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Analytical study on dynamic response of cantilever flexible
retaining wall

Xiuzhu Yang1, Xinyuan Liu2, Shuang Zhao3, Jun Yu4

Abstract: Based on wave mechanics theory, the dynamic response characteristics of cantilever flexible
wall in two-dimensional site are analyzed. The partial derivative of the vibration equation of soil layer is
obtained, and the general solution of the volume strain is obtained by the separation of variables method.
The obtained solution is substituted back to the soil layer vibration equation to obtain the displacement
vibration general solution. Combined with the soil-wall boundary condition and the orthogonality of
the trigonometric function, the definite solution of the vibration equation is obtained. The correctness of
the solution is verified by comparing the obtained solution with the existing simplified solution and the
solution of rigid retaining wall, and the applicable conditions of each simplified solution are pointed out.
Through parameter analysis, it is shown that when the excitation frequency is low, the earth pressure on
the wall is greatly affected by the soil near the wall. When the excitation frequency is high, the influence
of the far-field soil on the earth pressure of the wall gradually increases. The relative stiffness of the
wall, the excitation frequency and the soil layer damping factor have a significant effect on the dynamic
response of the flexible retaining wall.
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1. Introduction

The dynamic response analysis of retaining wall is the basis of its seismic design.
According to the wall stiffness, retaining wall is mainly divided into rigid wall and flexible
wall. Under the action of earthquake, the rigid wall mainly depends on its own material
strength and embedded depth of foundation to resist the impact of earthquake on thewall [1],
and the flexible wall can rely on its deformation energy consumption to reduce the impact of
earthquake on the wall [2]. In recent years, many scholars have put forward some practical
simplified analysis methods for retaining wall design [3–5], such as response displacement
method [6, 7], response acceleration method [8], static elastoplastic analysis method [9]
and numerical simulation analysis method [10]. These methods have been widely used in
engineering practice.
The wave method is a practical method to study the dynamic response of structures

under earthquake. Based on the theory of wave mechanics, the dynamic response charac-
teristics of structures are obtained by studying the propagation characteristics of vibration
waves. Veletsos et al. [11, 12] established two two-dimensional semi-infinite site models
of soil-flexible wall bonded on rigid bedrock. One model has elastic rotation constraint
at the bottom of the wall, and the other model has the bottom of the wall rigidly con-
nected to the rigid bedrock. Both models assume that there is no vertical stress in the
soil medium. On this basis, the analytical solution of the dynamic response of the flexible
wall under earthquake is derived. Based on the same assumption, Theodorakopoulos et
al. [13] and Lanzoni et al. [14] presented the analytical solutions of dynamic response
of cantilevered rigid wall and flexible wall in two-dimensional saturated site under earth-
quake. Based on the assumption of ignoring vertical displacement, Liu et al. [15, 16]
obtained the analytical solution of dynamic response of flexible retaining wall under hor-
izontal earthquake by semi-analytical method. Brandenberg et al. [17] gave the dynamic
response analysis of rigid wall in non-uniform fill under earthquake. Ke et al. [18] pro-
posed a simplified analytical solution of dynamic response of retaining wall considering
the influence of soil shear stiffness. Based on the wave equation, Zhao et al. [19] studied
the dynamic response of two-dimensional cantilever rigid wall under earthquake action,
and gave a more rigorous analytical solution considering both vertical stress and vertical
displacement.
The above analytical studies usually ignore the vertical stress or vertical displacement

of the soil layer. Since the vibration equation of soil layer based on Biot theory is a coupling
equation, it cannot be solved directly. Based on the two-dimensional soil layer vibration
equation, this paper achieves the purpose of decoupling through differential transformation.
Combined with the interaction conditions between the wall and the soil layer, a more
rigorous analytical solution of the dynamic response of the cantilever flexible retaining
wall is derived. The solution of this paper is reduced to rigidity and compared with the
existing analytical solution of the rigid wall, which verifies the correctness of the analytical
solution of this paper. At the same time, it is comparedwith the existing simplified analytical
solution of the flexible retaining wall, and the difference between the simplified solutions
and their application scope are pointed out.
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2. Methodology
2.1. System considered

The system considered is shown in Fig. 1. The flexible retaining wall is embedded in the
rigid foundation. The bottom of the wall is rigidly connected with the foundation. The upper
surface of the soil layer is free, and the lower surface is full bound; The flexible retaining
wall is homogeneous and elastic material, and the soil is homogeneous and isotropic semi-
infinite linear body; Between thewall and soil fully bond; Thewall and the bottom of the soil
layer are subjected to a simple harmonic excitation of constant magnitude and the material
damping is constant hysteretic damping. The wall height and soil thickness are 𝐻, the wall
density is 𝜌𝑤 , the elasticmodulus of thewall is 𝐸𝑤 , and thewall thickness is 𝑡𝑤 . The relative
flexibility coefficient 𝑑𝑤 proposed by Veletsos and Younan [11] is defined as follows:

(2.1) 𝑑𝑤 =
𝐺𝐻3

𝐷𝑤

= 12(1 − 𝑣2𝑤 )
𝐺

𝐸𝑤

(
𝐻

𝑡𝑤

)
where 𝐺 is the soil shear modulus; 𝐷𝑤 is the bending stiffness of the unit length wall; 𝑣𝑤
is the poisson’ s ratio of the wall.

Fig. 1. Mechanical model of soil-flexible wall

The process of analytical solution is shown in Fig. 2.

Fig. 2. The process of analytical solution
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2.2. Governing equation

2.2.1. Governing equation of soil

According to Biot dynamic consolidation equation, the motion of the total system is
expressed as [19]:

𝜕𝜎𝑥

𝜕𝑥
+ 𝜕𝜏𝑥𝑧

𝜕𝑧
= 𝜌

𝜕2𝑢𝑥

𝜕𝑡2
+ 𝜌 ¥𝑥𝑔 (𝑡)(2.2)

𝜕𝜎𝑧

𝜕𝑧
+ 𝜕𝜏𝑥𝑧

𝜕𝑥
= 𝜌

𝜕2𝑢𝑧

𝜕𝑡2
(2.3)

where 𝜎𝑥 , 𝜏𝑥𝑧 and 𝜎𝑧 and are the horizontal normal stress, shear stress and vertical normal
stress of the soil layer respectively; and 𝑢𝑥 are 𝑢𝑧 the 𝑥 directional and 𝑧 directional
displacement of soil layer relative to rigid foundation respectively; 𝜌 is the mass density
of the soil; 𝑡 is the time; ¥𝑥𝑔 (𝑡) is the simple harmonic vibration acceleration. The signs
of stress and displacement are positive along the positive direction of the coordinate axis
and negative along the negative direction of the coordinate axis according to the elastic
mechanics.

