
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2023, VOL. 69, NO. 2, PP. 211–217
Manuscript received December 4, 2022; revised April, 2023. DOI: 10.24425/ijet.2023.144352

Embryonic Architecture with Built-in Self-test and
GA Evolved Configuration Data

Gayatri Malhotra, Punithavathi Duraiswamy, and J.K. Kishore

Abstract—The embryonic architecture, which draws inspi-
ration from the biological process of ontogeny, has built-in
mechanisms for self-repair. The entire genome is stored in the
embryonic cells, allowing the data to be replicated in healthy
cells in the event of a single cell failure in the embryonic fabric.
A specially designed genetic algorithm (GA) is used to evolve
the configuration information for embryonic cells. Any failed
embryonic cell must be indicated via the proposed Built-in Self-
test (BIST) the module of the embryonic fabric. This paper
recommends an effective centralized BIST design for a novel
embryonic fabric. Every embryonic cell is scanned by the pro-
posed BIST in case the self-test mode is activated. The centralized
BIST design uses less hardware than if it were integrated into
each embryonic cell. To reduce the size of the data, the genome
or configuration data of each embryonic cell is decoded using
Cartesian Genetic Programming (CGP). The GA is tested for the
1-bit adder and 2-bit comparator circuits that are implemented
in the embryonic cell. Fault detection is possible at every function
of the cell due to the BIST module’s design. The CGP format
can also offer gate-level fault detection. Customized GA and
BIST are combined with the novel embryonic architecture. In
the embryonic cell, self-repair is accomplished via data scrubbing
for transient errors.

Keywords—Embryonic; BIST; Self-test; Genetic Algorithm;
Cartesian Genetic Programming

I. INTRODUCTION

THE deep space systems require a different approach
for fault tolerance due to communication delay and

limited hardware resources. These systems should have the
ability to re-configurable itself to counter new challenges.
The embryonic fabric-based cellular architecture provides self-
repair using additional spare cells instead of triplicating all the
cells. Thus, this approach is suitable for smaller space sys-
tem designs in deep space missions. The embryonic circuit’s
growth and its operation are decided by the stored genome
configuration data. The embryonic cellular structure has inbuilt
fault tolerance due to its structure. Each cell contains the total
genome data of the fabric. The novel embryonic architecture,
which evolved from the concept of cloning, is used by the
biological cell to grow into a bigger system with BIST, as
proposed in this paper. The reconfigurable self-healing em-
bryonic cell mentioned in [1] contains self-diagnostic within

Gayatri Malhotra is with U R Rao Satellite Centre and M S Ramaiah
University of Applied Science, India (e-mail: gayatri t76@yahoo.com).

Punithavathi Duraiswamy is with M S Ramaiah University of Applied
Science, India (e-mail: punithavathi.ec.et@msruas.ac.in).

J.K. Kishore is with U R Rao Satellite Centre, India (e-mail:
jkk@ursc.gov.in).

each cell. This calls for multiple resources and increases with
the number of cells. The BIST proposed in this work is
centralized to the fabric and requires fewer resources. It is
based on a comparison of the reference golden signature (no
fault condition) with the working circuit response signature.
The signature register size only will increase for the bigger
fabric with more outputs.

In the reference [1], the BIST module uses the EXOR
gate to compare the function unit output to its duplicate.
The number of EXOR gates and function unit duplication
will increase with the number of outcomes [2]. Also, the
BIST design must be modified for different cell functions.
The proposed BIST in this work needs the change of output
signal allocation to the linear feedback shift register used for
generating the signature response. Entire function duplication
is not required for the BIST module.

Many approaches to self-healing in the embryonic fabric
act after detecting faulty output, while the proposed BIST is
for self-check-in at regular intervals during run-time. After
fault detection, self-repair is initiated automatically. This is an
attempt to minimize the use of duplicating function resources
and to standardize the BIST design for different circuits. It
will develop an intelligent adaptive and reconfigurable system
that can automatically initiate self-reconfigurable after the fault
is detected. The detection is possible at the cell level which
contains multiple molecules or nodes. Fault detection is also
possible at the molecule level, equivalent to a node in the CGP
format. Node level fault identification is possible due to the
CGP format of data in the design. Initially, the fault is detected
at the cell level, then the corresponding node or molecule can
be identified by verifying each node’s output.

