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can be considered for the demand response program
Piotr KAPLER ∗∗∗

Warsaw University of Technology, Faculty of Electrical Engineering, Electrical Power Engineering Institute, Koszykowa 75, 00-662 Warsaw, Poland

Abstract. This paper proposes the usage of the fuzzy rule-based Bayesian algorithm to determine which residential appliances can be considered
for the Demand Response program. In contrast with other related studies, this research recognizes both randomness and fuzziness in appliance
usage. Moreover, the input data for usage prediction consists of nodal price values (which represent the actual power system conditions),
appliance operation time, and time of day. The case study of residential power consumer behavior modeling was implemented to show the
functionality of the proposed methodology. The results of applying the suggested algorithm are presented as colored 3D control surfaces. In
addition, the performance of the model was verified using R squared coefficient and root mean square error. The conducted studies show that the
proposed approach can be used to predict when the selected appliances can be used under specific circumstances. Research of this type may be
useful for evaluation of the demand response programs and support residential load forecasting.
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1. INTRODUCTION
The power system sector is currently undergoing significant
changes. There is an increasing interest in Smart Grids, envi-
ronmental protection, and the energy crisis. These aspects make
residential power consumers getting more aware of the strong
ties between the power industry and the economy. Growing
electricity costs are often the reasons behind changing the ex-
isting habits of using household appliances. It is desirable to
meet the needs of clients while taking into account the current
operating conditions of the power system [1]. Different types of
factors are designed to properly influence electricity consumers
under the demand response (DR) mechanism. These may be,
for example, appropriate tariffs or special discounts. In the pre-
sented study it was assumed that the value of the nodal price
(LMP – locational marginal price) was the external factor stim-
ulating electricity consumption. The change from traditional
tariffs in favor of nodal prices may contribute to the consumer’s
increased awareness that the cost of generating and delivering
electricity varies at different times of the day in each power sys-
tem node.

Modeling residential appliance usage is a complex task. This
is because it involves technical, economic as well as social is-
sues. Economic factors will affect the consumer’s equipment
and define how much they can spend on energy bills. Social
factors will determine the attitude toward saving electricity.
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The purpose of this article is to present the application of the
fuzzy-ruled Bayesian algorithm to determine which residential
appliances can be considered and at what time for the DR pro-
gram. The author intends to highlight the key features of this
approach and to point out that it can be easily further researched
in the field of residential power consumers’ reactions to de-
mand response mechanisms. Residential consumers’ behavior
concerning appliance usage is complex by nature and very of-
ten can be described by both randomness and fuzziness. Ran-
domness describes the uncertainty of event occurrence, while
fuzziness can measure the degree to which an event occurs but
not whether it occurs. Thus, both methods have the potential to
be used in the described field.

This paper is organized as follows. Section 2 presents the re-
lated research. Section 3 focuses on a detailed overview of ma-
terials and methods used for the research. Section 4 describes
the obtained results, while Section 5 deals with the performance
tests. Section 6 contains a discussion of the results. Finally, Sec-
tion 7 draws the main conclusions and summaries this study.

2. RELATED WORK REVIEW
2.1. Introduction
This section reviews the previous work relating to the paper
topic and outlines the gaps that can be addressed in the present
studies. The demand response issue is still relevant. This is ev-
idenced by the published recently large number of scientific ar-
ticles that deal with this subject. Due to the complexity of this
issue, the related work review was divided into three sections
focusing on the discussion of papers dealing with demand re-
sponse, the behavior of residential energy consumers, uncer-
tainty, and fuzzy and Bayesian inference systems.
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2.2. Demand response
The paper [2] focuses on classifying and modeling the demand
response in large-scale models with mixed-integer program-
ming. The article [3] presents an incentive strategy of shiftable
load participation in DR based on user preferences along with
the suggestions for load aggregator (LA). The article [4] pro-
poses also a deep reinforcement learning algorithm for residen-
tial DR strategic bidding. The work [5] was devoted to promot-
ing participation in DR programs in Germany while keeping
the role of rational and moral motivations. The authors of [6]
developed the microeconomic model of consumers designed to
answer the question of how they will react to electricity price
changes. The paper [7] presents the possible reduction in DR
program in the Italian residential sector. Sociodemographic fac-
tors influencing DSM are presented in [8, 9]. Willingness to
participate in DSM was described in the papers [10] (includ-
ing time-varying prices) and [11, 12] (including renewable and
distributed energy sources)

