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ARTIFICIAL AND COMPUTATIONAL INTELLIGENCE

Influence of modeling phase transformations
with the use of LSTM network on the accuracy

of computations of residual stresses
for the hardening process
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Abstract. Replacing mathematical models with artificial intelligence tools can play an important role in numerical models. This paper analyses
the modeling of the hardening process in terms of temperature, phase transformations in the solid state and stresses in the elastic-plastic range.
Currently, the use of artificial intelligence tools is increasing, both to make greater generalizations and to reduce possible errors in the numerical
simulation process. It is possible to replace the mathematical model of phase transformations in the solid state with an artificial neural network
(ANN). Such a substitution requires an ANN network that converts time series (temperature curves) into shares of phase transformations with
a small training error. With an insufficient training level of the network, significant differences in stress values will occur due to the existing
couplings. Long-Short-Term Memory (LSTM) networks were chosen for the analysis. The paper compares the differences in stress levels with
two coupled models using a macroscopic model based on CCT diagram analysis and using the Johnson-Mehl-Avrami-Kolmogorov (JMAK)
and Koistinen-Marburger (KM) equations, against the model memorized by the LSTM network. In addition, two levels of network training
accuracy were also compared. Considering the results obtained from the model based on LSTM networks, it can be concluded that it is possible
to effectively replace the classical model in modeling the phenomena of the heat treatment process.
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1. INTRODUCTION
Modeling stresses for the hardening process of steel elements
is complex and requires consideration of many factors. This
area of modeling is currently strongly developed. For exam-
ple, printing metal elements (directed energy deposition (DED)
technology) is of great importance. Since successive layers of
the element are produced in the process of melting the powder
with a heat source, we have to deal with a complicated state
of stress [1]. Modeling, for example, of welding processes in
the production of car bodies has a similar impact on the quality
of manufactured parts [2]. Papers on phenomena during heat
treatment are also in stress modeling. Recursive networks are
also successfully applied, e.g., for the determination of non-
linear plastic response under multiaxial loading [3]. Control
over phase transformations, temperatures and stresses is key to
achieve product quality. It is crucial to achieving a high level of
modeling accuracy before manufacturing parts.

It can be summarized that each process with a heat-affected
zone, especially with a local heat-affected area, requires ini-
tial control using an appropriate simulation model. If this is not
done, hot or cold cracking is possible [4, 5].
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To obtain a satisfactory level of calculation accuracy, it is
necessary to consider a minimum of three main elements of
the process – temperature changes, phase transformations in
the solid state, and stresses in the elastic-plastic range [6].
Currently, macroscopic models based on empirical equations
such as Johnson-Mehl-Avrami-Kolmogorov (JMAK) [7–9] are
still prevalent in determining phase transformations in the solid
state. The authors of this paper decided to replace the con-
tinuous model based on the analysis of CTPc diagrams with
the use of JMAK and Koistinen-Marburger [10] equations
(macroscopic model of phase transformations in the solid state)
with the results obtained from the Long-Short-Term Mem-
ory (LSTM) network representing the continuous model. Re-
current neural networks of the LSTM type can model tasks
with multiple input variables. This is a great advantage, espe-
cially for time series prediction, where classical linear methods
can be difficult to adapt. It is possible to replace time series
analysis with recursive networks, e.g., Gated Recurrent Unit
(GRU) or LSTM [11]. However, whether the resulting model
inaccuracies will significantly affect changes in stress states is
essential.

In the numerical model of the hardening process, the artifi-
cial neural network was used as a black box giving information
on the transformation of austenite to ferrite, pearlite, bainite and
martensite based on a series of temperature levels representing
the cooling process in the nodes of the considered geometry
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of the mesh. The results obtained from the LSTM network are
subject to some errors, but this approach allows us to obtain
faster results with greater immunity to errors in diagram anal-
ysis. Errors in the obtained phase transformations refer to tem-
porary underestimation or overestimation of values at the grid
nodes. Different levels of deviations can be obtained depend-
ing on the selected geometry of the neural network or the cho-
sen method and learning parameters. In this paper, two models
of phase transformation based on LSTM with two error levels
were analysed.