2.2.2. Governing equation of wall

TheEuler–Bernoulli beam theory [20] is used to simulate thewall. The bending stiffness
of the wall is 𝐸𝑤 𝐼𝑤 , 𝐸𝑤 is the elastic modulus of the wall, 𝐼𝑤 is the section moment of
inertia per unit length of the wall. Considering the horizontal force balance of the wall, the
vibration equation of the wall is:

(2.4) 𝑚
𝜕2𝑢𝑤 (𝑧, 𝑡)

𝜕𝑡2
+ 𝐸𝑤 𝐼𝑤

𝜕4𝑢𝑤 (𝑧, 𝑡)
𝜕𝑧4

= 𝜎𝑤 (𝑧, 𝑡) + 𝑚 ¥𝑥𝑔 (𝑡)

where 𝑢𝑤 (𝑧, 𝑡) is the horizontal displacement of the wall relative to the rigid foundation;
𝜎𝑤 (𝑧, 𝑡) is the soil pressure on the wall; 𝑚 is the mass per unit length of the wall.
For the two-dimensional plane strain element, the relationship between stress and

displacement is expressed as [19]:

𝜎𝑥 = 𝜆∗𝜃 + 2𝐺∗ 𝜕𝑢𝑥
𝜕𝑥

(2.5a)

𝜏𝑥𝑧 = 𝐺∗
(
𝜕𝑢𝑥

𝜕𝑧
+ 𝜕𝑢𝑧

𝜕𝑥

)
(2.5b)

𝜎𝑧 = 𝜆∗𝜃 + 2𝐺∗ 𝜕𝑢𝑧
𝜕𝑧

(2.5c)

where 𝐺∗ and 𝜆∗ is the complex Lame constant, 𝐺∗ = 𝐺 (1 + 𝑖𝛿), 𝜆∗ = 2𝑣𝐺∗/(1− 2𝑣). 𝛿 is
the soil material damping factor; 𝑣 is the soil Poisson’s ratio, 𝑒 is the soil volumetric strain,
𝑒 = 𝜕𝑢𝑥/𝜕𝑥 + 𝜕𝑢𝑧/𝜕𝑧.
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2.3. Boundary conditions

1. The free surface shear stress is zero.

(2.6) 𝜏𝑥𝑧 |𝑧=𝐻 = 0

2. The displacement of relative rigid foundation at infinity is finite.

(2.7) 𝑢𝑥 |𝑥→∞ → finite value, 𝑢𝑧 |𝑥→∞ → finite value

3. The bottom is in full bond with the rigid foundation, and the contact surface has no slip
and detachment.

(2.8) 𝑢𝑥 |𝑧=0 = 0, 𝑢𝑧 |𝑧=0 = 0

4. The interface between soil and wall is full bond, it means that the contact interface has
no slip and separation.

(2.9) 𝑢𝑥 |𝑥=0 = 𝑢𝑤 (𝑧), 𝑢𝑧 |𝑥=0 = 0

5. The bottom of the wall does not produce displacement and rotation relative to the rigid
foundation.

(2.10) 𝑢𝑤 (𝑧) |𝑧=0 = 0,
𝑑𝑢𝑤 (𝑧)

𝑑𝑧

����
𝑧=0

= 0

6. The wall top bending moment, shear force is zero.

(2.11)
𝑑2𝑢𝑤 (𝑧)

𝑑𝑧2

����
𝑧=𝐻

= 0,
𝑑3𝑢𝑤 (𝑧)

𝑑𝑧3

����
𝑧=𝐻

= 0

3. Solution of the equation

3.1. Solution of the governing equation of soil

For harmonic vibration, harmonic vibration acceleration, soil horizontal relative dis-
placement, soil vertical relative displacement, soil volume strain, soil horizontal normal
stress, soil horizontal shear stress and soil vertical normal stress can be written as follows:

(3.1)
¥𝑥𝑔 (𝑡) = ¥𝑋𝑔𝑒

𝑖𝜔𝑡 ; 𝑢𝑥 = 𝑢𝑥 (𝑥, 𝑧)𝑒𝑖𝜔𝑡 ; 𝑢𝑧 = 𝑢𝑧 (𝑥, 𝑧)𝑒𝑖𝜔𝑡 ; 𝑒 = 𝑒(𝑥, 𝑧)𝑒𝑖𝜔𝑡 ;
𝜎𝑥 = 𝜎𝑥 (𝑥, 𝑧)𝑒𝑖𝜔𝑡 ; 𝜏𝑥𝑧 = 𝜏𝑥𝑧 (𝑥, 𝑧)𝑒𝑖𝜔𝑡 ; 𝑠𝑖𝑔𝑚𝑎𝑧 = 𝜎𝑧 (𝑥, 𝑧)𝑒𝑖𝜔𝑡

where ¥𝑋𝑔 is the amplitude of the input harmonic vibration acceleration; 𝑢𝑥 (𝑥, 𝑧) is the
horizontal displacement amplitude of the soil layer relative to the rigid foundation; 𝑢𝑧 (𝑥, 𝑧)
is the vertical displacement amplitude of the soil layer relative to the rigid foundation; 𝑒
is the volumetric strain of soil. 𝜎𝑥 (𝑥, 𝑧) is the horizontal normal stress amplitude of the
soil layer; 𝜏𝑥 (𝑥, 𝑧) is the soil shear stress amplitude; 𝜎𝑧 (𝑥, 𝑧) is the vertical normal stress
amplitude of the soil layer.
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Because thewhole system is a steady-state harmonic vibrationwith a circular frequency,
the partial derivatives of both sides of Eq. 2.2 are solved, and the partial derivatives of both
sides of Eq. 2.3 are solved, and then the two equations after operation are added.

