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Optimal SAT Solver Synthesis of Quantum Circuits
Representing Cryptographic Nonlinear Functions

Adam Jagielski

Abstract—In this article we present a procedure that allows
to synthesize optimal circuit representing any reversible function
within reasonable size limits. The procedure allows to choose
either the NCT or the MCT gate set and specify any number of
ancillary qubits to be used in the circuit. We will explore efficacy
of this procedure by synthesizing various sources of nonlinearity
used in contemporary symmetric ciphers and draw conclusions
about properties of those transformations in quantum setting. In
particular we will try to synthesize optimal circuit representing
ASCON cipher SBOX which recently won NIST competition for
Lightweight Cryptography standard.
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I. INTRODUCTION

CRYPTOGRAPHY is a fundamental aspect of modern
communication and data security, and its importance has

only grown in the age of digital information. With the rapid
development of quantum computing, however, traditional cryp-
tographic methods are at risk of becoming obsolete due to their
vulnerability to attacks by quantum computers. As a result,
there is a pressing need for the development of quantum-safe
cryptographic techniques that can withstand attacks by both
classical and quantum computers.

Circuit synthesis is essential in the security analysis of
ciphers because it enables us to evaluate the security of encryp-
tion schemes against both classical and quantum attacks. By
synthesizing optimal and sub-optimal circuits representing ci-
phers, we can identify potential vulnerabilities and weaknesses
in the encryption scheme, and explore the effectiveness of
different cryptographic transformations in terms of their ability
to resist attacks. Additionally, circuit synthesis allows us to
analyze the computational resources required to execute the
circuit and, therefore, the difficulty of attacking the encryption
scheme. This knowledge is essential in the development of
advanced encryption techniques that are resistant to attacks
and ensure the confidentiality and integrity of sensitive infor-
mation. Overall, circuit synthesis plays a critical role in the
security analysis of ciphers and is essential in the develop-
ment of effective and secure cryptographic methods that can
withstand attacks by both classical and quantum computers.

Author is with Military University of Technology in Warsaw, Poland,
(e-mail: adam.jagielski@wat.edu.pl).

II. SYNTHESIS PROCEDURE

In this section we present a modification of procedure
demonstrated in [1]. Its main principle of operation is reduc-
tion to a boolean satisfiability (SAT) problem, which represents
a question of existence of a circuit for given reversible function
using exact number of gates. This approach, where we aim to
synthesize a circuit with set number of resources, is called
Exact Synthesis. We will start by describing the reduction of
exact synthesis problem to an equivalent SAT problem.

A. Describing a valid NCT and MCT circuit

The aim of this part is to generate high-level set of con-
straints that are enough to describe any valid MCT circuit.

As we recall a MCT circuit is a sequence of gates from
”Multiple Control Toffoli” set which contains NOT, CNOT,
Toffoli gates and Toffoli gate equivalents with higher number
of control qubits. NCT circuit is more restricted version where
only allowed gates are NOT, CNOT and Toffoli.

|x0⟩ |y0⟩

|x1⟩ |y1⟩

|x2⟩ |y2⟩

Fig. 1. NCT gate set

For any NCT and MCT circuit there are two main param-
eters that describe its global properties - circuit gate count
(G) and circuit width (W ). In this paper we consider depth
of circuit to be equal to the gate count as we do not include
gates parallelism into consideration and we consider circuit as
a strict sequence of gates.

|x0⟩ |y0⟩

|x1⟩ |y1⟩

|x2⟩ |y2⟩

|x3⟩ |y3⟩

Fig. 2. Example MCT circuit

The first thing we need to address is how to efficiently and
unambiguously encode the given circuit in such a way that
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the encoding can be easily used in the synthesis procedure. To
do this, we will divide our circuit graph into a checkerboard
consisting of horizontal lines, equivalent to lines of data qubits,
and vertical layers. We can observe that each gate occupies one
layer, and each layer is occupied by one gate. Therefore, from
now on, we will use the terms ”layers” and ”gates” of a circuit
interchangeably.