The level of accuracy of the results obtained for the phase
transformation model strongly influences the other elements of
the modeling of the hardening process. This is related to cou-
plings of parts of the model, such as the effect of: the kinetics
of transformations on structural and transformation strains, the
level of phase transformations on the yield point of the mate-
rial (weighted sum of yield points of individual phases), the
latent heat of phase transformations on temperature changes
during the cooling process, or the level of phase transforma-
tions on other material properties [12, 13]. The couplings men-
tioned above show a high dependence on residual stress levels
in the elastic-plastic model due to changes in phase transfor-
mations. Considering that the obtained differences in tempo-
rary underestimation or overestimation of values may concern
the neighboring nodes or mesh elements of the considered ge-
ometry, there may be conditions for the formation of tempo-
rary errors in the level of residual stresses. Accumulation of
errors can occur. This is especially important for areas of the
geometry of hardened components with a tendency to develop
large stress gradients – notches, heat treatment boundaries, in-
clusions in the material, etc. It is also possible that after aver-
aging over a finite element from nodal values, error levels will
decrease.

The presented models take into account the results obtained
and presented in the authors’ paper entitled “Algorithm for
determining time series of phase transformations in the solid
state using Long-Short-Term Memory Neural Network” [14],
this applies especially to the geometry of the network. The
results presented in this paper are an attempt at error analy-
sis for the case of replacing a continuous mathematical model
of phase transformations with an LSTM network that allows
analysis of time series representing temperature changes dur-
ing cooling.

2. NUMERICAL MODEL AND SIMULATION
The numerical model, based on a model of the associated phe-
nomena of the heat treatment process (Fig. 1), takes into ac-
count three of its most essential elements: temperature, phase
transformations in the solid state, stresses.

To verify the learned neural network, stress state calcula-
tions were performed for the test geometry. An element with
a cross-section of 0.1× 0.1 m with indentations 0.005 m wide
and 0.02 and 0.015 m deep, respectively, was analysed (Fig. 2).
Due to the adopted geometry of the angle and the locations of
the indentations, which were expected to cause the appearance
of stress concentrations. It was decided to discretise the cross-

Fig. 1. Modeling scheme for heat treatment phenomena

sectional space of the steel element in quite a detailed manner.
Due to the cooling curves occurring in the task (their range of
rates), to obtain correct results, from all three basic elements of
the model, a time step was adopted in the temperature region
below Ac3 at ∆t = 0.02 s. This resulted in calculations for over
2000 time steps to cool the material.

Fig. 2. Discretisation of the cross-sectional analysis space

2.1. Temperature
A numerical model solving the differential heat transfer equa-
tion for non-stationary flow in Lagrange coordinates was used
to determine temperature changes. The choice of coordinates
was dictated by the need to model an exemplary steel element
with a constant cross-section without considering free convec-
tion in the surrounding coolant. The heat treatment process was
limited to cooling only. Thus, it was assumed that a structurally
homogeneous element without initial stresses with an initial
temperature of 1200 K is cooled in water at 293 K. The differ-
ential heat conduction equation was solved by the finite element
method using the discretisation of space shown in Fig. 2. The
basic finite element was a quadrangular element with bi-linear
shape functions (number of nodes – 14393). Due to the adopted
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cooling, a boundary condition of the third type was used for
modeling in the temperature range with the heat transfer co-
efficient from the environment depending on the values at the
boundary nodes of the geometry [15]. The thermophysical val-
ues depended on the temperature [16], and their average value
in a single finite element was assumed.