(3.2) (𝜆∗ + 𝐺∗)∇2𝑒 + 𝜌𝜔2𝑒 = 0

where ∇2 is the Laplace operator, denote as ∇2 = 𝜕2/𝜕𝑥2 + 𝜕2/𝜕𝑧2.
The equation is solved by the separation of variables method. Suppose that 𝑒 =

𝑈 (𝑥)𝑊 (𝑧)𝑒𝑖𝜔𝑡 , Eq. 3.2 can be rewritten as:

(3.3)
1

𝑈 (𝑥)
𝑑2𝑈 (𝑥)
dx2

+ 1
𝑊 (𝑧)

d2W(z)
dz2

+ 𝛽21 = 0

where 𝛽21 =
𝜌𝜔2

𝜆∗ + 2𝐺∗ .
According to the theory of differential equations, the solution of Eq. 3.2 can be writ-

ten as:

𝑈 (𝑥) = 𝐴1𝑒
𝑔1𝑥 + 𝐵1𝑒

−𝑔1𝑥(3.4)
𝑊 (𝑧) = 𝐶1 sin(𝑔2𝑧) + 𝐷1 cos(𝑔2𝑧)(3.5)

where 𝐴1, 𝐵1, 𝐶1, 𝐷1, 𝑔1 and 𝑔2 are undetermined constants; 𝑔22 − 𝑔21 = 𝛽21.
Therefore:

(3.6) 𝑒 = 𝑒i𝜔t (𝐴1𝑒𝑔1𝑥 + 𝐵1𝑒
−𝑔1𝑥) [𝐶1 sin(𝑔2𝑧) + 𝐷1 cos(𝑔2𝑧)]

According to the boundary condition (2.7), when 𝑥 → ∞, the dynamic response of soil
layer is finite, so it will not increase infinitely. Reintegrating the constant coefficient term
of Eq. (3.6), it can be simplified as:

(3.7) 𝑒 = 𝑒𝑖𝜔𝑡𝑒−𝑔1𝑥 [𝐴2 sin(𝑔2𝑧) + 𝐵2 cos(𝑔2𝑧)]

where 𝐴2 and 𝐵2 are undetermined constants.
Therefore, the solution of soil volumetric strain containing undetermined constants has

been obtained, and then it is substituted back to the soil motion equation to solve the soil
displacement.
Eqs. (2.2) and (2.3) are rewritten as:

𝐺∗∇2𝑢𝑧 + 𝜌𝜔2𝑢𝑧 = −(𝜆∗ + 𝐺∗) 𝜕𝜃
𝜕𝑧

+ 𝜌 ¥𝑥𝑔 (𝑡)(3.8)

𝐺∗∇2𝑢𝑧 + 𝜌𝜔2𝑢𝑧 = −(𝜆∗ + 𝐺∗) 𝜕𝜃
𝜕𝑧

(3.9)

Observing Eqs. (3.8) and (3.9), it can be seen that the two equations are non-homo-
geneous equations about 𝑥 and 𝑧, respectively. The solution of the equation can be obtained
by solving the general solution of the corresponding homogeneous equation and adding
the particular solution.



ANALYTICAL STUDY ON DYNAMIC RESPONSE OF CANTILEVER FLEXIBLE . . . 441

The homogeneous equation corresponding to Eq. (3.8) is as follows:

(3.10) 𝐺∗∇2𝑢ℎ𝑥 + 𝜌𝜔2𝑢ℎ𝑥 = 0

where 𝑢ℎ𝑥 is the general solution.

Assume that 𝛽22 =
𝜌𝜔2

𝐺∗ , we can obtained:

(3.11) 𝑢ℎ𝑥 = 𝑒i𝜔t (𝐴3𝑒𝑔3𝑥 + 𝐵3𝑒
−𝑔3𝑥) [𝐶3 sin(𝑔4𝑧) + 𝐷3 cos(𝑔4𝑧)]

where 𝐴3,𝐵3, 𝐶3, 𝐷3, 𝑔3, 𝑔4 and are undetermined constants; 𝑔24 − 𝑔23 = 𝛽22.
Combined with the boundary condition (2.2), the constant coefficient term in the

integrated Eq. (2.2) can be simplified to:

(3.12) 𝑢ℎ𝑥 = 𝑒i𝜔t𝑒−𝑔3𝑥 [𝐴4 sin(𝑔4𝑧) + 𝐵4 cos(𝑔4𝑧)]

where 𝐴4 and 𝐵4 are undetermined constants.
Observing the inhomogeneous Eq. (3.8), its particular solution can be set as

(3.13) 𝑢
𝑝
𝑥 = 𝑒i𝜔t{𝑒−𝑔1𝑥 [𝐴5 sin(𝑔2𝑧) + 𝐵5 cos(𝑔2𝑧)] + 𝐶4}

where 𝐴5, 𝐵5 and 𝐶4 are undetermined constants.

(3.14)
𝑢𝑥 = 𝑒i𝜔t

{
𝑒−𝑔3𝑥 [𝐴4 sin(𝑔4𝑧) + 𝐵4 cos(𝑔4𝑧)]

+ 𝑒−𝑔1𝑥 [𝐴5 sin(𝑔2𝑧) + 𝐵5 cos(𝑔2𝑧)] + 𝐶4
}

Similarly, the solution of Eq. (3.9) is expressed as:

(3.15) 𝑢𝑧 = 𝑒i𝜔t{𝑒−𝑔3𝑥 [𝐴6 sin(𝑔4𝑧) + 𝐵6 cos(𝑔4𝑧)] + 𝑒−𝑔1𝑥 [𝐴7 sin(𝑔2𝑧) + 𝐵7 cos(𝑔2𝑧)]}

where 𝐴6, 𝐴7, 𝐵6 and 𝐵7 are undetermined constants.
Since the soil layer is dominated by horizontal vibration, combined with the boundary

conditions (2.6) and (2.8), the eigenvalue of the vibration equation can be taken as:

(3.16) 𝑔4 = 𝑔2 = 𝑔𝑛 =
𝑛𝜋

2𝐻
, 𝑛 = 1, 3, 5...

Combined with superposition principle, the solution of soil horizontal displacement,
soil vertical displacement and soil bulk modulus amplitude can be written in the form of
the following series sum:

𝑢𝑥 (𝑥, 𝑧) =
∞∑︁

𝑛=1,3
(𝐸1𝑒−𝑔3𝑥 + 𝐸2𝑒

−𝑔1𝑥 + 𝐸3) sin(𝑔𝑛𝑧)(3.17)

𝑢𝑧 (𝑥, 𝑧) =
∞∑︁

𝑛=1,3
(𝐸4𝑒−𝑔3𝑥 + 𝐸5𝑒

−𝑔1𝑥) cos(𝑔𝑛𝑧)(3.18)

𝑒(𝑥, 𝑧) =
∞∑︁

𝑛=1,3
𝐴2𝑒

−𝑔1𝑥 sin(𝑔𝑛𝑧)(3.19)

where 𝐸1, 𝐸2, 𝐸3, 𝐸4 and 𝐸5 are all undetermined constants.
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Substituting Eqs. (3.17), (3.18) and (3.19) to Eqs. (3.8) and (3.9), combine with 𝑒 =
𝜕𝑢𝑥