Fig. 3. Circuit split into checkerboard

Now let us consider the possible states of a single board
field. Each field can have one of three states:

• Field is empty;
• Field contains a target qubit of a gate in given layer;
• Field contains a control qubit of a gate in given layer.

Hence, we will require two bits of data to describe each field.
Let 0 ≤ i < G, 0 ≤ j < W be a pair of coordinates indicating
the field, where i indicates an index of a layer and j indicates
index of a line. We will use two boolean variables to encode
state of each field: ci,j and ti,j which mark whether the field is
control or target respectively. The circuit above can be encoded
with G ∗W ∗ 2 = 4 ∗ 5 ∗ 2 = 40 boolean variables:

c0,0 = 0, c1,0 = 0, c2,0 = 1, c3,0 = 0, c4,0 = 0

c0,1 = 0, c1,1 = 1, c2,1 = 1, c3,1 = 0, c4,1 = 0

c0,2 = 0, c1,2 = 0, c2,2 = 1, c3,2 = 1, c4,2 = 1

c0,3 = 0, c1,3 = 0, c2,3 = 0, c3,3 = 0, c4,3 = 1

t0,0 = 0, t1,0 = 0, t2,0 = 0, t3,0 = 0, t4,0 = 1

t0,1 = 1, t1,1 = 0, t2,1 = 0, t3,1 = 1, t4,1 = 0

t0,2 = 0, t1,2 = 1, t2,2 = 0, t3,2 = 0, t4,2 = 0

t0,3 = 0, t1,3 = 0, t2,3 = 1, t3,3 = 0, t4,3 = 0

(1)

Naturally, some constraints for those variables emerge:
1) A field cannot be both a control and a target;
2) There can be only one target in each layer;
3) The number of controls in each layer of MCT circuit is

unrestricted as long as other constraints are fulfilled, the
number of controls in NCT circuit in each layer cannot
exceed two.

The constraints can be written formally as:

∀0≤i<G,0≤j<W (¬ci,j ∨ ¬ti,j) (2)

∀0≤i<G

 ∑
0≤j<W

ti,j = 1

 (3)

∀0≤i<G

 ∑
0≤j<W

ci,j ≤ 2

 (4)

For NCT circuit all of the three hold, for MCT circuit
the last one is omitted. The second and third constraints are
cardinality constraints that specify that a given set of variables
must have at least or at most a certain number of true values.
These constraints are challenging to transform into standard
CNF clauses used for solving SAT problems. Transformations
presented in [2] yielded the best results for our setup.

Constraints listed above are enough to describe a valid NCT
or MCT circuit implementing unspecified function. Solving
problems with those only will produce some ”random” proper
circuit of given gate count and width.

B. Assigning a functionality to the circuit

We know how to encode a proper circuit using boolean
variables and how to construct a set of constrains that allows to
produce some circuit. In this section we will describe another
set of constraints which will be necessary to ensure that the
circuit implements intended reversible function. Let us start
with investigating how the circuit interacts with chosen input.

0 0 0 0

1 1 1 0

0 1 1 1

1 1 1 1

|0⟩ |1⟩

|0⟩ |0⟩

|0⟩ |1⟩

|1⟩ |1⟩

Fig. 4. MCT circuit with data transformations

The graph above represents how the input is transformed
into output of the circuit, one gate after another. From the
graph and from the definitions of MCT gates, we can deduce
that two conditions must be met for one bit to be changed on
its line after a gate execution:

1) The field in given line and layer must contain a target;
2) For all the control fields on another lines in given layer,

the bits in those fields must be set to one.
Formally the bit changes its value moving from bi,j to bi+1,j

when those are met:
1) ti,j = 1 ∧ ci,j = 0;

2)
w−1∧

j′=0,j′ ̸=j

(ci,j′ =⇒ bi,j′).