Some approaches to self-healing in the embryonic fabric
call for the embryonic cell’s row or column elimination [3]
[4]. As for the transient faults, the entire embryonic cell’s row
or column elimination is not the scrubbing of configuration
memory, which is planned for self-repair [5]. A transient error
can be repaired after data scrubbing [6]. In the proposed
embryonic fabric, additional spare cells are to be utilized only
in the event of faulty cell isolation.

The design is coded using Verilog and simulated for 1-bit
adder and 2-bit comparator cell design. The genome data is
generated through a GA and encoded as Cartesian Genetic
Programming (CGP). Section 2 describes the novel embryonic
architecture with CGP data. Section 3 proposes an embryonic
fabric design for combinatorial digital circuits. It describes
the design of embryonic cells and switch box interconnection.

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/


212 GAYATRI MALHOTRA, PUNITHAVATHI DURAISWAMY, J.K. KISHORE

Section 4 presents the Built-in Self-Test design methodology
for Embryonic Cells. The sub-modules of the design like the
controller, random pattern generator (RPG), response analyzer,
and fault detection method are underlined. Section 5 is about
fault detection process for adder and comparator cells. Section
6 contains the simulation results. Section 7 is about GA design
for configuration data generation in CGP format. Section 8
concludes the results, and Section 9 is the scope for future
work.

II. EMBRYONIC ARCHITECTURE WITH CGP
CONFIGURATION DATA

The embryonic design approach is considered to design
the fault-tolerant electronics system [7] [8]. Embryonic, a
homogeneous array of embryonic cells, possesses self-healing
due to its structure. The proposed embryonic fabric has a
multi-cellular system, where each cell contains a CGP decoder,
Memory, and self-repair unit. The hardware module for the
BIST controller is common to the fabric, while the self-
repair module is part of each cell. This way, the hardware
resources for the BIST controller do not need to be duplicated
in each cell. The fault detection through BIST enables the
identification of the faulty embryonic cell; further, the CGP
data format can identify the node level fault in the defective
cell. In this work, though the fault detection is limited to cell
level, the node/gate level detection is possible as a principle.
The self-repair module implements memory scrubbing for
transient faults, thus incorporating registers only.

The CGP format represents the digital circuit as a rect-
angular array of nodes. Each node is an operation on the
node inputs. Integers sequentially index all node inputs, node
operations, and node outputs. The configuration data (Genome
data) for the embryonic cell is a linear string of these integers.
Applying GA for the digital circuit design explores a more
extensive search space. The GA achieves design optimization
better than traditional approaches [9] [10]. The configuration
genome data generation for embryonic cell is through GA,
while the genome data format is Cartesian Genetic Program-
ming (CGP) [11] [12]. The CGP data generation is through
HsClone and OIMGA algorithms, while other GA are also
planned to be tested [13].

The embryonic is also known as ’Electronic Stem Cells’
[14]. It implements a digital system with fault-tolerant ca-
pabilities inspired by the ontogeny process. The embryonic
cellular structure can induce fault tolerance in the design
by self-repairing [3] [15]. The natural methods of growing,
reproducing, and healing are adopted in electronic design. The
’Stem Cell’ has the feature of becoming anything they want
to be, inspiring the electronics design for using embryonic
cellular structure. The division mechanism is the main driving
force behind the development of the entire organism. The same
is applied as a cloning mechanism in this embryonic fabric
design.

There are several approaches to implement self-healing,
self-repair, and self-replicate in the embryonic cellular archi-
tecture. The electronic tissue called POEtic design [16] is
inspired by three life axes: Phylogenesis, Ontogenesis, and

Epigenesis. The Ontogenetic axis refers to the cellular growth
that helps in self-repair. The structural principles of living
organisms like multi-cellular architecture, cellular division,
and cellular differentiation are utilized to enable systems
to grow, self-replicate, and self-repair [17]. The embryonic
cell architecture is designed for self-diagnostic, and the fault
recovery methods embedded in it. The approach described in
[1] is to kill the faulty cell and make it transparent while
transferring its functions to a neighboring cell. The self-
healing is achieved through cell elimination and further by row
elimination. In eDNA approach [18], the electronic cell ’eCell’
reads the electronic DNA ’eDNA’ to interpret the function it
must do and, in case of one eCell failure, to move the function
to another eCell. Thus, to create self-organization and self-
healing of electronic cells.