2.3. The behavior of residential energy consumers
The authors of [13] were analyzing consumer behavior in the
case of television energy use. The paper [14] was devoted
to modeling residential occupant behavior using sociodemo-
graphic predictors. Incentive-based policies in DR like reward
and punishment were analyzed in [15]. The authors of [16]
described data-driven modeling of energy DR behavior. The
work [17] deals with big data analytics in electricity consumers’
behavior. The paper [18] highlighted the fact that residential
load shifting can be enlarged by consumer behavioral change.
The authors of [19] included residential consumer behavior for
real-time DR modeling in Smart Grid with renewable energy.

2.4. Uncertainty
Many papers have been also related to the uncertainty in the
use of electricity by residential consumers. For example, the au-
thors of [20] propose the simulation of the dynamics of house-
hold energy-related activities and appliance usage with a multi-
agent system model. The papers [21–23] are devoted to the is-
sues of household appliance scheduling while keeping the end
user’s comfort and satisfaction. The article [24] deals with the
operation of the demand response in LA taking into account the
uncertainty problems. The work [25] deals with uncertainty in
demand response by using the interval method.

2.5. Fuzzy and Bayesian inference systems
Recently, fuzzy logic and the Bayesian approach have been
used in the fields such as risk analysis [26], diagnosing [27,28],
reducing electricity consumption [29], or DR management con-
sidering incomplete information [30]. Moreover, fuzzy intelli-
gence can be also applied to DR scheduling considering load
behavior [31].

2.6. Summary of the review
Numerous approaches were developed and used in previous
studies for demand response and residential power consumer
appliance usage modeling. However, the above-mentioned
methods are not perfect in their applications. This paper

attempts to fill in the study gaps by meeting the research ob-
jective to develop a suitable and easy-to-use model for further
development. This research was motivated by the desire to over-
come the weakness of the mentioned approaches, including the
inability to take into account the large randomness of household
appliance status and recent power system conditions.

The novelty of this paper is the use of the fuzzy-ruled
Bayesian inference system to determine which appliances at
what time can be considered for the demand response program.

The main contributions of this paper are:
• Dorner’s mental model for desires was applied to describe

the state of household appliances.
• Power system conditions, represented by nodal prices, are

taken into account while modeling DR.
• Fuzzy-ruled Bayesian inference was applied to solve the

problem to determine which appliances at what time can
be considered for the DR program.

• The modeling process included both fuzziness and uncer-
tainty of residential consumer behavior concerning the us-
age of appliances.

3. MATERIALS AND METHODS
3.1. Introduction
For research purposes, it was assumed that there are some res-
idential power consumers ready to act according to the DR
mechanism. Each of them has different household appliances.
This differentiation is manifested not only by having different
models of the same device (for example – different manufac-
turers), but also by using usually divergent operating modes
(for example – normal or economical mode). Additionally, con-
sumers are focused on using their appliances when the value of
the nodal price is not too high. The situations where their loads
require absolute use or re-use may only be an exception.

3.2. The proposed model overview
The research assumed that the possible start of a selected resi-
dential appliance can take place by considering:
• The current state of the appliance
• The typical operating time of the appliance
• The current value of the nodal price
• The time of the day

The following assumptions were made during the prepara-
tion of the model: (1) a residential consumer can monitor nodal
price values on an ongoing basis, (2) only selected appliances
(like washing machines or dishwashers), which consumers turn
on deliberately, are subject to use at other times than usual, ap-
pliances with cycle mode of work are not considered, (3) the
simulated data was used since it would be difficult to obtain the
real-world data sets, (4) the physical properties of the shiftable
appliances were taken into account using the “state of appli-
ance” parameter (this issue was also raised in the paper [2]), (5)
it is theoretically possible to collect data on preferences in the
use of selected appliances and, on this basis, create the training
data set for the reasoning system.