Unfortunately, the second condition, which is quite com-
plex, has to be computed separately for each index j. We
can notice though, that the first condition enforces the state
of ti,j = 1 and thus ci,j = 0. Because now for j′ = j the
implication predecessor must be negative, the implication is
positive and it does not bear any effect on the value of the
for-all quantifier. The condition now can be written as:
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w−1∧
j′=0

(ci,j′ =⇒ bi,j′)

 = Ci (5)

The condition is now completely agnostic in respect of the
second (j) coordinate an therefore can be computed once per
layer instead of once per field. This can dramatically save
number of variables and clauses in final formula. The state
bi+1,j of bit, after processing with ith gate can be written as:

bi+1,j = bi,j ⊕ (ti,j ∧ Ci) : Ci =

w−1∧
j=0

(ci,j =⇒ bi,j) (6)

This is enough to encode transformation of single input bit-
vector into single output, yet it is not enough to encode whole
permutation of the reversible function, hence we introduce
additional upper index for bit states:

bki,j :i ∈ {0, . . . , G− 1},
j ∈ {0, . . . ,W − 1},
k ∈ {0, . . . , 2W − 1}

(7)

The new index specifies from which input sequence it was
derived. The full variable bki,j can be read as: ”The state of
jth bit coming from input vector k after being processed by i
gates.” k is a natural number decoded from binary input vector.

Notice that the t and c variables do not have the new
index. That is because they describe the circuit itself which is
common for all of the possible inputs.

The encoding of bits transformation must be repeated for
each k ∈ {0, . . . , 2W − 1}. That produces additional variables
in number of (2W − 1) ∗W ∗ (G+ 1).

At last we have to introduce edge constraints for inputs and
output. This is done simply by assigning values for all bk0,j
variables according to the input values they represent and for
all bkG,j variables according to the desired output values of the
reversible function we want to synthesize. Those variables are
the only ones with set values beforehand solving the problem.

The final CNF formula with described constraints contains
O(G ∗ W ∗ 2W ) variables. The exact number of variables
and clauses differs depending on the encoding of cardinal
constraints and whether intermediate variables have been used
in transformations of those constraints into CNF form.

The solution of the problem produces values of ci,j and
ti,j variables which can be decoded into a circuit which
implements given reversible function.

What is worth noticing, CNF formulas for exact synthesis
of two different functions of the same size using the same gate
number are virtually identical. The only difference are edge
assignments on the output variables bkG,j .

C. Don’t cares and ancillas

Up to this time we only considered fully described reversible
function, i.e. functions where full permutation of states is
known and desired to be implemented by the circuit. The
synthesis procedure allows to reduce edge constraints in

various ways. The first case of incomplete permutation can
be described as follows. Let permutation P = [3, 1, 2, 0].
We already know how to implement a set of constrains to
synthesize this permutation. Now lets consider incomplete
permutation P ′ = [3, 1, X,X]. The elements P ′(2) = X and
P ′(3) = X are so called don’t care states. This means that
when synthesizing a circuit for the permutation we do not care
about the outputs of the circuit P ′(2), P ′(3). We only require
that for P ′(0) = 3 and P ′(1) = 1. Both circuits implementing
permutations P and P” = [3, 1, 0, 2] would be valid in this
situation.

The second example is implementation of incomplete out-
puts with don’t care bits. This allows us to implement effi-
ciently surjective functions embedded in reversible functions.
In this example we want to implement a B3 → B2 function
with following truth table.

TABLE I
EMBEDDED FUNCTION TRUTH TABLE

inputs outputs

x2 x1 x0 y2 y1 y0

0 0 0 x 0 1

0 0 1 x 0 0

0 1 0 x 1 0

0 1 1 x 1 0

1 0 0 x 0 1

1 0 1 x 1 1

1 1 0 x 0 0

1 1 1 x 1 1

The function has been embedded into a B3 → B3 with
a single don’t care output variable y2. Solving problem with
those reduced constraints on variable y2 will yield a circuit
that implements some 3× 3 function which truncated to 3× 2
will be equivalent to chosen function.

