses that occur during the τ = 20 s time in-
terval.

Suppose every WTN segment of τ = 20 s duration
is characterized by the short term time-average sound
level LAeq,τ and modulation depth Dm. Recent studies
prove that amplitude modulation increases WTN an-
noyance (Alamir et al., 2021; Lotinga, 2021). There-
fore, a penalty k [dB] is to be added to the measured or
calculated value of the short-term time-average sound
level (Makarewicz, 2022):

L̂Aeq,τ = LAeq,τ + k [dB]. (1)

Figure 2 shows the old penalty scheme published
in (RenewableUK, 2013). For a small amplitude depth,
0 < Dm < 3 dB, there is no penalty at all, k = 0. When
3 dB < Dm < 10 dB, the penaltykincreases linearly
from 3 dB to 6 dB. Finally, for Dm exceeding 10 dB,
the penalty equals 6 dB. Table 1 contains discrete val-
ues of Dm and k. An alternative penalty scheme is pro-
posed by Virjonen at al. (2019). Problem of WTN
modulation was also discussed in numerous articles
(Bass et al., 2016; Bowdler et al., 2018; Hansen
et al., 2018).
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Fig. 2. The penalty scheme published
in (RenewableUK, 2013).

Table 1. Discrete values of modulation depth Dm
and corresponding penalty k.

Dm
[dB]

0 1 2 3 4 5 6 7 8 9 10 11 12

k

[dB]
0 0 0 3 3 3

7
3 6
7

4 2
7

4 5
7

5 1
7

5 4
7

6 6 6

2. Noise measurements

When T denotes the time duration of WTN, N =T /τ
measurements at the distance d∗ of the short-term
A-weighted time-average sound levels L(i)

Aeq,τ and mo-
dulation depths D(i)

m (Fig. 3) provide complete infor-
mation on WTN. It is assumed that n ≪ N values of
L

(i)
Aeq,τ , D

(i)
m yield not complete but “good enough” in-

formation. The methodology of LAeq,τ and Dm mea-
surements one finds in (Hansen et al., 2017; Renew-
ableUK, 2013; IEC 61400-11, 2012). Figure 4 shows the
turbine-receiver arrangement.

Figures 5 and 6 present the results of measu-
rements with the upper and lower limits of the
short-term A-weighted time-average sound levels
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Fig. 3. Time variation of A-weighted sound level LpA char-
acterized by series of pairs, L(i)Aeq,τ , D

(i)
m .

Fig. 4. Measurements of L(i)Aeq,τ and D
(i)
m at the reference

distance d∗.
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Fig. 5. Histogram of short-term A-weighted time-average
sound levels at the reference distance d∗.
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Fig. 6. Histogram of modulation depths. The probabil-
ity P = n̂0/n, obtained for Dm = 0, corresponds to non-

modulated intervals τ (Fig. 3).

(e.g., L(j)
Aeq,τ −2.5 dB; L(j)

Aeq,τ +2.5 dB) and modulation

depths (e.g., D(j)
m − 0.5 dB; D(j)

m + 0.5 dB).
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3. Theory

The long-term A-weighted time-average sound level
is defined as (American National Standards Institute
[ANSI], 2020; ISO 1996-1, 2016):

LAeq,T = 10 log
⟨p2
A⟩T
p2
o

, po = 20 µPa, (2)

where (Fig. 5)

⟨p2
A⟩T
p2
o

= 1

T

T

∫
0

p2
A

p2
o

dt =∑
j

P (L(j)
Aeq,τ) ⋅ 100.1L

(j)
Aeq,τ (3)

represents the long-term A-weighted time-average
squared sound pressure for the interval T ≫ τ (e.g.,
one or a few hours). The two above expressions yield
LAeq,T at the reference distance d∗, where the mea-
surements L(i)