The motivation to adopt the above-mentioned assumptions
was the desire to use the information about residential con-
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sumers and the power system in terms of the possibility of start-
ing selected appliances. It needs to be emphasized that among
all residential consumers, there will be large randomness in
terms of the state of their appliances and the preferred time of
using them. For this reason, it was decided to apply the fuzzy
rule-based Bayesian inference system along with the simulated
data sets.

Comparing the assumptions between the presented model
and the models from the related work review, several points
can be made. In the presented model: (1) the data about will-
ingness to use selected appliances comes from the simulation,
while in [8] from surveys, (2) the user turns on selected the ap-
pliance purposely when it is necessary, not as in [11] only to
maximize the profits, (3) at the beginning of the simulation, the
willingness to use the appliance (and indirectly to consider it
for DR) is random, while in [11] it is maximum, (4) the use
of “state of appliance” parameter corresponds to the consider-
ation of the physical characteristic of the shiftable load, such
as “saturation” mentioned in [2], (5) randomness and fuzziness
are taken into account, while in [4] only random scenarios and
extreme cases are discussed.

The training data consisted of four input variables and one
output variable. The following variables were used as the input
data: the state of a household appliance, the typical time of ap-
pliance operation, the current nodal price value, and the time of
the day. The expected value of the willingness to use a given
appliance was the output. The high rate of this parameter may
be interpreted as a potential consideration of the appliance in
the DR program at a given time.

The state of household appliances was modeled using the wa-
ter tank approach proposed by Dorner [32]. According to this
concept, every desire resembles a leaking water tank. If the tank
is full, it means that there is no need to satisfy this thirst (or it is
not so important) at the moment. However, if the level of water
is getting lower for some time, it favors more and more deter-
mination to meet the person’s needs. In the presented study, the
values of the tank level were ranged from 0 to 1. The values
close to 0 mean that residential consumer has strong readiness
to use a selected appliance (for example to run a washing ma-
chine). The values close to 1 mean that there is not enough need
to use a given appliance at the present moment or there is a low
probability to run it again.

The typical time of appliance operation was set from 20 to
120 minutes. This is the representative operating time range for
most household appliances. The current nodal price values were
set from 40 to 48 $/MWh. The value of the nodal price reflects
the present operating conditions of the power system such as
generation cost, active power load, transmission power losses,
and congestion of branches. The time of day was narrowed to
the range between 5 a.m. and 9 p.m. During this period, residen-
tial consumers can run their appliances in the morning (before
going to work) as well as in the afternoon or evening.

The expected value of the willingness to use the given appli-
ance was set to range between 0 and 1. This value is the result
of the simultaneous occurrence of each of the four input values
and corresponds to the final decision on the possible activation
of the given household appliance.

3.3. Training data
The values representing the willingness to use household appli-
ances were generated using the model made in Matlab/Simulink
with Fuzzy Logic Toolbox [33] (Fig. 1). The model consisted of
4 inputs and 1 output. The inputs were: the state of the house-
hold appliance, the typical appliance operating time, LMP price
values, and the time of the day. The output was the willingness
to use ranging from 0 to 1. The main part of the presented model
was the fuzzy inference system (FIS) consisting of a fuzzifica-
tion interface, a database, a rule base, a decision-making unit,
and a defuzzification interface. The crisp input predictors were
converted into fuzzy numbers by the fuzzification interface. The
membership functions were stored in a database, while fuzzy
rules are in the rule base. All rules were in IF 〈antecedent〉 –
THEN 〈consequent〉 configuration.

Fig. 1. Matlab/Simulink model used to generate training dataset.
Own work, based on [33]

The decision-making unit performs the inference processes
using fuzzy rules. Lastly, the fuzzy inference results are con-
verted to the crisp output values by the defuzzification inter-
face. Finally, the training set consisted of 5 data columns. The
first four columns were input data from the FIS and the fifth
column contained the corresponding output value.