𝜕𝑥
+ 𝜕𝑢𝑧

𝜕𝑧
, and extend ¥𝑋g to the sum of series:

(3.20) ¥𝑋g =
∞∑︁

𝑛=1,3

4
𝑛𝜋

¥𝑋g sin(𝑔𝑛𝑧)

Thus

𝑢𝑥 (𝑥, 𝑧) =
∞∑︁

𝑛=1,3

©­­«𝐴4𝑒−𝑔3𝑥 + 𝜆1𝐴2𝑒
−𝑔1𝑥 +

𝜌 ¥𝑋𝑔

4
𝑛𝜋

𝜌𝜔2 − 𝐺∗
( 𝑛𝜋
2𝐻

)2 ª®®¬ sin(𝑔𝑛𝑧)(3.21)

𝑢𝑧 (𝑥, 𝑧) =
∞∑︁

𝑛=1,3

(
−𝑔3
𝑔4

𝐴4𝑒
−𝑔3𝑥 − 𝜆2𝐴2𝑒

−𝑔1𝑥
)
cos(𝑔𝑛𝑧)(3.22)

𝑒 (𝑥, 𝑧) =
∞∑︁

𝑛=1,3
𝐴2𝑒

−𝑔1𝑥 sin(𝑔𝑛𝑧)(3.23)

Substituting Eqs. (3.21) and (3.23) into Eq. ( 2.5a), the horizontal normal stress ampli-
tude of soil layer is

(3.24) 𝜎𝑥 (𝑥, 𝑧) =
∞∑︁

𝑛=1,3
[(𝜆∗ − 2𝐺∗𝑔1𝜆1)𝐴2e−g1x − 2G∗g3A4e−g3x] sin(𝑔𝑛𝑧)

In order to solve the dynamic response of flexible wall, the boundary condition (2.4)2
is substituted into Eq. (3.22):

(3.25)
𝑔3
𝑔4

𝐴4 − 𝜆2𝐴2 = 0

Assume that 𝐴𝑛 =
𝑔3
𝑔4

𝐴4, we can obtain 𝐴4 =
𝑔4
𝑔3

𝐴𝑛, 𝐴2 = − 1
𝜆2

𝐴𝑛 where 𝐴𝑛 is the

undetermined constant.
Substituting Eq. (3.25) into Eqs. (3.21) and (3.24) and sorting, the amplitude of earth

pressure on the wall and the displacement amplitude of the wall can be obtained:

𝜎𝑥 (0, 𝑧) = 𝜎𝑤 (𝑧) =
∞∑︁

𝑛=1,3
𝐹1𝑛𝐴𝑛 sin(𝑔𝑛𝑧)(3.26)

𝑢𝑥 (0, 𝑧) = 𝑢𝑤 (𝑧) =
∞∑︁

𝑛=1,3
(𝐹2𝑛𝐴𝑛 + 𝐹3𝑛) sin(𝑔𝑛𝑧)(3.27)

where 𝐹1𝑛 =
2𝐺∗𝑔1𝜆1 − 𝜆∗ − 2𝜆2𝐺∗𝑔4

𝜆2
, 𝐹2𝑛 =

𝑔4
𝑔3

− 𝜆1
𝜆2
, 𝐹3𝑛 =

𝜌 ¥𝑋𝑔

4
𝑛𝜋

𝜌𝜔2 − 𝐺∗
( 𝑛𝜋
2𝐻

)2 .
Therefore, the undetermined constant is only 𝐴𝑛 and it can be determined by the

coupling relationship with the wall.
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3.2. Solution of the governing equation of wall

Substitute Eqs. (3.1), (3.26) and (3.27) into Eq. (2.4):

(3.28)
𝑑4𝑢𝑤 (𝑧)

𝜕𝑧4
− 𝛽4𝑢𝑤 (𝑧) = 1

𝐸𝑤 𝐼𝑤

∞∑︁
𝑛=1,3

(
𝐹1𝑛𝐴𝑛 +

4𝑚 ¥𝑋𝑔

𝑛𝜋

)
sin(𝑔𝑛𝑧)

where 𝛽4 =
𝑚𝜔2

𝐸𝑤 𝐼𝑤
.

The general solution of the homogeneous equation corresponding to Eq. (3.28) is
expressed as:

(3.29) 𝑢ℎ𝑤 (𝑧) = 𝐵1 sin(𝛽𝑧) + 𝐵2 cos(𝛽𝑧) + 𝐵3 sinh(𝛽𝑧) + 𝐵4 cosh(𝛽𝑧)

where 𝐵1, 𝐵2, 𝐵3 and 𝐵4 are undetermined constants.
Assume the particular solution of Eq. (3.28) that:

(3.30) 𝑢
𝑝
𝑤 (𝑧) =

∞∑︁
𝑛=1,3

𝐵𝑛 sin(𝑔𝑛𝑧)

Substituting the particular solution back to Eq. (3.23), we get:

(3.31) 𝐵𝑛 =

𝐹1𝑛𝐴𝑛 +
4𝑚 ¥𝑋𝑔

𝑛𝜋

𝐸𝑤 𝐼𝑤 (𝑔4𝑛 − 𝛽4)

The solution of the system of Eq. (3.28) is expressed as:

(3.32) 𝑢𝑤 (𝑧) = 𝐵1 sin(𝛽𝑧) + 𝐵2 cos(𝛽𝑧) + 𝐵3 sinh(𝛽𝑧) + 𝐵4 cosh(𝛽𝑧)

+
∞∑︁

𝑛=1,3

𝐹1𝑛𝐴𝑛 +
4𝑚 ¥𝑋𝑔

𝑛𝜋

𝐸𝑤 𝐼𝑤
(
𝑔4𝑛 − 𝛽4

) sin(𝑔𝑛𝑧)
By the boundary condition (2.9)1, there is no slip between the contact surface of the

wall and the soil, there are:

(3.33) 𝐵1 sin(𝛽𝑧) + 𝐵2 cos(𝛽𝑧) + 𝐵3 sinh(𝛽𝑧)

+ 𝐵4 cosh(𝛽𝑧) +
∞∑︁

𝑛=1,3

𝐹1𝑛𝐴𝑛 +
4𝑚 ¥𝑋𝑔

𝑛𝜋

𝐸𝑤 𝐼𝑤
(
𝑔4𝑛 − 𝛽4

) sin (𝑔𝑛𝑧)
=

∞∑︁
𝑛=1,3

(𝐹2𝑛𝐴𝑛 + 𝐹3𝑛) sin (𝑔𝑛𝑧)
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Using the orthogonality of the sine function on the interval, the two ends of the equal
sign of Eq. (3.33) are multiplied, and then integrated on the interval to obtain:

(3.34) 𝐴𝑛 =

2𝑁𝑛𝐸𝑤 𝐼𝑤 (𝑔4𝑛 − 𝛽4) +
4𝑚𝐻 ¥𝑋𝑔

𝑛𝜋
− 𝐻𝐹3𝑛𝐸𝑤 𝐼𝑤 (𝑔4𝑛 − 𝛽4)

𝐻𝐹2𝑛𝐸𝑤 𝐼𝑤 (𝑔4𝑛 − 𝛽4) − 𝐻𝐹1𝑛

where

𝑁𝑛 = 𝑁1𝐵1 + 𝑁2𝐵2 + 𝑁3𝐵3 + 𝑁4𝐵4; 𝑁1 =
−𝛽 cos(𝛽𝐻) (−1) (𝑛−1)/2

𝛽2 − 𝑔2𝑛
;

𝑁2 =
𝛽 sin(𝛽𝐻) (−1) (𝑛−1)/2 − 𝑔𝑛

𝛽2 − 𝑔2𝑛
; 𝑁3 =

−𝛽 cosh(𝛽𝐻) (−1) (𝑛−1)/2

𝛽2 + 𝑔2𝑛
;

𝑁4 =
−𝛽 sinh(𝛽𝐻) (−1) (𝑛−1)/2 + 𝑔𝑛

𝛽2 + 𝑔2𝑛

The solution of Eq. (3.28) is expressed as:

(3.35) 𝑢𝑤 (𝑧) = 𝐵1 𝑓1 (𝑧) + 𝐵2 𝑓2 (𝑧) + 𝐵3 𝑓3 (𝑧) + 𝐵4 𝑓4 (𝑧) + 𝑓𝑝 (𝑧)

where

𝑓1 (𝑧) = sin(𝛽𝑧) +
∞∑︁

𝑛=1,3
𝜁𝑁1 sin(𝑔𝑛𝑧); 𝑓2 (𝑧) = sin(𝛽𝑧) +

∞∑︁
𝑛=1,3

𝜁𝑁2 sin(𝑔𝑛𝑧);

𝑓3 (𝑧) = sin(𝛽𝑧) +
∞∑︁

𝑛=1,3
𝜁𝑁3 sin(𝑔𝑛𝑧); 𝑓4 (𝑧) = sin(𝛽𝑧) +

∞∑︁
𝑛=1,3

𝜁𝑁4 sin(𝑔𝑛𝑧);

𝑓𝑝 (𝑧) =
∞∑︁

𝑛=1,3
𝐹4𝑛 sin(𝑔𝑛𝑧)

In which

𝐹4𝑛 =

4𝑚𝐹1𝑛 ¥𝑋𝑔

𝑛𝜋𝐸𝑤 𝐼𝑤 (𝑔4𝑛 − 𝛽4)
− 𝐹1𝑛𝐹3𝑛

𝐹2𝑛𝐸𝑤 𝐼𝑤 (𝑔4𝑛 − 𝛽4) − 𝐹1𝑛
+

4𝑚 ¥𝑋𝑔

𝑛𝜋𝐸𝑤 𝐼𝑤 (𝑔4𝑛 − 𝛽4)
;

𝜁 =
2𝐹1𝑛

𝐻𝐹2𝑛𝐸𝑤 𝐼𝑤 (𝑔4𝑛 − 𝛽4) − 𝐻𝐹1𝑛

Therefore, combined with boundary conditions (2.10) and (2.11), the following matrix
can be obtained:

(3.36)


𝑓1 (𝑧) 𝑓2 (𝑧) 𝑓3 (𝑧) 𝑓4 (𝑧)
𝑓 ′1 (𝑧) 𝑓 ′2 (𝑧) 𝑓 ′3 (𝑧) 𝑓 ′4 (𝑧)
𝑓 ′′1 (𝑧) 𝑓 ′′2 (𝑧) 𝑓 ′′3 (𝑧) 𝑓 ′′4 (𝑧)
𝑓 ′′′1 (𝑧) 𝑓 ′′′2 (𝑧) 𝑓 ′′′3 (𝑧) 𝑓 ′′′4 (𝑧)



𝐵1

𝐵2

𝐵3

𝐵4


+


𝑓𝑝 (𝑧)
𝑓 ′𝑝 (𝑧)
𝑓 ′′𝑝 (𝑧)
𝑓 ′′′𝑝 (𝑧)


=


0
0
0
0


where the superscript represents the partial derivative.
By calculating the above matrix, all unknown constants (𝐵1, 𝐵2, 𝐵3 and 𝐵4) can be

determined.
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3.3. Soil normal stress and shear stress

Substituting Eq. (3.26) into Eq. (3.34), the horizontal normal stress amplitude of soil
layer is

(3.37) 𝜎𝑥 (𝑥, 𝑧) =
∞∑︁

𝑛=1,3

[
(2𝐺∗𝑔1𝜆1 − 𝜆∗)

𝜆2
𝐴𝑛𝑒

−𝑔1𝑥 − 2𝐺∗𝑔4𝐴𝑛𝑒
−𝑔3𝑥

]
sin

𝑛𝜋

2𝐻
𝑧

Substituting Eqs. (3.21), (3.22) and (3.26) into Eq. (2.5b), the shear stress amplitude of
the soil layer is written that:

(3.38) 𝜏𝑥𝑧 (𝑥, 𝑧) =
∞∑︁

𝑛=1,3
𝐺∗

[
𝑛𝜋

2𝐻

(
𝑔4
𝑔3

𝐴𝑛𝑒
−𝑔3𝑥 − 𝜆1

𝜆2
𝐴𝑛𝑒

−𝑔1𝑥 +
𝜌 ¥𝑋𝑔

4
𝑛𝜋

𝜌𝜔2 − 𝐺∗
( 𝑛𝜋
2𝐻

)2 )

+ 𝑔3𝐴𝑛𝑒
−𝑔3𝑥 − 𝑔1𝐴𝑛𝑒

−𝑔1𝑥

]
cos

𝑛𝜋

2𝐻
𝑧

3.4. Wall bottom bending moment and shear force

The expression of the shear force amplitude and the corresponding bending moment
amplitude per unit length of thewall bottom can be determined by integrating the expression
(3.37) of the wall-side earth pressure amplitude:

𝑄𝑏 =

∞∑︁
𝑛=1,3

2𝐻
𝑛𝜋

(
2𝐺∗𝑔1𝜆1 − 𝜆∗

𝜆2
𝐴𝑛 − 2𝐺∗𝑔4𝐴𝑛

)
(3.39)

𝑀𝑏 =

∞∑︁
𝑛=1,3

(−1) (𝑛−1)/2 4𝐻
2

𝑛2𝜋2

(
2𝐺∗𝑔1𝜆1 − 𝜆∗

𝜆2
𝐴𝑛 − 2𝐺∗𝑔4𝐴𝑛

)
(3.40)

4. Results and analysis
In the following analysis, 𝜔1 = 𝜋𝑣𝑠/(2𝐻) is the natural frequency of the soil layer,

where 𝑣𝑠 =
√︁
𝐺/𝜌. For the convenience of comparison, except for special instructions, the

parameter values in this paper refer to Reference [11], Poisson’s ratio 𝑣 is 0.3, material
damping is 0.1, soil density is 2300 kg/m3, soil shear modulus is 3×107 Pa, base accelera-
tion amplitude is 3 m/s2, wall height is 5 m, the Poisson’s ratio of wall is 0.2, the thickness
of wall is 0.125 m.

4.1. Comparative validation of results

In order to verify the rationality of the solution in this paper, the dynamic response
analysis of the flexible wall in this paper is degenerated into the dynamic response analysis
of the rigid wall. And compared with the rigid wall analytical solution proposed by Zhao et
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al. [19], as shown in Fig. 3. It can be seen from Fig. 3 that when the solution of this present
degenerates into the solution of rigid wall, which is completely consistent with the solution
of the earth pressure on the top of rigid wall proposed by Zhao et al., which verifies the
accuracy of the calculation result of the dynamic earth pressure on the top of flexible wall.
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Fig. 3. Comparison and verification of the inverse present solution with the solution
proposed by Zhao et al. (2022)

The present solution is comparedwith the solution that ignoring vertical stress proposed
byVeletsos et al. [11], as shown in Fig. 4.When the excitation frequency is low, ignoring the
vertical stress solution is slightly larger than the present solution. The friction between the
soil walls is considered in the process of solving, and the relative motion between the soil
walls is allowed in the model ignoring the vertical stress solution. This difference makes the
dynamic response that assume no vertical stress solution develop in soil medium slightly
larger than that of present solution. When the excitation frequency is high, the solution
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Fig. 4. Comparison and verification of the present solutions with the solution
proposed by Veletsos and Younan (2000)
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proposed by Veletsos et al is slightly smaller than the present solution. The reason for this
phenomenon is that the solution proposed by Veletsos et al that ignore the vertical stress
and the vibration superposition effect caused by it. In addition, it can be seen from Fig. 4
that when the relative flexibility coefficient is large, the two solutions are very close except
for the first-order resonance point, indicating that the dynamic response of the flexible wall
can be approximately considered by ignoring the vertical stress solution when the relative
flexibility coefficient is large.
The variation of wall top earth pressure with Poisson’s ratio is compared with the

solution that ignoring vertical stress and the solution that ignoring vertical displacement,
as shown in Fig. 5.
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Fig. 5. Variation of earth pressure on top of wall with Poisson’s ratio of soil

Take frequency, relative flexibility coefficient. It can be seen from Fig. 5 that the
solution that ignoring vertical displacement and the solution that ignoring vertical stress
are basically consistent and close to the present solution. At that time, the solution that
ignoring vertical displacement increases rapidly. When it is close to 0.5, this solution has
lost its meaning.

4.2. Size and distribution of earth pressure on the wall

Figure 6a shows the distribution of earth pressure along the height of flexible wall
under different excitation frequencies. As can be seen from the figure, when 𝜔/𝜔1 < 1,
the wall earth pressure increases with the excitation frequency increases; when 𝜔/𝜔1 = 1,
the earth pressure on the wall takes the maximum value at any position; when 𝜔/𝜔1 > 1,
the amplitude of earth pressure on the wall decreases with the increase of frequency. It
can be seen from Fig. 6b that when the excitation frequency is high, namely 𝜔/𝜔1 = 3,
the real and imaginary parts of the earth pressure on the wall are large, indicating that the
influence of the damping part corresponding to the imaginary part cannot be ignored when
the excitation frequency is high.
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Fig. 6. Distribution ofwall pressures and displacements along thewall height for different frequencies:
(a) different frequencies; (b) 𝜔/𝜔1 = 3

4.3. Horizontal distribution of soil stress and displacement

Figure 7 shows the horizontal distribution of stress and displacement of soil-flexible
wall system under different excitation frequencies. The results show that:
1. The distribution law of horizontal normal stress of soil layer: when𝜔/𝜔1 is 1 or less, the
maximum value of horizontal normal stress of soil layer appears near the wall, and only
a turning point occurs near the wall. After the turning point, it decreases monotonously
with the increase of distance from the wall, and tends to 0 in the far field. When 𝜔/𝜔1
is 2 or greater, with the increase of the distance from the wall, the horizontal normal
stress of the soil layer shows a wavy change with the increase of the distance from the
wall and gradually decreases, and tends to 0 in the far field.

2. The distribution law of horizontal displacement of soil layer: when𝜔/𝜔1 is 1 or smaller,
the horizontal displacement of soil layer increases monotonically from the wall to the
far field, and the far field tends to a constant. When 𝜔/𝜔1 is 2 or greater, the horizontal
displacement of the soil layer shows a wavy change with the increase of the distance
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Fig. 7. Variation of horizontal normal stress of the top layer with excitation frequencies along the
horizontal axis
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from the wall. In the far field, it also tends to a smaller constant, and the radiation
damping effect is obvious.

3. Distribution law of soil shear stress: when the excitation frequency is low, that is, 0.1
or greater, the minimum value of soil shear stress amplitude appears near the wall, and
then increases monotonically with the distance from the wall. When 𝜔/𝜔1 is 2 or more,
the soil shear stress changes with the distance from the wall.
The above rules show that when the excitation frequency is low, the amplitude of the

earth pressure on the wall and the displacement of the wall are mainly controlled by the soil
near the wall. When the excitation frequency is high, the far-field soil has a non-negligible
influence on the amplitude of the earth pressure on thewall and the displacement of thewall.