Aeq,τ have been performed (Fig. 5). How
can these results be used for LAeq,T prediction at any
distance, d ≠ d∗? When the distance d between the
turbine and the receiver exceeds the double rotor
disc diameter, the turbine blades could be replaced
by a point source at the hub height (Makarewicz,
2011; Ecotière, 2015). The momentary A-weighted
squared sound pressure can be written as (Forssén
et al., 2010; Australian Standard AS 4959, 2010;
Plovsing, Søndergaard, 2011):

p2
A(t)
p2
o

= WA(t)
Wo

⋅ F (d), Wo = 10−12 [W], (4)

where WA(t) and F (d) represent the A-weighted
sound power and propagation function, respectively.
When noise measurements are carried out with a mi-
crophone on the perfectly reflecting board and noise
propagation is governed by geometrical spreading and
air absorption, then (IEC 61400-11, 2012):

F (d) = 4 ⋅ d2
o

4πd2
exp(−α d

do
) , do = 1 m. (5)

Symbol α [1/m] denotes the representative air absorp-
tion coefficient for the noise spectrum, which equals
α ≈ 1.15 ⋅ 10−3 [1/m] (Swedish Environmental Protec-
tion Agency [SEPA], 2001). More complicated prop-
agation functions F (d, ...) are discussed by Hansen
et al. (2017).

For the reference distances d∗ and the distance
d ≠ d∗, the short-term A-weighted time average squa-
red sound pressure takes the form (Eq. (4)):

⟨p2
A⟩d∗,τ
p2
o

= ⟨WA⟩τ
Wo

⋅F (d∗),
⟨p2
A⟩τ
p2
o

= ⟨WA⟩τ
Wo

⋅F (d), (6)

where ⟨WA⟩τ represents the short-term A-weighted
time-average sound power. Consequently, Eq. (3) yields

the long-term A-weighted time-average squared sound
pressure at the distance d ≠ d∗,

⟨p2
A⟩T
p2
o

= F (d)
F (d∗)

⋅∑
j

P (L(j)
Aeq,τ) ⋅ 100.1L

(j)
Aeq,τ , (7)

and Eqs. (2), (4), (7) combine into the long-term A-
weighted time-average sound level:

LAeq,T (d) = 10 logJ∗ + 10 log
F (d)
F (d∗)

, d ≠ d∗. (8)

Here (Fig. 5)

J∗ =∑
j

P (L(j)
Aeq,τ) ⋅ 100.1L

(j)
Aeq,τ

(d∗). (9)

For the simplest case (Eqs. (5) and (8)):

LAeq,T (d) = 10 logJ∗ −20 log
d

d∗
−4.34α ⋅ (d − d∗). (10)

Unfortunately, the value of J∗ (Eq. (9)) does not take
into account the annoyance increase due to amplitude
modulation (Alamir et al., 2021; Lotinga, 2021). So,
let us replace L(j)

Aeq,τ with L
(j)
Aeq,τ+kj (Eq. (1)) and write

Eq. (9) again in a new form:

Ĵ∗ =∑j
P (L(j)

Aeq,τ , kj) ⋅ 10
0.1[L

(j)
Aeq,τ

+kj]. (11)

Symbol P (L(j)
Aeq,τ , kj) in Eq. (11) represents the un-

known joint probability of co-occurrence of the short-
term time-average sound level L(j)

Aeq,τ and penalty kj ,

which depends on modulation depth D
(j)
m (Table 1,

Fig. 2). It is known that L(j)
Aeq,τ increases with wind

speed (Hansen et al., 2017). On the other hand,
Dj was found to be not related to wind speed
(Paulraj, Välisuo, 2017). Accordingly, penalty kj
does not depend on wind speed either. Because the
joint probability of independent events is calculated as
the probability of event A multiplied by the probability
of event B, Eq. (11) can be written as follows:

Ĵ∗ =∑
i

P (L(i)
Aeq,τ) ⋅ 100.1L

(i)
Aeq,τ

(d∗) ⋅∑
j

P (kj) ⋅ 100.1kj .