After the creation of the training data set, the configuration of
the fuzzy-ruled Bayesian inference system was performed. To
use this method, four new membership functions were created
(Figs. 2–5). Each of these functions corresponded to one of the

Fig. 2. Membership functions for the state of the appliance. Own work
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input values in the training data set. All membership functions
were of the trapezoidal type. Their shapes were sufficient for the
examined decision problem. The colors indicate membership
functions.

Fig. 3. Membership functions for operating time. Own work

Fig. 4. Membership functions for the nodal price. Own work

Fig. 5. Membership functions for the time of the day. Own work

3.4. Research methodology
The research presented in this paper consisted of:
• Creating the simulated set of training data – four predic-

tor variables were used: the state of the household appli-
ance, the typical time of an appliance operation, the nodal
price value, and the time of a day. Each group of these four
data was assigned one response variable – willingness to
use. The whole training set consisted of 100 groups of the 5
above-mentioned variables (4 inputs and 1 output).

• Creating the simulated set of testing data – the same kind
of four predictor variables, as in the training data set, were
used but they all had different random values. The range of
randomly generated values was dedicated to each predictor
variable, for example in the case of the state of appliances it
was between 0–1, and in the case of the nodal prices it was
between 40–48 $/MWh. The whole testing set consisted of
200 groups of the 5 variables (4 inputs and 1 hidden output).

• Predicting the value of the response variable (willingness
to use) for each predictor combination from the simulated
testing data set. The output was the crisp value ranging from
0 to 1.

3.5. Fuzzy-ruled Bayesian inference
The input data for Bayesian inference are usually different
states which can be undertaken by the studied system. These
states constitute the set S [34], given by equation (1):

S = {S1,S2, . . . ,Sn} . (1)

Each possible user’s decision is a specific action ai−th contained
in set A (set of actions), given by equation (2). All actions are
considered alternatives:

A = {a1,a2, . . . ,an} . (2)

Likewise, the output data can also be interpreted directly as sys-
tem parameters. By combing fuzzy logic with Bayesian infer-
ence, it enables the study of the phenomena that characterize
ambiguity and uncertainty. HABFUZZ [35] software was used
for performing the fuzzy-ruled Bayesian inference. In general,
this algorithm can be described in three steps:
Step 1: The process of the input variables fuzzification – the
process begins with defining a membership function for each
input (a predictor) variable (Figs. 2–5). Next, each input value
is assigned to at least one fuzzy set. As a result, all crisp values
are changed to fuzzy values described by membership degree
for every fuzzy set. All degrees are ranged from 0 to 1. Every
IF–THEN rule was learned automatically by the program ac-
cording to the simulated training data set.
Step 2: Bayesian joint probability calculation process – it is as-
sumed that all four input predictors are independent of each
other (for example, the nodal price at a given time is indepen-
dent of the state of the appliance). Equation (3) is used to cal-
culate the joint probability of independent actions (possible de-
cisions made by the user):

P(A∩B) = P(A |B)∗P(B) = P(B |A)∗P(A), (3)
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where: P(A∩B) – the probability of action A and action B oc-
curring together, P(A |B) – the conditional probability of action
A occurring that action B occurred earlier, P(B |A) – the condi-
tional probability of action B occurring that action A occurred
earlier.

In the presented study it was assumed that P(A |B) = P(A),
hence equation (3) becomes equation (4):

P(A∩B) = P(A)∗P(B). (4)

The probabilities of occurring states of nature are called prior
probabilities. These probabilities are updated with the usage
of observations from the vector X = {x1, . . . ,xn} regarding
states S. This information is expressed using the handling of
conditional probabilities also called likelihood values. The like-
lihood values are used as weights to the prior probabilities to
find the updated probabilities called posterior probabilities.
Step 3: The classification of the response (output) variables – is
performed by using equation (5):

EU(A) =
n

∑
i=1

P(xi |A)∗U(xi), (5)

where: EU(A) – the value of expected utility of action A, xi –
i-th element of the observation vector X, P(xi |A) – the prob-
ability of xi conditioned on action A, U(xi) – a utility weight
used for converting the state to the numerical value.

