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Research paper

A comparative analysis of artificial neural network
predictive and multiple linear regression models
for ground settlement during tunnel construction

Baoping Zou1, Musa Chibawe2, Bo Hu3, Yansheng Deng4

Abstract: Ground settlement during and after tunnelling using TBM results in varying dynamic and
static load action on the geo-stratum. It is an undesirable effect of tunnel construction causing damage to
the surface and subsurface infrastructure, safety risk, and increased construction cost and quality issues.
Ground settlement can be influenced by several factors, like method of tunnelling, tunnel geometry,
location of tunnelling machine, machine operational parameters, depth & its changes, and mileage of
recording point from starting point. In this study, a description and evaluation of the performance of the
arti?cial neural network (ANN)was undertaken and a comparisonwithmultiple linear regression (MLR)
was carried out on ground settlement prediction. The performance of these models was evaluated using
the coefficient of determination R2, root mean square error (RMSE) and mean absolute percentage
error (MAPE). For ANN model, the R2, RMSE and MAPE were calculated as 0.9295, 4.2563 and
3.3372, respectively, while for MLR, the R2, RMSE and MAPE, were calculated as 0.5053, 11.2708,
6.3963 respectively. For ground settlement prediction, both ANN andMLRmethods were able to predict
significantly accurate results. It was further noted that the ANN performance was higher than that of
the MLR.
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1. Introduction

Tunnel construction is aimed at providing a subsurface throughway for use by military,
municipal and mining operatives. Several methods are employed which include drilling,
blasting and use of tunnel boring machines (TBM) [1]. However, these operations being
destructive in nature tend to cause changes in the natural sub strata setting and changes
ground strength leading to settlement. This has adverse impact on existing infrastructure
and the cost and safety on the ongoing project. Studies in ground settlement describe
settlement as the change in the in-situ ground surface levels [2,3]. The change in settlement
at a point may be instant and/or continuous resulting from an impact load, due to stress
redistribution with change in pore water and pore air pressure and creep failure of the
ground [4].
Different factors have been identified to affect the magnitude of ground settlement

during shield tunnel construction. Wang et al. [5] focused on the influence of construc-
tion method, depth, location from starting point, geology and hydrogeology influence on
settlement. Meng et al. [6] studied the influence of earth pressure balance shield machine
control parameters that influence the degree of compression pressure on the surrounding
soil. Gong et al. [7] described the failure mechanism and tunnel uplift resistance in soft clay.
Fang et al. [8] carried out settlement model tests in sandy soils. Wang et al. [9] described
the influence of double layer lining structure on settlement. Li and Yuan [10] presented
the impact of a new tunnel construction below an existing double tunnel. In sum, ground
settlement can generally be said to be influenced by hydrogeology, geology, construction
method, geometry of tunnel, locality to existing tunnel loads or influence of nearby tunnel
under construction.
Threemethods are applied in settlement prediction, namely, semi-theoreticalmethod [4],

numerical analysis method [11], and analytical method [11]. However, the considerations,
including inconsistencies in equipment efficiency, ground geology, hydrogeology and hu-
man error and their interactions require such applications as the numerical methods –
artificial intelligence (AI). AI is an emulation of human thinking process [5]. In spite of
the available experience, the research works and empirical data previously established, real
time analysis of obtaining conditions and their application is unique for each particular site.
The ability for AI to self-learn and self-predict some desired outcomes is the most impor-
tant characteristic of this approach. AI has been used for classification, optimization and
prediction for decision making in a variety of disciplines of operations and research, with
great success [5, 12–17]. In addition, artificial neural network (ANN) is one of the most
effective methods to predict the deformation and dynamic failure of rock mass [4, 18–20].
The aim of this work is to compare the prediction efficiencies of the ANN models

and multiple linear regression (MLR) and for the resultant ground settlement from tun-
nel construction operation. Using cumulative settlement, settlement, cutter-head mileage,
chainage, and depth as the prediction parameters. The case study applies to the field
monitoring results for Guangzhou urban rail transit line No. 9.
The prediction performance of the ANN model was shown to be higher compared to

MLR model. Both the ANN and MLR methods were able to predict significantly accurate
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results. The ANN and MLR models achieved are site specific and should be modified
accordingly were applied to other sites.

2. Materials and methods

2.1. Artificial neural network

McCulloch and Pitts’ pioneering work in the 1940s is widely regarded as the start
of the ANN field. The ANN was reported to have been initially used in the late 1950s,
following Rosenblatt’s discovery of the perceptron network and related learning rule. After
subsequent advancements to the basic perceptron network which could only address a
limited class of problems, neural networks became popular in the late 1980s and, more
recently, in the 1990s [16].
ANNs are information processing structures that are designed to look and function like

biological neural tissue. An ANN is a system made up of numerous basic units (called
neurons) that are interconnected and function in parallel, sending signals to one another to
complete a processing task. The ability of ANNs to imitate the learning process is one of
its most notable properties. They are given pairs of input and output signals from which
general principles are automatically deduced, allowing the ANN to provide the proper
output for a signal that has never been used before (under particular conditions). The
importance of quality and quantity of data for training the networks outcomes is pointed
out in [19]. Prediction accuracy of ANN based applications in prediction and forecasting
is usually higher than 80% as evident in [13, 20]. Neural network models are suitable
for parametric modelling and compare favorably with other parametric models such as
regression analysis [13, 21].
The disadvantages of ANN include a lack of general procedure, particularly for the

selection of its initial weights and other initial parameters for effective application, and
the fact that it is best suited for short-term forecasting rather than long-term forecasting,
especially for different projects with wide variations in trends. Other learning algorithms
and optimization tools can be used to improve ANNs [1, 17, 19]. In this work, the multi-
layer networks were utilized in training the network under the supervision of error back-
propagation algorithm. To produce an error signal, the network’s model output is subtracted
from a desired output. This erroneous signal is then sent backwards across the network, in
the opposite direction of synaptic connections [13]. To evaluate performance, the coefficient
of determination (R2), root mean square error (RMSE) and mean absolute percentage error
(MAPE) were utilized [19].