(12)

Then, in view of the identities (ANS, 2020; ISO 1996-1,
2016):

∑
i

P (L(i)
Aeq,τ) ⋅ 100.1L

(i)
Aeq,τ = 1

n

n

∑
i=1

100.1L
(i)
Aeq,τ

= 100.1LAeq,T , (13)

the combination of Eqs. (8) and (11) results in the cor-
rected long-term A-weighted time-average sound level:

L̂Aeq,T = LAeq,T (d) +∆L̂, (14)
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where LAeq,T (d) represents the calculated long-term
A-weighted time-average sound level at the distance
d ≠ d∗ (Eqs. (8) and (9)), and

∆L̂ = 10 log

⎧⎪⎪⎨⎪⎪⎩
∑
j

nj

n
100.1kj

⎫⎪⎪⎬⎪⎪⎭
(15)

represents the correction due to amplitude modula-
tion (Fig. 6). Table 2 contains the measured values
D

(j)
m , corresponding penalties kj (Table 1) and mea-

sured probabilities P (kj) (Fig. 6).

Table 2. Modulation depth D(j)m with the corresponding
penalty kj and probability P (kj) of its occurrence.

D
(j)
m

[dB]
0 1 2 3 4 5 6 7 8 9 10 11 12

kj 0 0 0 3 3 3
7

3 6
7

4 2
7

4 5
7

5 1
7

5 4
7

6 6 6
P (kj)

no
n

n1
n

n2
n

n3
n

n4
n

n5
n

n6
n

n7
n

n8
n

n9
n

n10
n

n11
n

n12
n

For example, let us determine the corrected one-
hour A-weighted time-average sound level, L̂Aeq,1h

(Eq. (13)):
L̂Aeq,1h = LAeq,1h +∆L̂. (16)

Making use of n = 180 values of the measured short-time
A-weighted average sound level, L(j)

Aeq,20s, and n = 180

values of the modulation depthD(j)
m (Table 3), Eq. (15)

gives ∆L̂ = 2.5 dB.

Table 3. Modulation depth D(j)m with the corresponding
penalty kj and probability P (kj) of its occurrence for

180 values.

D
(j)
m

[dB]
0 1 2 3 4 5 6 7 8 9 10

kj 0 0 0 3 3 3
7

3 6
7

4 2
7

4 5
7

5 1
7

5 4
7

6
P (kj)

35
180

28
180

25
180

22
180

19
180

16
180

13
180

10
180

7
180

4
180

1
180

When L
(j)
Aeq,τ(d∗) (Fig. 5) is measured at the dis-

tance d∗ with the microphone on the perfectly reflect-
ing board, then in the simplest case of propagation
(Eqs. (9) and (10)) the corrected long-term A-weighted
time-average squared sound pressure at d ≠ d∗ is de-
termined by:

L̂Aeq,T (d) = 10 log∑
j

nj

n
100.1L

(j)
Aeq,τ

(d∗)

−20 log
d

d∗
− 4.34α ⋅ (d − d∗) +∆L̂, (17)

where α ≈ 1.15 ⋅ 10−3 [1/m] (SEPA, 2001).

4. Conclusions

The annoyance caused by WTN increases with mo-
dulation depth (Alamir et al., 2021; Lotinga, 2021).

Input data of the methodology proposed here con-
sists of the short-term time-average sound level LAeq,τ

(with τ = 20 s) and Dm (Fig. 3) measured at the refer-
ence distance d∗. To find the corrected long-term time-
average sound level L̂Aeq,T (with T ≫ τ), which takes
into account annoyance increases due to modulation,
one can use Eqs. (8), (9) or (14). When propagation de-
pends mainly on geometrical spreading and air absorp-
tion, Eq. (17) is recommended. The proposed method-
ology needs to be tested by research.
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