In the presented study the values of the EU were used to de-
scribe the willingness to use the appliance. The score was:
• U = 0.1 – there is very little chance that the appliance will

run under given conditions,
• U = 0.3 – there is a little chance that the appliance will run

under given conditions,
• U = 0.5 – there is a moderate chance that the appliance will

run under given conditions,
• U = 0.7 – there is a high chance that the appliance will run

under given conditions,
• U = 0.9 – there is a very high chance that the appliance will

run under given conditions.
The concept of expected utility comes from economics. The

utility function is used for measuring consumers’ preferences
for a set of services or goods. Economists can use it to under-
stand consumer behaviors more deeply. Moreover, they can be
able to determine how well some services or goods will fulfill
consumers’ expectations.

Every fuzzified membership degree is treated as the proba-
bility of each observation. The final output value came from
multiplying the probability by its score and summing it up. Fur-
ther and detailed information about the fuzzy Bayesian decision
method can be found in [34, 36].

Figure 6 presents the three-dimensional representation of the
used 100 training data set samples (a ready set that contained
all the data used to train the system). The current time is placed
on the X-axis, while the operating time of a given appliance is
on the Y-axis. The Z-axis shows the willingness to use a given
appliance. Additionally, these values were marked with differ-
ent colors. A darker color means little willingness to use, while
lighter colors mean – greater willingness.

Fig. 6. Three-dimensional representation of simulated training
dataset. Own work

4. RESULTS
The set of 200 samples (simulated testing set) for the presented
case study was used for research purposes.

Due to the complexity of the obtained data, they were pre-
sented by 3D control surfaces. Each of them illustrates three
variables: the willingness to use and two selected predictors.

Figure 7 presents the first 3D control surface plot of the fuzzy
system. The nodal price values are placed on the X-axis, while
the state of appliances values are on the Y-axis. The Z-axis
shows the willingness to use a given appliance under the spec-
ified conditions. The figure shows that the greatest willingness
to use applies to the cases when the state of the appliance is
small (around 0.2) even if the value of the nodal price can be
medium or high (from 44 to 48 $/MWh).

Fig. 7. Control surface plot. Own work

Figure 8 presents the second 3D control surface plot of the
fuzzy system. The operating time values are placed on the X-
axis, while the state of a given appliance is on the Y-axis. The
Z-axis shows the willingness to use a given appliance under the
specified conditions. The figure shows that the greatest willing-
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ness to use applies to the cases when the state of an appliance
is low or close to medium, along with the operating time of
around 60–80 minutes.

Fig. 8. Control surface plot. Own work

Figure 9 presents the third 3D control surface plot of the
fuzzy system. The operating time values are placed on the X-
axis, while the time of the day is on the Y-axis. The Z-axis
shows the willingness to use a given appliance under the spec-
ified conditions. The figure shows that the greatest willingness
to use applies to cases when the time of day is around 15:00
(3 P.M.) and around 20:00 (8 P.M.). The obtained values of the
willingness to use a given appliance indicate that the residential
consumer would most likely turn on the given appliances imme-
diately after returning home from work (when the nodal price
has not increased yet) or during the afternoon/evening peak be-
gins around 20:00 (8 P.M.) and the nodal prices may decrease.

Fig. 9. Control surface plot. Own work

5. PERFORMANCE TESTS
To check the performance of the proposed model, the R2 coef-
ficient and root mean square error (RMSE) calculations were
applied. R2 is also called the coefficient of determination and is

very often used as the measure of how well the obtained results
(outputs) are replicated by the model. Its value can be in the
range from 0 to 1, where a greater rate means better fitness. The
value of R2 can be calculated from equation (6):

R2 = 1− SSE
SST

= 1−

n

∑
i=1

(yi− ŷi)
2

n

∑
i=1

(yi− yi)
2
, (6)

where: SSE – the sum of squared errors, SST – the sum of
squared total (difference between the observed dependent value
and its mean), yi – i-th actual value of the dependent variable,
ŷi – i-th model predicted value of the dependent variable, yi –
the mean statistic of the dependent variable.