At last the most important usage of don’t care variables is
introduction of ancillary variables into a function. In this case
we will want to synthesize a circuit that implements some 2×2
function which is allowed to use an additional ancilla bit. The
truth table for the function is defined as:

TABLE II
2× 2 FUNCTION TRUTH TABLE

inputs outputs

x1 x0 y1 y0

0 0 0 1

0 1 1 0

1 0 0 0

1 1 1 1

Adding another unused bit of input and output to this truth
table produces truth table III.

In this setting we did not reduce restrictions on the circuit
because the variable x2 directly maps to y2 and every circuit
implementing original function implements the new extended
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TABLE III
EMBEDDED FUNCTION TRUTH TABLE

inputs outputs

x2 x1 x0 y2 y1 y0

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 0 0

0 1 1 0 1 1

1 0 0 1 0 1

1 0 1 1 1 0

1 1 0 1 0 0

1 1 1 1 1 1

function as well and vice versa. The solutions for this problem
are exactly the same as solutions for the 2 × 2 function. To
extend the number of possible solutions we remove restrictions
for states where ancilla qubits are not all set to zeroes. This
is based on a assumption that ancillas are always in ”ready”
all-zeroes state before and after being used.

TABLE IV
FUNCTION TRUTH TABLE WITH ANCILLARY QUBIT

inputs outputs

x2 x1 x0 y2 y1 y0

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 0 0

0 1 1 0 1 1

1 0 0 x x x

1 0 1 x x x

1 1 0 x x x

1 1 1 x x x

Now this problem has more solutions than the original
one as we reduced its restrictiveness. In fact given some set
number of gates adding an ancillary line might render original
unsolvable problem solvable which can be used for achieving
smaller circuits using ancillas.

D. Optimal synthesis

In general to find an optimal circuit and prove its optimality
is to find a circuit of some cost and prove there is no equivalent
circuit with lesser cost. Fortunately for us, the exact synthesis
procedure not only allows us to find circuits of given gates
number but also in case of failure we know that a circuit of
this size does not exist due to unsatisfiability of the problem.
We can use this property in two directions:

1) Forward - we start at a gate count equal to zero and try
to solve the problem. If there is no solution we increment
the number of gates. We repeat incrementing and solving
until a circuit is found. When we find a circuit we know
it is optimal because there was no solution for all of the
smaller gate counts.

2) Backward - First we have to notice, that if there exists a
circuit of size k that implements a function, there always
exist equivalent circuits of size k + 2, k + 4, k + 6 . . . .
That is because we can add two NOT gates on one line
at the end of the circuit which will cancel each other
therefore resulting in equivalent circuit. This implication
can be inverted. If there is no circuit of size k there is
no circuits of size k − 2, k − 4, k − 6, . . . . Hence if we
have a circuit of circuit k and we prove that there is
no circuit of size k − 1 and k − 2 we absolutely know
that the circuit of size k is optimal. We start synthesis
with some upper bound for the circuit size. One of them
for MCT circuits size is G ≤ (W − 1) ∗ 2W + 1 from
[3]. We know that there is some circuit that implements
required function not bigger that the chosen bound. We
start at k equal to the bound. If we find a circuit of size
k, we decrement that value, we stop when we find such
a size k that there it exists a circuit of this size but there
exists no circuit of size k − 1 and k − 2.

This concludes how exact synthesis of circuit can be used for
optimal synthesis.

III. CIRCUITS TO FIND

In the experimental part of this paper we searched for
optimal implementations of small SBOXes and other nonlinear
operations. The transformations have been taken from finalists
of following competitions:

1) NIST Lightweight Cryptography Call;
2) NIST Hash Function Call;
3) NESSIE;

Additionally we investigated MiniAES SBOX.
SBOXes and equivalents up to size 5×5 where researched:
• 3× 3 functions

– Xoodyak Chi [4];
• 4× 4 functions

– Elephant SBOX [5];
– GIFT-COFB SubCells [6];
– Photon-Beetle SBOX [7];
– MiniAES SBOX [8];
– 2 Whirlpool SBOXes [9];
– 2 JH SBOXes [10];

• 5× 5 functions
– ASCON / ISAP-A SBOX [11];
– KECCAK / ISAP-K Chi [12].