In this paper, a Built-in Self-test (BIST) methodology [19]
is integrated with the embryonic fabric to initiate self-repair
at the embryonic cell level. The BIST controller controls
the different types of embryonic cells per the selected gene.
The fault detection information at the embryonic cell level is
available to the embryonic fabric controller. Based on this,
the controller initiates the self-repair of the faulty cell. This
approach deals with transient errors and provides self-healing
[6].

III. CGP DECODING AND BUILT-IN SELF-TEST

The proposed novel embryonic fabric consists of embryonic
cells, switch boxes, and the fabric controller module. The
fabric controller must control the data transfer between the
cells, switch boxes, and input-output units. The novel em-
bryonic fabric architecture is shown in Fig. 1. It consists of
ten cells, four each for a 1-bit adder and a 2-bit comparator
with two spare cells. Four 1-bit adder cells in cascading can
build a 4-bit adder; similarly, an 8-bit comparator from four
2-bit comparators is built using switch boxes for cascading the
signals.

In the FPGA structure, a Fixed configuration bits are
required to configure its logic blocks and establish intercon-
nections. The embryonic cell fabric achieves this with fewer
configuration bits as CGP is the data format. The cloning
process in the fabric implements the data copy to all the cells.
The first cell’s genome data is loaded externally, and cloning
takes care of copying the genome data bits to the following
cells during run-time. The cloning process is discussed earlier,
where data is in Look Up Table (LUT) format [20]. In this
work, the data type is changed from LUT format to CGP
format. The circuit size is flexible and contains clone data
bits and CGP data.

The CGP data format over the LUT data format dominates
in the case of modular design. The 4-bit adder needs 29 bits,
while the CGP format needs (45 + 4) bits (1-bit adder and
clone count for four cells). The genome data contains two
genes, adder, and comparator functions. The CGP decoder
decodes the gene data within the embryonic cell. The genome
data is 161 bits with CGP data for a 1-bit adder and 2-
bit comparator. The fabric controller integrates the BIST
controller to enable self-test. The self-test is established at
the cell level to control self-repair also at the cell level.



EMBRYONIC ARCHITECTURE WITH BUILT-IN SELF-TEST AND GA EVOLVED CONFIGURATION DATA 213

Fig. 1. Embryonic Fabric Architecture

A. Embryonic Adder and Comparator Cell Design

The embryonic cell contains genome data memory, cloning
mechanism, CGP decoder, cell configuration controller, and
self-repair module. The ’conn’ is the trigger signal to initiate
genome data loading into First cell. The cascading of cells
is possible to have a scalable circuit design. The 4-bit adder
is designed from 1-bit adder configuration data, and the 8-bit
comparator is designed from 2-bit comparator configuration
data.

In CGP, the representation of data is in the form of nodes.
Each node is expressed as in1; in2; logical function. The K-
map derived data for 1-bit adder is 0 1 0; 0 1 1; 3 2 0; 3 2 1;
6 4 2; 5; 7. This is the circuit designed through K-map and
represented using CGP format. The last two nibbles are output
nodes. Similarly, the K-map derived data for 2-bit comparator
is 132; 13f; 31f; 02b;048; 47c; 28b; 699; a59; b; c. The CGP
data length for adder, comparator, and counter data is 161 bits
(45 + 4 bits: adder + 108 + 4 bits: comparator). The adder has
five nodes (5 x 3octets x 3bits = 45 bits), comparator has nine
nodes (9 x 3octets x 4bits = 108 bits). The clone count for
each adder, comparator, and counter cell is expressed using
four bits within configuration data.

B. Embryonic Switch Box Design

The data transfer between the cells is done through switch
boxes. Each switch box has four directional buses and one
dedicated bus with the neighbouring cell. The adder and
comparator functions are carried out using east and west data
buses. Buses are used to route carry for adder cells and
compare signals for lower bit comparator cells. The signals
between embryonic cells and switch boxes are also used in
CGP data decoding.

C. BIST Controller for Embryonic Cells

BIST is a design for testability (DFT) that includes the
testing features within the circuit under test (CUT). The basic
BIST architecture requires the following modules within the

embryonic fabric design controller- 1. A Test Controller 2. A
Test Pattern Generator 3. A Response Analyzer

The Hardware pattern generator or test pattern generator
(TPG) is to generate the test patterns for CUT. The selected
type of TPG for embryonic fabric is a Linear feedback shift
register (LFSR). A response analyzer (RA) is required to com-
pare the CUT response with a stored response. It is designed
using an another LFSR, which is used as a signature analyzer.
It compacts and analyzes the CUT test responses to determine
any fault. During normal operation mode, CUT (embryonic
fabric) receives its inputs from the test bench/simulator and
performs the function for which it is designed. During the Self-
test mode, a TPG circuit applies a sequence of test patterns
to the CUT. The output response compactor evaluates the test
responses. The responses are compacted to form signatures.
The golden reference signatures are already saved for no fault
condition. The response signature is compared with the stored
reference signature to find if CUT is good or faulty. The
signature register saved for adder and comparator cells is
depicted in simulation results.