The RMSE value was calculated using equation (7). The
lower the error value, the better the quality of the model:

RMSE =

√
1
n

n

∑
i=1

(yi− ŷi)
2 , (7)

where: n – the number of prediction points, yi – the actual value,
ŷi – the predicted value

Table 1 shows the results of performance tests of the pro-
posed model using R2 and RMSE values. Figure 10 shows R2

of outputs from the test dataset and the HABFUZZ. Figure 11
shows the comparison of two outputs but in the form of a line
graph. The outputs from the test dataset are marked in blue,
while the outputs from the HABFUZZ program are marked in
orange.

Fig. 10. R squared of outputs. Own work

Fig. 11. Comparison of outputs. Own work
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Table 1
Results of performance tests

Dataset type
Measure

R2 RMSE

Training 0.7438 0.6092

Testing 0.6333 0.6151

6. DISCUSSION
From the analysis of the results presented in Figs. 7–9 and per-
formance tests, it can be concluded that the fuzzy rule-based
Bayesian inference algorithm discovered the regularities con-
tained in the training data set well. Adjusting the value of the
willingness to use a given household appliance under the in-
fluence of four predictor values based on the test data set was
performed in accordance with the expectations resulting from
the regularities included in the training data.

The fuzzy rules learned by the presented algorithm are rich
enough to cover a big variety of household appliance usage.

It should be emphasized that the results obtained from this
type of inference do not necessarily mean only the optimal
ones. Very often their values constitute a sufficiently good
choice in the current decision-making circumstances. This
is also facilitated by the use of the expected utility (equa-
tion (5) [36].

The obtained values of the verification measures (R2 and
RMSE) allow to conclude that the quality of inference is sat-
isfactory. Moreover, the RMSE value for the training dataset is
slightly lower than for the testing dataset, which confirms that
the model is not much prone to overfitting.

The advantage of using the presented approach is the ease of
preparing the training data set. The nodal price values can be
derived from the network models used to calculate the AC op-
timal power flow (OPF). The total computation time of the test
data is quite short. Compared to other mentioned approaches,
this method overcomes the problem of lack of the randomness
in state of appliances and lack of reference to the recent power
system conditions. Moreover, the presented solution includes
learning and adaptation, since the process of electricity usage
may be highly dynamic in some cases.

However, the difficulty in the graphical presentation of the
results is the disadvantage of the used method. The use of col-
ored 3D control surfaces can lead to reduced legibility when the
test data set is large. The usage of only trapezoidal or triangular
fuzzy membership functions is another potential limitation of
this method. The Gaussian function cannot be used here. The
quality of the results will depend to a large extent on how well
the inference rules are defined.

7. CONCLUSIONS
The objective of this paper was to present the application of the
fuzzy rule-based Bayesian algorithm to determine which resi-
dential appliances at what time can be considered for the de-
mand response program. The presented research confirmed the

usefulness of fuzzy rule-based Bayesian inference for modeling
this type of phenomenon.

The proposed method assumes that it is possible to determine
with the use of 4 input data whether the consumer would be
willing to turn on purposely the selected appliance, hence it can
be potentially considered for the DR program. The presented
model also includes the physical characteristics of shiftable
loads. In many DR models these aspects are ignored or over-
looked [2]. Compared to models from the related work review,
the introduced solution takes into account the high randomness
and fuzziness during the use of household appliances. In addi-
tion, the value of the nodal price was also considered.

If the registration of each start-up of a given appliance and
the accompanying external conditions (like operating time, and
nodal price) were introduced, a database could be created on
the preferences of each user. Based on the data from these mea-
surements, the inference system could learn according to which
rules everyone uses electricity and, as a result, predict these be-
haviors in the future. Under the terms of Bayesian inference,
the more data, the better it can be determined whether the ini-
tial hypothesis can be considered more or less certain.