We investigated six different settings for each function:
• NCT circuit optimal synthesis

– No ancillary qubits (NoAnc);
– Single ancilla (SAnc);
– Double ancilla (DAnc);

• MCT circuit optimal synthesis
– No ancillary qubits;
– Single ancilla;
– Double ancilla;

Where single ancilla means using at most one ancillary qubits,
double ancilla means using at most n ancillary bits for a
function of size n× n.
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A. Relationships between settings

Naturally a hierarchy between problems emerges, for exam-
ple, every NCT-NoAnc circuit is a proper MCT-NoAnc circuit,
therefore MCT-NoAnc optimal solution cannot be bigger then
one for NCT-NoAnc. Similarly MCT-NoAnc circuit is a proper
MCT-SAnc and MCT-DAnc circuit.

NCT-NoAnc

MCT-NoAnc

NCT-SAnc

MCT-SAnc

NCT-DAnc

MCT-DAnc

R
es

tr
ic

tio
ns
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ze
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io
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Fig. 5. Problems hierarchy

The graph arrows indicate inclusion order of solutions sets.
Circuits from settings in nodes with outgoing arrows are valid
in settings where the arrow finishes. The graph is transient and
arrows marking indirect inclusions have been omitted. This
graph can be used for finding bounds for sizes for optimal
solutions in different settings. Node with NCT-NoAnc is
minimal node with respect to inclusion and therefore maximal
node in terms of optimal solutions sizes, node with MCT-DAnc
setting is the opposite. For some reversible function let t be
a size of optimal circuit in NCT-NoAnc and s be a size of
optimal circuit in MCT-DAnc. Sizes of optimal circuits in all
of six settings fit in range [s, t]. This hierarchy might be used
for optimization of synthesis across settings. In some cases
where s = t it is enough to solve for two edge cases to infer
all other sizes.

IV. EXPERIMENTAL RESULTS

In the final section we present results of synthesis for chosen
circuits and settings. The table below presents sizes of circuits
found using the procedure. All of the problems were solved
using Parkissat SAT-solver which is the winner of Parallel
track 2022 SAT-Solver Competition and which was found to
be the most efficient in our setting. The solver was working
on 128 cores machine. For every problem we started with
searching for solutions in edge cases (NCT-NoAnC and MCT-
DAnc settings) and we skipped other setting if edge cases had
the same size of solution.

• Xoodyak - The only 3×3 function. In this case NCT and
MCT cases are equivalent. This circuit was synthesized
in NCT-NoAnc and NCT-DAnc settings. Both settings
resulted in the same circuit and therefore there was no
gain associated to adding ancillaries. NCT-SAnc setting
has the same solution as two edge cases for this function;