As part of the embryonic fabric controller, the BIST con-
troller initiates the Self-test mode whenever triggered. The ’fp-
gain’ are inputs generated through the test bench as ’fabin’ in
normal mode and as ’testin’ in Self-test mode. In case the Self-
test is planned, the BIST controller initiates the test pattern
generator module and response analysis module. The clock for
BIST modules is ’clk-tpg,’ simulated in Self-test mode only.
The ’fpgaout’ from the embryonic cell corresponding to the
’testin’ are routed to the controller to the response analyzer.
The ’fault-indication’ from the RA is transferred through the
controller to the faulty cell for further action.

D. Test Pattern Generator Module

The TPG is implemented using LFSR, a 40-stage shift
register formed from Inputs-outputs (FFs), with the outputs of
selected FFs being fed back to the shift register’s inputs. When
LFSR is used for TPG, it must cycle rapidly through many
states. These states are designed by the design parameters of



214 GAYATRI MALHOTRA, PUNITHAVATHI DURAISWAMY, J.K. KISHORE

the LFSR and generate the test patterns. The implemented
LFSR is 40-stage with the characteristic polynomial Equation
(1) is an example.

P (X) = X39 +X38 + 1 (1)

The final LFSR configuration is to generate 40-bit test data
(4 bits each for ten embryonic cells). LFSR is initially loaded
with seed data when the load is ’1’. The LFSR function is
synchronous with ’clk-tpg’.

E. Output Response Analysis Module

The RA module must check the circuit’s responses for the
random test pattern applied as input. In the embryonic fabric
of ten cells, the response from all the cells is to be verified.
Each adder embryonic cell has two outputs - sum and carry.
Each comparator embryonic cell also has two outputs - AsmlB
and AlargB. As per the gene selected for a cell, the function
is identified as an adder or comparator. The total response
is enormous, so it is required to compact this response to a
manageable size. The RA compresses large test responses into
a single word called a signature. The signature is compared
with the pre-stored golden signature obtained from the fault-
free circuit responses using the same compression mechanism.
If the signature matches the golden signature, the CUT is fault-
free. Otherwise, it is faulty. The response analyser technique
used for embryonic fabric is signature analysis. The response
compaction is done using LFSR. The data bits from POs (Pri-
mary Outputs) are compacted by dividing the PO polynomial
by the characteristic polynomial of LFSR. The remainder of
the polynomial division is the signature. The seed value is
usually zero before testing.

F. MISR for Response Compaction- Signature Analysis

In ordinary LFSR response compacter, one of these must
be put for each PO; this will lead to hardware overhead.
Multiple-Input Signature Register (MISR) is the type that
compacts all the cell outputs into one LFSR. All responses of
adder cells are superimposed into one ’signature-reg-adder’.
Similarly, all responses of comparator cells are superimposed
into ‘signature-reg-cmprtr’. The design of adder MISR and
comparator MISR are shown in Fig. 2 and Fig. 3.

Both MISR are 10-stage LFSR as there are five adder
cells (four cascaded and one spare) with two outputs from
each and five comparator cells with two outputs from each.
The implemented LFSR is an internal feedback type and has
characteristic polynomial Equation (2) is an example.

P (X) = X9 +X8 + 1 (2)

IV. FAULT DETECTION OF EMBRYONIC ADDER
AND COMPARATOR CELLS

For fault detection, the degree of data polynomial (output
response from cells) should be less than 210 − 1, where 10 is
the degree of the characteristic polynomial of the LFSR. The
number of ’clk-tpg’ cycles is calculated (about 1000), and after

Fig. 2. MISR for Embryonic Adder Cells Outputs

Fig. 3. MISR for Embryonic Comparator Cells Outputs

that fault-free signature analysis register (SAR) is saved. After
the same clock cycles, the self-test signal is made low, and the
’signature-reg-adder’ and ’signature-reg-cmprtr’ are saved.