Over the years, fuzzy logic has proven its usefulness in mak-
ing decisions based on uncertain input data. Together with the
set of real measurement data, a system based on the presented
concept could be implemented in practice.

Machine learning and forecasting methods require a large
amount of training data, which collecting can be expensive or
time-consuming [37]. The presented solution can work with
a smaller amount of data and at the same time give satisfac-
tory results. If more data is acquired in the future, the current
model may be updated easily.

The fuzzy rule-based Bayesian inference algorithm can suc-
cessfully complement the traditional fuzzy logic tools. In ad-
dition, its use allows for shortening the research time because
there is no need to create the extensive IF-THEN rule base or
perform a long rule base training process. One can build the
training data set from the basic fuzzy inference system and get
the results for the bigger test data set by applying Bayesian
inference. The proposed approach can be easily used by the
power network managers to obtain more objective and flexible
information about possible DR capacity. Such an action may
become more important with the growing energy crisis. The
presented solution provides a satisfactory representation of the
uncertainty of household appliance usage. Moreover, the output
data can be directly interpreted. The results from the presented
system can be used as a supplement or extension of other tech-
niques, for example, consumer clustering or machine learning
for DR.

The possible paths for future research in this field may be the
application of different kinds of membership functions, comb-
ing the presented solution with another inference technique by
creating a new hybrid method, the use of the presented results to
support the methods of forecasting energy consumption or cre-
ating new scheduling scenarios including individual user pref-
erences.
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[27] J.M. Kościelny, M. Bartyś, and A. Sztyber, “Diagnosing with
a hybrid fuzzy-Bayesian inference approach,” Eng. Appl. Ar-

8 Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 4, p. e146106, 2023

https://doi.org/10.1515/bpasts-2016-0101
https://doi.org/10.1515/bpasts-2016-0101
https://doi.org/10.1016/j.energy.2021.122544
https://doi.org/10.1016/j.energy.2021.122544
https://doi.org/10.3389/fenrg.2021.678828
https://doi.org/10.1109/TIA.2022.3172068
https://doi.org/10.1016/j.erss.2021.102431
https://doi.org/10.1007/s12053-021-09970-z
https://doi.org/10.1007/s12053-021-09970-z
https://doi.org/10.3390/en14113080
https://doi.org/10.1007/s12053-020-09847-7
https://doi.org/10.3390/su12198052
https://doi.org/10.1093/restud/rdab018
https://doi.org/10.1093/restud/rdab018
https://doi.org/10.1109/TSTE.2020.2966906
https://doi.org/10.1109/TSTE.2020.2966906
https://doi.org/10.1016/j.enpol.2019.111169
https://doi.org/10.1007/s12273-020-0648-8
https://doi.org/10.1007/s12273-020-0648-8
https://doi.org/10.1016/j.enbuild.2022.111973
https://doi.org/10.1016/j.erss.2021.101927
https://doi.org/10.1016/j.erss.2021.101927
https://doi.org/10.1016/j.egyai.2021.100071
https://doi.org/10.1016/j.compeleceng.2020.106902
https://doi.org/10.1016/j.compeleceng.2020.106902
https://doi.org/10.1108/IJESM-05-2020-0014
https://doi.org/10.1109/ACCESS.2021.3071993
https://doi.org/10.1016/j.egyr.2021.11.097
https://doi.org/10.3390/s21093287
https://doi.org/10.1080/21642583.2021.1978899
https://doi.org/10.1080/21642583.2021.1978899
https://doi.org/10.1016/j.egyr.2021.02.064
https://doi.org/10.3389/fenrg.2021.797979
https://doi.org/10.3389/fenrg.2021.797979
https://doi.org/10.1109/TPWRS.2021.3051720
https://doi.org/10.1016/j.eswa.2021.116374
https://doi.org/10.1016/j.eswa.2021.116374


The application of the fuzzy rule-based Bayesian algorithm to determine which residential appliances can be considered for the demand . . .

tif. Intell., vol. 104, p. 104345, 2021, doi: 10.1016/j.engappai.
2021.104345.