4.4. Bottom shear and bending moment

Figure 8 show the distribution of shear force and bending moment at the bottom of unit
length wall with different frequencies. It can be seen from Fig. 8 that with the increase of
the relative flexibility coefficient of the wall, the shear force and bending moment at the
bottom of the wall generally decrease. This may be because the flexible wall can reduce the
shear force and bending moment at the bottom of the wall by adjusting its shape. However,
at the first order resonance frequency, when the frequency ratio is 1, the amplitude of the
base shear force increases slightly with the increase of the relative elastic coefficient of the
wall. The shear force at the bottom of the wall decreases with the increase of the relative
flexibility coefficient of the wall, but the range is not large. For the bending moment at the
bottom of the wall, the reduction at the resonance frequency is greater than the reduction
of the shear force. It can be seen from the figure that when the relative flexibility coefficient
of the wall is 5 or smaller, the shear force and bending moment amplitude at the bottom
of the wall are greatly affected by the relative flexibility coefficient of the wall, especially
when it is 2 or larger.
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Fig. 8. Variation of shear force at the bottom of the wall with relative elasticity

Figure 9 give the magnification factors of the shear force and bending moment at the
bottom of the wall under dynamic excitation relative to static excitation.
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Fig. 9. The dynamic amplification factor of the wall bottom shear force

It can be seen that whether it is the shear force or the bending moment at the bottom
of the wall, the peak value of the amplification factor appears at the natural frequency of
the soil layer, and the amplification factor here is much larger than that at other excitation
frequencies, especially at high excitation frequencies, indicating that the basic vibration
mode is the main contributor to the dynamic response of the wall and plays a controlling
role. At that time, the dynamic amplification factor of shear force and bending moment
at the bottom of the wall decreased rapidly to less than 1, indicating that the radiation
damping effect was obvious and the radiation energy dissipation of the wave was more. In
addition, it can be seen from the Fig. 9 that the peak value of the amplification factor is
quite sensitive to the relative flexibility coefficient of the wall, and the larger, the greater
the peak value of the amplification factor. Therefore, in the seismic design of underground
engineering, for walls with low stiffness, special attention should be paid to the shear force
and bending moment at the bottom of the wall under the first resonance frequency.
The convergence characteristics of the shear force and bending moment at the bottom

of the flexible wall are given in Fig. 10. As the calculation results converge when the order
of modes is greater than 50, the first 50 modes are approximately considered as all modes.
It can be seen from Fig. 10 that if only the first-order vibration mode is considered, there is
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Fig. 10. The change of wall shear force with frequency considering different modal numbers
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still a large error in the accurate value of the shear force at the bottom of the wall compared
with the bending moment, especially at low excitation frequencies. If the first two vibration
modes are considered, the solution at this time is very close to the exact value, and the error
is negligible.

5. Conclusions
Based on Biot theory and Euler–Bernoulli beam theory, a more rigorous analytical

solution for the dynamic response of vertical flexible retaining wall in homogeneous soil
is derived. The following main conclusions can be obtained through analysis:
1. The solution of this paper is degenerated and compared with the existing solution.
It shows that the degenerate solution is in good agreement with the existing solution,
which proves that the solution of this paper is reasonable. When the Poisson’s ratio of
soil is less than 0.3, ignoring the vertical displacement and vertical stress are close to
the more rigorous solution in this paper. When the Poisson’s ratio of soil is greater than
0.3, the solution of ignoring vertical displacement increases rapidly. When the Poisson’s
ratio of the soil tends to 0.5, ignoring the vertical displacement solution cannot be used
as a reference.

2. When the excitation frequency is low, the earth pressure on thewall and the displacement
amplitude of the wall are mainly controlled by the soil near the wall. When the excitation
frequency is high, the influence of the far-field soil on the earth pressure and the
displacement of the wall gradually increases, and its influence cannot be ignored.

3. Wall displacement, wall soil pressure, wall bottom internal force and its amplification
coefficient are highly correlated with the relative flexibility coefficient of the wall. With
the increase of the relative flexibility coefficient of the wall, the wall displacement and
the amplification coefficient of the internal force of the wall bottom increase, the earth
pressure on the wall decreases, and the shear force of the wall bottom decreases with the
increase of the relative flexibility coefficient of the wall except the first order resonance
frequency.

4. The shear force and bending moment at the bottom of the wall can be approximately
expressed by the first two vibration modes.
At present, the research on the dynamic response of retaining walls under earthquake

mainly focuses on analytical research, and the main contribution of this study is to obtain
a more rigorous analytical solution. However, the actual seismic waves are not simple
harmonics, so the research in this study cannot be directly used in engineering practice. In
the future, a variety of seismic waves will be considered as input waves to carry out a more
intuitive study on dynamic response of retaining wall which can directly reflect seismic
wave.

Acknowledgements

The study was supported by the National Natural Science Foundation of China under
Grant No. 51978671. The authors are grateful for the great support awarded.



452 X. YANG, X. LIU, S. ZHAO, J. YU

References
[1] J. Mousavi and S. Tariverdilo, “Tuning mass of internal flexible wall to reduce seismic demand on exterior
walls of liquid storage tanks”, Engineering Structures, vol. 101, no. 15, pp. 279–289, 2015, doi: 10.1016/
j.engstruct.2015.07.011.

[2] O.L. Ertugrul and A.C. Trandafir, “Seismic earth pressures on flexible cantilever retaining walls with
deformable inclusions”, Journal of Rock Mechanics and Geotechnical Engineering, vol. 6, no. 5, pp. 417–
427, 2014, doi: 10.1016/j.jrmge.2014.07.004.

[3] J.S. Xu, X.L. Du, and X.L. Yang, “Stability analysis of 3D geosynthetic-reinforced earth structures com-
posed of nonhomogeneous cohesive backfills”, Soil Dynamics and Earthquake Engineering, vol. 126, art.
no. 105768, 2019, doi: 10.1016/j.soildyn.2019.105768.

[4] M. Grodecki, “Numerical modelling of gabion retaining wall under loading and unloading”, Archives of
Civil Engineering, vol. 67, no. 2, pp. 155–164, 2021, doi: 10.24425/ace.2021.137160.

[5] A. Bahrami and M. Yavari, “Analysis of composite shear walls with a gap between reinforced con-
crete wall and steel frame”, Archives of Civil Engineering, vol. 66, no. 1, pp. 41–53, 2020, doi:
10.24425/ace.2020.131773.

[6] R.B. Han, C.S. Xu, Z.G. Xu, et al., “A boundary forced response displacement method for seismic analysis
of symmetrical underground structures”, Engineering Mechanics, vol. 38, no. 5, pp. 50–60, 2021, doi:
10.6052/ j.issn.1000-4750.2020.02.0075.