The ’signature’ value for adder and comparator is compared
with the saved fault-free signature value. The fault is simulated
by making one adder cell outputs ’stuck at 0’. This fault type
is considered for the initial test, while other fault types of mul-
tiple bit upsets are planned to be verified later with the design.
The RA module successfully detects the ’stuck at 0’ fault. The
fault detection signal is routed to the fabric controller to further
route to faulty cells. As the fault is identified, Self-repair is
initiated by re-loading the configuration data to all defective
cells (Scrubbing). The complete process of fault simulation to
fault detection is depicted in Fig. 4. The reliability analysis of
Self-repair is to be included [21].

Once the fault is detected at the adder cell level, the spare
adder cell can replace the faulty cell for permanent fault. After
the fault detection at the cell level, the fault is further localized
to the sum or carry function level. For example, in the adder
cell, the function sum uses two XOR gates (two nodes), so the
fault at the sum function is due to one or both gates. Once the
faulty nodes are identified, the respective gates can be replaced
with available spare gates. The detailed design of gate level
replacement is planned as the future scope of this work.



EMBRYONIC ARCHITECTURE WITH BUILT-IN SELF-TEST AND GA EVOLVED CONFIGURATION DATA 215

Fig. 4. Fault Simulation to Fault Detection Process Flow

V. SIMULATION RESULTS

The embryonic fabric with ten cells is created through
configuration data cloning. The data cloning process copies
the configuration data to all the cells. The Self-test mode of
the embryonic fabric is triggered with a ’Self-test’ signal. The
’fpgain’ is the input simulation from the test bench, while
the ’testin’ is the input simulation from the BIST module.
Once the ’Self-test’ is high, the ’seed’ is loaded into LFSR
for random test pattern generation. The ’testin’ is applied to
embryonic fabric cells as inputs, the corresponding ’fpgaout’,
the outputs from cells are saved. The ’gene-sel’ for ten cells
is defined as ’0’ for the adder cell and ’1’ for the comparator
cell. The switch box buses ’dt-east’ and ’dt-west’ are assigned
with the signals that need to be transferred between cells. The
’fault-indication’ is the one-bit signal from each cell. After the
fixed clock cycles, the signatures are saved. In the RA module,
golden signature is saved for adder and comparator functions.

After the adder and comparator MISR signatures
(’signature-reg-adder’ and ’signature-reg-cmprtr’) are saved,
the ’sig-save’ is made high to indicate the fabric controller.
With the fault simulation, again BIST is re triggered. After
fixed clock cycles, ’fault-indication’ is analyzed by comparing
’state-out-adder’ with ’signature-reg-adder’ and ’state-out-
cmprtr’ with ’signature-reg-cmprtr’. The sum output from all
adder cells is simulated for ’stuck at ’0”; thus, fault indication
is high (’0100001111’) for adder cells only. This indication
is routed through the fabric controller to each cell.

The cell initiates ‘scrubbing’ by re-loading genome data
to cell memory. This is the Self-repair process for transient
faults. The ’confin-test’ initiates the faulty cell’s scrubbing.
After scrubbing, ’scrub-complete’ is set high to indicate the
completion of the process. To verify the fabric functionality,
the RA is executed for the same fixed clock cycles. As
’signatures’ are saved earlier, only a comparison with MISR
’state-out’ is carried out. To check it, the simulation for ’stuck
at ’0” is removed now. Thus, the simulation results indicate
no ’fault-indication’. This approach is applicable for transient
errors, while the cell replacement is to be considered for the
permanent error.

VI. PARALLEL GA DESIGN FOR CGP
CONFIGURATION DATA GENERATION

Genetic algorithms are useful in solving search and op-
timization problems. The time required to get a converged
solution can be high due to the computational complexity of
GA. The parallel implementation of a GA on FPGA brings
optimization in processing time [22]. The Fitness, crossover,
mutation, and selection modules are replicated to form parallel
pipelines. The novel parallel pipeline is applied to modify the
HsClone algorithm [23] to achieve faster convergence. Parallel
processing enables the algorithm to run concurrently on more
sets of data. The fine-grained parallel GA is advantageous over
sequential GA as well as the FPGA possesses the advantage
as a parallel platform [24].

Another OIMGA algorithm is also modified and applied
to generate the CGP data for adder, comparator, and counter
circuits. The performance of the two algorithms is compared
for convergence time.