TABLE V
SYNTHESIS RESULTS

SBOX Setting GC NOT CNOT Toff. 3Toff. 4Toff.
3× 3 Functions

Xoodyak N-NA 6 0 3 3 - -
N-DA 6 0 3 3 - -

4× 4 Functions

Elephant N-NA 10 1 4 5 - -
M-DA 10 1 4 5 0 -

GIFT-COFB N-NA 9 2 3 4 - -
M-DA 9 2 3 4 0 -

Photon-Beetle N-NA 11 1 5 5 - -
M-DA 11 1 5 5 0 -

Mini-AES

N-NA 13 2 6 5 - -
N-SA 13 2 6 5 - -
N-DA 13 2 6 5 - -
M-NA 12 2 6 2 2 -
M-SA 12 2 6 2 2 -
M-DA 12 2 6 2 2 -

Whirlpool e

N-NA 13 1 4 8 - -
N-SA 13 1 4 8 - -
N-DA 13 1 4 8 - -
M-NA 12 1 4 5 2 -
M-SA 12 1 4 5 2 -
M-DA 12 1 4 5 2 -

Whirlpool r N-NA 13 3 5 5 - -
M-DA 13 3 5 5 0 -

JH 0 N-NA 10 1 2 7 - -
M-DA 10 1 2 7 0 -

JH 1 N-NA 12 2 4 6 - -
M-DA 12 2 4 6 0 -

5× 5 Functions

ASCON

N-NA 17 1 6 9 - -
N-SA 17 1 6 9 - -
N-DA 17 1 6 9 - -
M-NA 16 1 6 7 2 0
M-SA 16 1 6 7 2 0
M-DA 16 1 6 7 2 0

Keccak

N-NA 13 0 5 8 - -
N-SA 13 0 5 8 - -
N-DA 13 0 5 8 - -
M-NA 12 3 3 5 1 0
M-SA 12 3 3 5 1 0
M-DA 12 3 3 5 1 0

• Elephant, GIFT-COFB, Photon-Beetle, Whirlpool-r,
JH-0, JH-1 - For those functions both edge cases resulted
in a circuit of the same size. Therefore the solution in all
settings is the same as the solution found for NCT-NoAnc
which has additional benefits of minimal gate library and
minimal number of lines even if the settings allows not
to have those restrictions;

• Mini-AES, Whirlpool-e, Keccak - Synthesis of those
functions resulted in solutions of different sizes for the
edge cases, due to this fact the remaining settings where
solved for as well. For all of the circuits there was no
gain achieved due to adding ancillas, the reduction of
size comes solely from extension of the gate set. Hence,
for NCT settings the solution is the result achieved for
NCT-NoAnc and for MCT settings the one from MCT-
NoAnc with additional benefit of not using ancillas.

• ASCON - This function proved to be to complex to
be solved optimally. The synthesis procedure times out
(24h limit) while trying to find solution at 13 gates. In
this case we used reverse order of synthesis. We started
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looking for solutions at 32 gates and after finding a circuit
we decreased number of gates until times out where
achieved. We strongly believe that even tough we could
not disprove existence of smaller circuits in particular
settings the presented ones still might be the optimal
due to solving times patterns which is explained later
in conclusions. While searching for solutions we did not
achieved any improvements on the size of circuits due to
adding ancillas.

TABLE VI
SYNTHESIZED CIRCUITS

SBOX Settings Circuit
3× 3 Functions

Xoodyak All 6 (0,2); (0,1,2); (1,0); (1,0,2); (2,1); (2,0,1)
4× 4 Functions

Elephant All 6 (0,1,2); (2,0,3); (0,1); (1); (0,3); (2,1);
(1,2,3); (3,1,2); (1,0); (3,0,1);

GIFT-COFB All 6 (1,0,2); (0,1,3); (2,1); (3); (1); (3,0,1);
(3,2); (1,3); (2,0,3);

Photon-Beetle All 6 (3,1,2); (2,3); (1,2,3); (3,1,2); (0,2); (1,0,3);
(2); (3,0); (3,2); (3,1); (2,1,3);

Mini-AES NCT (0,1); (1,0); (1); (3,1); (2,0,3); (0,3); (1,2);
(0,1,2); (1,0,3); (3,1,2); (1,0,3); (2,0); (0);

MCT (0,1); (1,0); (1); (3,1); (2,0,3); (1,2);
(3,1,2); (0,3); (1,0,2,3); (3,0,1,2); (2,0); (0);

Whirlpool e NCT (2,0,1); (1,0,3); (0,1,2); (3,0); (0); (1,2,3);
(2,0,3); (0,1,2); (1,0,2); (3,1); (1,3); (3,0,1);
(0,1);

MCT (3,1,2); (0,1,2,3); (2,3); (1,2,3); (2,0,1);
(1,0); (1,0,2,3); (0); (3,1); (1,0,3); (3,2);
(0,1,3);

Whirlpool r All 6 (3); (2,0); (0,2,3); (2); (2,0,1); (1,3);
(3,1,2); (1,0,3); (0,3); (0,1); (1); (2,3);
(1,0,2);