[28] A. Lakehal, “Bayesian graphical model based optimal decision-
making for fault diagnosis of critical induction motors in indus-
trial applications,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 3,
pp. 467–476, 2020, doi: 10.24425/bpasts.2020.133374.

[29] K.P. Shirsat and G.P. Bhole, “Fuzzy Bayesian context-aware
system to reduce electricity consumption,” Int. J. Inf. Tecnol.,
vol. 13, no. 2, pp. 447–452, 2021, doi: 10.1007/s41870-020-
00570-1.

[30] X. Liu, D. Tang, and Z. Dai, “A Bayesian Game Approach for
Demand Response Management Considering Incomplete Infor-
mation,” J. Mod. Power Syst., vol. 10, no. 2, pp. 492–501, 2022,
doi: 10.35833/MPCE.2020.000288.

[31] A. Sumaiti, S.R. Konda, L. Panwar, V. Gupta, R. Kumar, and
B.K. Panigrahi, “Aggregated Demand Response Scheduling in
Competitive Market Considering Load Behavior Through Fuzzy
Intelligence,” IEEE Trans. Ind. Appl., vol. 56, no. 4, pp. 4236–
4247, 2020, doi: 10.1109/TIA.2020.2988853.

[32] N. Pflugradt, J. Teuscher, B. Platzer, and W. Schufft, “Analysing
low-voltage grids using a behaviour based load profile genera-
tor,” in Proc. Int. Conf. on Renewable Energies and Power Qual-
ity. (ICREPQ), 2013, doi: 10.24084/repqj11.308.

[33] P. Kapler, “Utilization of the adaptive potential of individual
power consumers in interaction with power system,” Ph.D. the-
sis, Warsaw University of Technology, Faculty of Electrical En-
gineering, Poland, 2018 [in Polish].

[34] S.N. Sivanandam, S. Sumathi, and S.N. Deepa, Introduction to
Fuzzy Logic using MATLAB. Berlin: Springer-Verlag, 2007.

[35] C. Theodoropoulos, N. Skoulikidis, and A. Stamou, “Habfuzz:
A tool to calculate the instream hydraulic habitat suitability us-
ing fuzzy logic and fuzzy Bayesian inference,” J. Open Source
Softw., vol. 1, no. 6, p. 82, 2016, doi: 10.21105/joss.00082.

[36] T.J. Ross, Fuzzy Logic with Engineering Applications, 3rd Edi-
tion. West Sussex: John Wiley & Sons Ltd, 2010.

[37] I. Pan and D. Bester, “Fuzzy Bayesian Learning,” IEEE Trans.
Fuzzy Syst., vol. 26, no. 3, pp. 1719–1731, 2018, doi: 10.1109/
TFUZZ.2017.2746064.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 4, p. e146106, 2023 9

https://doi.org/10.1016/j.engappai.2021.104345
https://doi.org/10.1016/j.engappai.2021.104345
https://doi.org/10.24425/bpasts.2020.133374
https://doi.org/10.1007/s41870-020-00570-1
https://doi.org/10.1007/s41870-020-00570-1
https://doi.org/10.35833/MPCE.2020.000288
https://doi.org/10.1109/TIA.2020.2988853
https://doi.org/10.24084/repqj11.308
https://doi.org/10.21105/joss.00082
https://doi.org/10.1109/TFUZZ.2017.2746064
https://doi.org/10.1109/TFUZZ.2017.2746064

	Introduction
	 Related work review
	Introduction
	Demand response
	The behavior of residential energy consumers
	Uncertainty
	Fuzzy and Bayesian inference systems
	Summary of the review

	 Materials and methods
	Introduction
	The proposed model overview
	Training data
	Research methodology
	Fuzzy-ruled Bayesian inference

	Results
	Performance tests
	Discussion
	Conclusions