A. Parallel HsClone GA

The ’PHsClone’ GA is developed as an approach based
on the ’half-siblings-and-a-clone’ crossover technique. The
pseudo-code for the modified parallel algorithm for adder and
comparator is-

• Initially, the four parallel valid random patterns are gen-
erated

• Validity of the pattern is as per CGP constraint with no
feedback

• The fitness for sum and carry/AsmlB and AlargB is
checked for all node outputs

• If Fitness is best fit from any node, a new pattern is
evolved

• If Fitness < M percent; Crossover and mutation with a
random pattern

• If Fitness > M percent; Crossover and mutation with the
current pattern

• Repeat from step 2 till the new evolved pattern is obtained
The value of M is tuned for 40% for adder and 70% for

comparator. There are four parallel processes of population
generation and testing. The configuration data size for the 1-
bit adder is 45 bits, while for the 2-bit comparator, it is 120



216 GAYATRI MALHOTRA, PUNITHAVATHI DURAISWAMY, J.K. KISHORE

bits (includes one spare node). The limitation of the HsClone
is that it needs memory to store its population.

B. Optimum Individual Monogenetic GA-OIMGA

Another algorithm that is used for the generation of config-
uration data is OIMGA. This does not use much memory for
storing the population. The different parameters of OIMGA
are shown in Table I.

TABLE I
OIMGA PARAMETERS

GA Parameters Description

l Individual Length

n Population Size

m Size of miniature space around LOI

t-gens Max no. of consecutive global generations

k-gens Max no. of consecutive local generations

d-adjustor Range of mutation of an individual

m-rate Probability of mutation

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

18 45 120

L
o

g
(C

o
n

v
e

rg
e

n
ce

 T
im

e
 )

(m
s)

Configuration Bits in CGP Format

Convergence Time vs Configuration bits for 
PHsClone and OIMGA Algorithms

PHsClone OIMGA

Fig. 5. Convergence Time for PHsClone and OIMGA

The convergence time vs. configuration data length vs.
PHsClone and OIMGA algorithm performance is shown in
Fig. 5. It is compared for 1-bit adder (45bits), 2-bit comparator
(120 bits), and 1-bit counter (18 bits). Following are the
inferences from the data, - The PHsClone performs better
for a 1-bit counter than OIMGA. The reason is the parallel
execution of four random searches in the PHsClone and the
use of both crossover and mutation as genetic operators. - In
the case of the 1-bit adder, the PHsClone performs better than
OIMGA. Here the convergence time difference with OIMGA
is huge. The reason is that the two functions of sum and
carry are to be evolved in the same 45-bit data. This calls
for data optimization along with enlarged search space. This
is achieved in PHsClone due to four parallel processes and
more genetic operators. - For 2-bit comparator, the OIMGA
performs better as the only one function ‘larger’ got evolved
out of two. It needs five nodes (60 bits) out of ten nodes
(120 bits). The rest node data bits are available as spare. The
OIMGA performs better when there are many spare nodes
available, so the invalid nodes can be rejected.

The proposed customized algorithm is where the parallel
processes are executing, and more genetic operators are avail-
able. For small data sizes, Parallel HsClone performs better,
while for large data sizes, OIMGA with spare nodes can give
faster convergence. The limitation with PHsClone is the more
hardware extensive due to parallel processes and associated
registers. Further analysis is required to determine an optimum
number of parallel processes that balance the resource usage
to faster convergence.

VII. CONCLUSION

The novel embryonic fabric architecture designed with two
types of genes, adder, and comparator, is proposed for deep
space systems. The fabric includes CGP decoder and self-
repair module within each embryonic cell. The centralized
BIST is implemented for the embryonic fabric architecture.
Within BIST, LFSR for random number generator is designed
and run for fixed clock cycles. The response analyser is im-
plemented using MISR and designed separately for adder and
comparator cells. The transient error is simulated for ’stuck at
zero’ in adder cells. The fault detection is carried out through
BIST, and memory scrubbing got executed. After the memory
scrubbing, the BIST module is re-initiated to verify the effect.
The simulation results are verified for the implementation of
Self-repair through scrubbing. The configuration data for adder
and comparator in CGP format is evolved using customized
GAs. The performance of two GAs; PHsClone and OIMGA
is compared for the implemented circuits.

VIII. SCOPE FOR FUTURE WORK

The fabric design must be modified to include sequential
circuits also. The BIST approach must be upgraded in case
of a permanent error in the cells. In the case of permanent
error, the faulty cell will become transparent, so the routing
is to be modified. The signal routing will be updated to use
a spare cell in place of the faulty cell. The case of fault that
occurs within the BIST module is also to be considered for
fault reliability.