2.2. Phase transformation
The purpose of this paper is to present the impact of typical er-
rors occurring during the prediction of values by artificial intel-
ligence tools on the values determined in the numerical model
and analysed by technologists. In the discussed coupled model
of heat treatment process phenomena, the model of phase trans-
formations in the solid state was selected as the element to be
replaced by the LSTM network. Based on the classical model
of macroscopic transformations [16, 17], the stresses were de-
termined as the data most sensitive to errors in the preceding
calculations. The same range of stresses was generated by the
model including the LSTM network. This model was trained
using data obtained from the macroscopic model considering
cooling rates in the range of 10–80 K/s with a rate-of-change
step of ∆Vc = 0.02 K/s. As a result, 3600 cooling lines were
obtained, which were used to memorize the functioning of the
model of phase transformations in the solid state by an artifi-
cial neural network. Each cooling line was represented by up
to 83 temperature changes along with changes in phase shares.
Because the range of cooling rates is quite large some of the
data in the form of time series had to be supplemented (for
the rate of 80 K/s, only 20 elements were carrying the infor-
mation). Since the paths of the cooling lines occurring during
the modeling of cooling in the water of the steel element do not
correspond to the cooling curves during learning, for each point
(time, temperature) on the cooling line the average cooling ve-
locity (T −TAc3)/(time−timeAc3) was determined (Fig. 3). This
average cooling rate determined from which cooling curve we
would determine the levels of phase transformations. The dif-
ference between the values obtained from successive values of
the average rates and the current level of temperature and time
allowed us to determine successive gains or losses of phase
transformations in the solid state.

Fig. 3. CCT diagram with cooling curves

2.3. Stresses
The stress state was determined by solving a differential equa-
tion defining the equilibrium equations in incremental form.
The relationship between strains and stresses in incremen-
tal form takes into account temperature-dependent changes in
the elasticity matrix. It was assumed that elastic strains result
from the difference between total strains and the sum of ther-
mal, structural, plastic and transformational strains. The model
built concerned the elastic-plastic range, taking into account
the material model with isotropic hardening. The Huber-Mises-
Hencky yield condition was used. The obtained equations were
solved using the iterative method. The yield point depended on
the phase composition and temperature [16]. Degrees of free-
dom were taken away at two points of the considered geometry
to ensure static determinability and so that restraints would not
generate additional stresses (Ux[0] =Uy[0] = 0; Ux[12] = 0).

2.4. LSTM network
A model predicting the distributions of phase transformations
using the RNN network, trained on the classical macroscopic
model of phase transformations for constant cooling rates, was
developed in the authors’ previous paper [14]. A description
of the model architecture is included in Table 1. Five network
configurations were considered, which could be used to extract
other phases or groups of phases based on sums or differences.
It was not possible for one network to learn all the phase trans-
formations. Finally, three configurations were chosen in the pa-
per: ferrite and pearlite because they have similar thermal and
structural expansion coefficients and they can be treated as a ho-
mogeneous mixture. On the other hand, bainite and martensite
are significantly different, so it was decided to consider them
separately. The learning process was carried out using Adam’s
optimization method. The rectified linear unit activation func-
tion (ReLU) was used at the output of the network.

Table 1
Geometry of the analysed RNN network

Layer (Type) Output Shape Param

lstm_1 (LSTM) (100, 83, 83) 28,220

lstm_2 (LSTM) (100, 83, 83) 55,444

lstm_3 (LSTM) (100, 83, 83) 55,444

time_distributed_1 (TimeDist (100, 83, 1) 84

activation_1 (Activation) (100, 83, 1) 0

Total params: 139,192

Trainable params: 139,192

Non-trainable params: 0

In the paper, the training process was carried out for 50 and
2000 epochs. Figure 4 shows the training and validation pro-
cess. Despite using the random state of the weights as the ini-
tial state, the accuracy obtained after 50 epochs in both training
cases is comparable.
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Fig. 4. Training and validation error history for different network
architectures