[7] J.B. Liu, D.Y. Wang, et al., “Theorectical derivation and consistency proof of the integral response defor-
mation method”, China Civil Engineering Journal, vol. 52, no. 8, pp. 18–23, 2019, doi: 10.15951/j.tmgcxb.
2019.08.002.

[8] Z.D. Gao, M. Zhao, X.L. Du, and Z. Zhong, “A generalized response spectrum method for seismic response
analysis of underground structure combined with viscous spring artificial boundary”, Soil Dynamics and
Earthquake Engineering, vol. 140, art. no. 106451, 2021, doi: 10.1016/j.soildyn.2020.106451.

[9] D. P. Qiu, J. Y. Chen, and Q. Xu, “Improved pushover analysis for underground large-scale frame structures
based on structural dynamic responses”, Tunnelling and Underground Space Technology, vol. 103, art.
no. 103405, 2020, doi: 10.1016/j.tust.2020.103405.

[10] V.G. Kitsis, G.A. Athanasopoulos, and A. Athanasopoulos-Zekkos, “Earth retaining walls with backfill
possessing cohesion-Numerical analyses of seismic behavior”, Soil Dynamics and Earthquake Engineering,
vol. 160, art. no. 107368, 2022, doi: 10.1016/j.soildyn.2022.107368.

[11] A.S. Veletsos and A.H. Younan, “Dynamic response of cantilever retaining walls”, Journal of Geotechni-
cal and Geoenvironmental Engineering, vol. 123, no. 2, pp. 161–172, 1997, doi: 10.1061/(ASCE)1090-
0241(1997) 123:2(161).

[12] A.H. Younan and A.S. Veletsos, “Dynamic response of flexible retaining walls”, Earthquake Engineering
and Structural Dynamics, vol. 29, no. 12, pp. 1815–1844, 2000, doi: 10.1002/1096-9845(200012)29:12
<1815::AID-EQE993>3.0.CO;2-Z.

[13] D.D. Theodorakopoulos, A.P. Chassiakos, andD.E. Beskos, “Dynamic pressures on rigid cantilever walls re-
taining poroelastic soil meida. Part ?: first method of solution”, Soil Dynamics and Earthquake Engineering,
vol. 21, no. 4, pp. 315–338, 2001, doi: 10.1016/S0267-7261(01)00009-4.

[14] L. Lanzoni, E. Radi, and A. Tralli, “On the seismic response of a flexible wall retaining a viscous
poroelastic soil”, Soil Dynamics and Earthquake Engineering, vol. 27, pp. 818–842, 2007, doi: 10.1016/
j.soildyn.2007.01.009.

[15] Q.J. Liu, Y.X. Tian, and F.J. Deng, “Dynamic analysis of flexible cantilever wall retaining elastic soil by
a modified Vlasov-Leontiev model”, Soil Dynamics and Earthquake Engineering, vol. 63, pp. 217–225,
2014, doi: 10.1016/j.soildyn.2014.03.019.

[16] Q.J. Liu, “Modal analysis for kinematic response of flexible cantilever retainingwall”, Soils and Foundations,
vol. 56, no. 3, pp. 399–411, 2016, doi: 10.1016/j.sandf.2016.04.007.

[17] S.J. Brandenberg, G. Mylonakis, and J.P. Stewart, “Approximate solution for seismic earth pressure on
rigid walls retaining in homogeneous elastic soil”, Soil Dynamics and Earthquake Engineering, vol. 97,
pp. 468–477, 2017, doi: 10.1016/j.soildyn.2017.03.028.

https://doi.org/10.1016/j.engstruct.2015.07.011
https://doi.org/10.1016/j.engstruct.2015.07.011
https://doi.org/10.1016/j.jrmge.2014.07.004
https://doi.org/10.1016/j.soildyn.2019.105768
https://doi.org/10.24425/ace.2021.137160
https://doi.org/10.24425/ace.2020.131773
https://doi.org/10.6052/j.issn.1000-4750.2020.02.0075
https://doi.org/10.15951/j.tmgcxb.2019.08.002
https://doi.org/10.15951/j.tmgcxb.2019.08.002
https://doi.org/10.1016/j.soildyn.2020.106451
https://doi.org/10.1016/j.tust.2020.103405
https://doi.org/10.1016/j.soildyn.2022.107368
https://doi.org/10.1061/(ASCE)1090-0241(1997)123:2(161)
https://doi.org/10.1061/(ASCE)1090-0241(1997)123:2(161)
https://doi.org/10.1002/1096-9845(200012)29:12<1815::AID-EQE993>3.0.CO;2-Z
https://doi.org/10.1002/1096-9845(200012)29:12<1815::AID-EQE993>3.0.CO;2-Z
https://doi.org/10.1016/S0267-7261(01)00009-4
https://doi.org/10.1016/j.soildyn.2007.01.009
https://doi.org/10.1016/j.soildyn.2007.01.009
https://doi.org/10.1016/j.soildyn.2014.03.019
https://doi.org/10.1016/j.sandf.2016.04.007
https://doi.org/10.1016/j.soildyn.2017.03.028


ANALYTICAL STUDY ON DYNAMIC RESPONSE OF CANTILEVER FLEXIBLE . . . 453

[18] W.H. Ke, W.J. Luo, T. Fang, et al., “A simple closed-form solution for kinematic responses of retaining wall
incorporating the effects of shear stiffness of soils”, Soil Dynamics and Earthquake Engineering, vol. 134,
art. no. 106163, 2020, doi: 10.1016/j.soildyn.2020.106163.

[19] S. Zhao, J. Yu, X. Liu, et al., “Analytical study on dynamic response of cantilever underground rigid wall”,
Rock and Soil Mechanics, vol. 43, no. 1, pp. 152–159, 2022, doi: 10.16285/j.rsm.2021.0690.

[20] J. Yu, Y. He, L. Zhang, et al., “Dynamical characteristics of piles in liquefied soil under horizontal vibration”,
Chinese Journal of Geotechnical Engineering, vol. 39, no. 3, pp. 573–580, 2017, doi: 10.11779/CJGE
201703023.

Received: 2022-11-01, Revised: 2023-01-10

https://doi.org/10.1016/j.soildyn.2020.106163
https://doi.org/10.16285/j.rsm.2021.0690
https://doi.org/10.11779/CJGE201703023
https://doi.org/10.11779/CJGE201703023

	Xiuzhu Yang, Xinyuan Liu, Shuang Zhao, Jun YuAnalytical study on dynamic response of cantilever flexible retaining wall