REFERENCES

[1] X. Zhang, G. Dragffy, A. G. Pipe, N. Gunton and Q. M. Zhu, ”A
Reconfigurable Self-healing Embryonic Cell Architecture”, in Proc. of
the International Conference on Engineering of Reconfigurable Systems
and Algorithms, 2003, pp. 134–140.

[2] G. Martinović and I. Novak, ”A combined architecture of biologically
inspired approaches to self-healing in embedded systems”, in Proc. of
International Conference on Smart Systems and Technologies, 2017, pp.
17–22, Paper identifier https://doi.org/10.1109/SST.2017.8188663

[3] Y. Shanshan, W. Youren, ”A new self-repairing digital circuit based on
embryonic cellular array”, 8th International Conference on Solid-State
and Integrated Circuit Technology, 2006, pp. 1997–1999, Paper identifier
https://doi.org/10.1109/ICSICT.2006.306573

[4] Z. Zhang, Y. Wang, ”Method to self-repairing reconfiguration strat-
egy selection of embryonic cellular array on reliability analy-
sis”, in Proc. of the 2014 NASA/ESA Conference on Adap-
tive Hardware and Systems, 2014, pp. 225–232, Paper identifier
https://doi.org/10.1109/AHS.2014.6880181

[5] Z. Zhai, Q. Yao, Y. Xiaoliang, Y. Rui and W. Youren, ”Self-healing
strategy for transient fault cell reutilization of embryonic array circuit”,
NASA/ESA Conference on Adaptive Hardware and Systems, 2018, pp.
225–232, Paper identifier https://doi.org/10.1109/AHS.2018.8541472

https://doi.org/10.1109/SST.2017.8188663
https://doi.org/10.1109/ICSICT.2006.306573
https://doi.org/10.1109/AHS.2014.6880181
https://doi.org/10.1109/AHS.2018.8541472


EMBRYONIC ARCHITECTURE WITH BUILT-IN SELF-TEST AND GA EVOLVED CONFIGURATION DATA 217

[6] R. Salvador, A. Otero, J. Mora, E. D. La Torre, L. Sekanina and
T. Riesgo, ”Fault tolerance analysis and self-healing strategy of au-
tonomous, evolvable hardware systems”, International Conference on
Reconfigurable Computing and FPGAs, 2011, pp. 164–169, Paper
identifier https://doi.org/10.1109/ReConFig.2011.37

[7] E. Benkhelifa, A. Pipe and A. Tiwari, ”Evolvable embryonics: 2-in-
1 approach to self-healing systems”, Procedia CIRP, 11, 2013, pp.
394–399, Paper identifier https://doi.org/10.1016/j.procir.2013.07.029

[8] V. Sahni and V. P. Pyara, ”An Embryonic Approach to Reliable Digital
Instrumentation Based on Evolvable Hardware”, IEEE Transactions on
Instrumentation and Measurement, 52(6), 2003, pp. 1696–1702, Paper
identifier https://doi.org/10.1109/TIM.2003.818737

[9] K.H. Chong, I.B. Aris, M.A. Sinan and B.M. Hamiruce, ”Digital
Circuit Structure Design via Evolutionary Algorithm Method”, Journal
of Applied Sciences, 7, 2007, pp. 380-385.

[10] E. Benkhelifa, A. Pipe, G. Dragffy and M. Nibouche, ”To-
wards evolving fault tolerant biologically inspired hardware us-
ing evolutionary algorithms”, IEEE Congress on Evolutionary
Computation, Singapore, 2007, pp. 1548-1554, Paper identifier
https://doi.org/10.1109/CEC.2007.4424657

[11] J. F. Miller, ”Cartesian Genetic Programming. Natural Computing
Series”, 43, 2011, Paper identifier https://doi.org/10.1007/978-3-642-
17310-3

[12] G. Malhotra, V. Lekshmi, S. Sudhakar and S. Udupa, ”Implementation
of threshold comparator using Cartesian genetic programming on em-
bryonic fabric”, Advances in Intelligent Systems and Computing, 939,
2019, pp. 93–102.