3. RESULTS AND CONCLUSIONS

The use of training for constant rates resulted in a model that
behaves well, and the results obtained are continuous, but it can
be seen that they differ from the classical model. To create a
model based on LSTM layers, only the analysis of cases with
constant cooling rates was used. Because of the above, the re-
sults obtained for variable cooling speeds from the RNN model
deviate and differ significantly (Figs. 5–7). Probably, the error
level would be reduced if the analysed cooling speeds were in-
cluded, however, it cannot be assumed that the input data will
be known temperature profiles. Analysing the values of the dif-
ferences, it can be concluded that there was a large overestima-
tion of the value of martensite inside the area (Fig. 7), while
underestimating the ferrite–pearlite transformation (Fig. 5). On
the other hand, in the boundary layer we have an underesti-
mation of the value of martensite and an overestimation of the
proportion of soft structures. The most complex nature of the
difference is in the bainite structure (Fig. 6), which in the area
close to the edge is strongly underestimated while inside it is
overestimated.

As part of the article, the second type of analysis was also
performed - how much the accuracy of the learning process af-
fects the differences in stress values (Fig. 9). When analysing
the distribution of strains or effective stresses, one can assume a
high correlation and quite insignificant differences between the
considered cases. Such an analysis was dictated by the need to
complete the learning process when the model, instead of mem-
orizing, was also used for generalizations. Stopping the learning
process at the moment of overfitting (in this case only hypo-
thetical) is a typical procedure when teaching a neural network.
Unfortunately, the presented model does not generalize but re-
members, but it is still possible to analyse the results taking into
account certain levels of training inaccuracy. The results regard-

a)

b)

c)

Fig. 5. Sum of ferrite and pearlite fraction (after cooling process):
a) numerical model, b) RNN 2000 epochs, c) RNN 50 epochs

ing the training process for the validation set suggest that there
is no overfitting (Fig. 4). However, these results are for valida-
tion data that are very close to the training data. Splitting the
input set of 3600 samples randomly selected into the training,
test and validation sets with such small differences in velocity
values gives us a false picture of the lack of overfitting.
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a)

b)

c)

Fig. 6. Bainite fraction (after cooling process): a) numerical model,
b) RNN 2000 epochs, c) RNN 50 epochs

The training error in terms of standard deviation between
stopping at 50 and 2000 epochs decreases more than twice.
However, on the scale of the whole error, the difference is only
a few percent. These few percents are also noticed in the val-
ues of the obtained phase transformations (the differences be-

a)

b)

c)

Fig. 7. Martensite fraction (after cooling process): a) numerical
model, b) RNN 2000 epochs, c) RNN 50 epochs

tween the shares are no more than 4.5%) (Fig. 8). Even such
a small difference can result in local differences between the
obtained stresses of more than 30%, and the average differ-
ence in the whole area is not more than 6% (Fig. 10). On the
other hand, these differences apply to areas with low effective
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a)

b)

c)

Fig. 8. Difference between RNN models of 2000 and 50 epochs:
a) sum of ferrite and pearlite, b) bainite, c) martensite

stresses. Considering that the spread of effective stress distribu-
tion reaches the level of 1300 MPa, the differences from −40
to 50 MPa can be considered insignificant.

Considering the results obtained in previous paper [14] re-
garding the comparison of the same models only for constant
velocities, it can be concluded that the proposed solution is cor-
rect only in cases where the artificial network gets as training

a)

b)

c)

Fig. 9. Residual effective stresses distribution [MPa]: a) numerical
model, b) RNN 2000 epochs, c) RNN 50 epochs

data the same family of cooling curves, which occur in the later
considered computational case. Confirmation of this thesis is
evident, especially when comparing the values of the obtained
effective stresses. Nevertheless, the results obtained allow for
much better accuracy of calculations than in the case of not con-
sidering phase transformations when modeling stresses in the
heat treatment process. The critical element linking stress lev-
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a)

b)

Fig. 10. Residual effective stresses distribution [MPa]: a) difference
between RNN models, b) difference between numerical model and

RNN models with 2000 epochs

els and phase transformations is probably taking into account
the yield point of individual (according to [16]) phases in the
calculations of the elastic-plastic model.
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