JH 0 All 6 (0,2,3); (0,1); (3,0,1); (2,1,3); (1,0,2);
(0,1,3); (3,0,2); (1,0,3); (0); (3,0);

JH 1 All 6 (0,2,3); (2,1); (3,0,1); (0,2); (2,1,3); (3,0);
(1,0,3); (3,0,2); (0,1,2); (2,3); (1); (0);

5× 5 Functions

ASCON NCT (4,2,3); (2,0); (4,2); (2,0,1); (0,3,4); (2,3);
(0,1,2); (1,0,2); (2); (3,1,2); (0,3); (4,0,2);
(1,3,4); (4,0,2); (3,4); (4,0); (1,3,4);

MCT (4,2,3); (2,0); (4,2); (2,3); (2,0,1); (0,1);
(3,2,4); (1,0,2); (0,3); (1,0,2,3); (2); (1,2,4);
(0,3,4); (3,1,2); (1,0,2,4); (4,0);

Keccak NCT (1,0,3); (1,2,3); (3,0,4); (3,0); (0,2); (1,0,3);
(0,1,2); (2,4); (2,3,4); (4,1); (4,0,1); (1,2,3);
(1,3);

MCT (4); (3,0,4); (0,1,2); (0,2); (2,4); (1,0,2,4);
(4); (2,3,4); (4,0,1); (4,1); (1,2,3); (2);

Circuits in table are interpreted as a sequence of gates,
each gate is represented as a tuple. In each tuple first number
indicates the index of target qubit. All other indices point to
control qubits. As an example Xoodyak function circuit is
shown below:

|x0⟩ |y0⟩

|x1⟩ |y1⟩

|x2⟩ |y2⟩

Fig. 6. Xoodyak optimal circuit

V. CONCLUSIONS

Presented procedure enables optimal synthesis of arbitrary
functions within certain scope of sizes. All of the 3×3 and 4×4
functions were solved and one of size 5×5 as well. The other
5 × 5 function was not proved to be solved optimally. Given
computational setup described earlier each task was dealt with
within 24 hours and most of them within an hour. The only
outlier was ASCON SBOX which timed out.

While solving subsequent tasks of exact synthesis we no-
ticed a characteristic time pattern. Let k0 be the size of optimal
circuit, i.e for size k0 the SAT problem instance is the first one
to be satisfiable. For all sizes k ∈ [0, 1, 2, 3, . . . , k0 − 1] SAT
problems are unsatisfiable and the time to solve them grows
exponentially as k grows. Then the time needed for k = k0
drops drastically by order of magnitude up to thousands.
Solving for k > k0 usually takes about the same time as for
k = k0. This means that if using reverse order of synthesis we
find some circuit of size k and than solving for k − 1 takes
disproportionately long time, we may suspect that k is optimal
size. Tough this argument is not enough to prove optimality of
certain circuits it may provide some intuition about possibility
of existence of smaller solutions. This pattern is observed for
ASCON circuits which leads to our belief that the presented
circuits may be optimal.

Further, we can observe that for each function adding
ancillaries does not benefit with shortening of the circuit. For
seven out of eleven circuits extending gate set from NCT
to MCT did not yield smaller circuits. For remaining four
functions extending gate set from NCT to MCT results with
reduction of the circuit by at most one gate.

Those results may raise certain suspicion about correctness
of implementing ancillaries in synthesis procedure. We verified
it by synthesizing small circuits which are known to benefit
from added ancillas and in fact the procedure correctly finds
optimal solutions using added lines. For example decomposi-
tion of 3-Toffoli gate into NCT gates is one of those:

≡

Fig. 7. Example MCT circuit

We expect that our results may be useful in further workings
on vast subject of quantum security of encryption schemes.
Taking into consideration last events on NIST Lightweight
Cryptography Call and winning of ASCON in this competition
we find that those results might be vital for assessing security
of the new standard in quantum regime.
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