[13] E. Stomeo, T. Kalganova and C. Lambert, ”A novel genetic
algorithm for evolvable hardware”, IEEE Congress on
Evolutionary Computation, 2006, pp. 134–141, Paper identifier
https://doi.org/10.1109/CEC.2006.1688300

[14] Lucian Prodan, Gianluca Tempesti, Daniel Mange and André Stauffer,
”Embryonics: electronic stem cells”, In Proc. of the eighth international
conference on Artificial life, 2003, pp. 101–105.

[15] D. Mange, A. Stauffer and G. Tempesti, ”Embryonics: A macroscopic
view of the cellular architecture”, Lecture Notes in Computer Science

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 1478, 1998, pp. 174–184, Paper identifier
https://doi.org/10.1007/BFb0057619

[16] Yann Thoma, Gianluca Tempesti and Eduardo Sanchez, ”POEtic: An
Electronic Tissue for Bio-Inspired Cellular Applications”, Biosystems,
vol. 76, 1-3 (2004).

[17] A. Stauffer, Daniel Mange, and Joel Rossier, ”Design of Self-organizing
Bio-inspired Systems”, Second NASA/ESA Conference on Adaptive
Hardware and Systems, 2007.

[18] M. R. Boesen and J. Madsen, ”eDNA: A bio-inspired reconfigurable
hardware cell architecture supporting self-organisation and self-healing”,
NASA/ESA Conference on Adaptive Hardware and Systems, 2009, pp.
147–154, Paper identifier https://doi.org/10.1109/AHS.2009.22

[19] C.E. Stroud, ”A Designer’s Guide to Built-in Self-Test”, Springer, 2002.
[20] Gayatri Malhotra, Joachim Becker and Maurits Ortmanns, ”Novel Field

Programmable Embryonic Cell for Adder and Multiplier”, 9th Confer-
ence on Ph.D. Research in Microelectronics and Electronics (PRIME-
2013), June 2013.

[21] Z. Zhang and Y. Wang, ”Method to self-repairing reconfiguration
strategy selection of embryonic cellular array on reliability anal-
ysis”, In Proc. of the 2014 NASA/ESA Conference on Adap-
tive Hardware and Systems, 2014, pp. 225–232, Paper identifier
https://doi.org/10.1109/AHS.2014.6880181

[22] M. F. Torquato and M. A. C. Fernandes, ”High-Performance Parallel
Implementation of Genetic Algorithm on FPGA”, Circuits, Systems,
and Signal Processing, 38(9), 2019, pp. 4014–4039, Paper identifier
https://doi.org/10.1007/s00034-019-01037-w

[23] Z. Zhu, D. J. Mulvaney and V. A. Chouliaras, ”Hardware implementation
of a novel genetic algorithm. Neurocomputing”, 71(1–3), 2007, pp.
95–106, Paper identifier https://doi.org/10.1016/j.neucom.2006.11.031

[24] A. AL-Marakeby, ”FPGA on FPGA: Implementation of Fine-grained
Parallel Genetic Algorithm on Field Programmable Gate Array”, In-
ternational Journal of Computer Applications, 80(6), 2013, pp. 29–32,
Paper identifier https://doi.org/10.5120/13867-1725

https://doi.org/10.1109/ReConFig.2011.37
https://doi.org/10.1016/j.procir.2013.07.029
https://doi.org/10.1109/TIM.2003.818737
https://doi.org/10.1109/CEC.2007.4424657
https://doi.org/10.1007/978-3-642-17310-3
https://doi.org/10.1007/978-3-642-17310-3
https://doi.org/10.1109/CEC.2006.1688300
https://doi.org/10.1007/BFb0057619
https://doi.org/10.1109/AHS.2009.22
https://doi.org/10.1109/AHS.2014.6880181
https://doi.org/10.1007/s00034-019-01037-w
https://doi.org/10.1016/j.neucom.2006.11.031
https://doi.org/10.5120/13867-1725

	Introduction
	Embryonic Architecture With CGP Configuration Data
	CGP Decoding and Built-in Self-Test
	Embryonic Adder and Comparator Cell Design
	Embryonic Switch Box Design
	BIST Controller for Embryonic Cells
	Test Pattern Generator Module
	Output Response Analysis Module
	MISR for Response Compaction- Signature Analysis

	FAULT DETECTION OF EMBRYONIC ADDER AND COMPARATOR CELLS
	Simulation Results
	PARALLEL GA DESIGN FOR CGP CONFIGURATION DATA GENERATION
	Parallel HsClone GA
	Optimum Individual Monogenetic GA-OIMGA

	Conclusion
	Scope for Future Work
	References