2.2. Multiple linear regression (MLR)

Also known as multiple regression, MLR is a time-honored technique that dates back
to Pearson’s use of it in 1908. The multiple regression equation can be written as:

(2.1) 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + · · · + 𝛽𝑝𝑥𝑖 𝑝 + 𝜀
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where, 𝑖 is the number of observations, 𝑦𝑖 is the 𝑖-th dependent variable, 𝑥𝑖 is the 𝑖-th
independent variable, 𝛽0 is the 𝑦-intercept (constant term).The regression line intercepts
the 𝑦-axis, representing the amount of the dependent variable 𝑦 when all independent
variables are equal to zero [3]. 𝛽𝑝 is a regression coefficient that represents the amount that
the dependent variable 𝑦 changes when the related independent variables change by one
unit. While all the independent variables are constant. Because each data point can differ
significantly from the conclusion predicted by the model, the model is not always entirely
accurate. To account for such minor fluctuations, the model includes the residual value,
𝜀, which is the difference between the actual and predicted outcomes [22]. The constraint
regarding regression techniques is that they are not definite about the underlying causal
process, notwithstanding their ability to establish connections [23].

2.3. Case study and model design

The case study was Huadu Automobile City station to Guangzhou Urban Rail Transit
line 9, North Railway Station Shield Construction area, over a mileage on the left of
Zdk3788.0 to Zdk4078.0. The ground condition is typically limestone area with upper soft
and lower hard strata with sections of rock and caves. The shield used is 8.92 m with a
total length of 77.35 m. The average torque and thrust are 1647.7 kN·m and 13240.0 kN,
respectively. The earth pressure in chamber of TBM (EPCTBM) and ground settlements
were recorded at 24-hour intervals every day. The data used in this study is from January
to March of 2015. Table 1 below, shows summary of shield machine data and control
parameters. The analysis of cumulative settlement was limited to the stated variables above
due to, lack of access to data for other influencing factors such as geology, hydrogeology,
and shield machine control parameters.

Table 1. Shield machine data and control parameters

Item No. Description Details

1 Diameter 5.4 m Inner & 5.7 m Outer diameter of segment

2 Segment ring length 1.5 m

3 EPCTBM 107–171 kPa Variance, plus or minus 5–10 kPa

4 Cutter speed 0.3–3.0 rpm

5 Rotation speed < 0.8 rpm

6 Torque < 2000 kN·m

7 Optimum Driving Penetration 1–1.25

8 Grouting Pressure 0.8–0.9 MPa

9 Grouting velocity 30–50 L/min

10 Excavation medium different soil layers, like sand layer, rock layer,
and clay layer
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2.4. Parametric analysis

Parametric analysis was carried out by determination of correlation coefficient of key
variables using input parameters, such as settlement (A), cutter head mileage (B), chainage
(C), tunneling ring number (D), initial depth (E), previous depth (F), and current depth (G).
Cutter head advance rate had the least score of less than 0.05 and hence removed from

the parameters as significant variables. An analysis for collinearity was carried out forMLR
and three models for prediction of cumulative settlement were modelled. It was observed
that chainage and tunnelling ring number had same coefficient of correlation hence chainage
was used since it is a direct value obtained from field measurement and not influenced by
calculation error or in-situ modifications. Table 2 and Table 3 show performance total

Table 2. Parameter selection and performance ranking

Model No. Model inputs R2 MAPE RMSE Rank of
R2

Rank of
MAPE

Rank of
RMSE

Final
Rank

MLR.TR: 1 A, B, C, E 0.5147 5.8918 12.0412 1 1 2 4

MLR.TR: 2 A, B, C, F 0.4737 6.0777 11.5496 3 2 1 6

MLR.TR: 3 A, B, C, G 0.4894 8.0103 12.2208 2 3 3 8

MLR.TS: 1 A, B, C, E 0.4370 6.9918 14.1412 3 2 3 8

MLR.TS: 2 A, B, C, F 0.4866 11.7795 9.1664 2 3 1 6

MLR.TS: 3 A, B, C, G 0.4980 6.0709 13.8261 1 1 2 4

ANN.TR: 1 A, B, C, E 0.8043 3.6815 6.1825 2 2 2 6

ANN.TR: 2 A, B, C, F 0.8563 1.7735 5.8905 1 1 1 3

ANN.TR: 3 A, B, C, G 0.5486 3.7286 11.7775 3 3 3 9

ANN.TS: 1 A, B, C, E 0.7017 2.4760 9.2807 2 3 2 7

ANN.TS: 2 A, B, C, F 0.8389 1.6291 6.8257 1 1 1 3

ANN.TS: 3 A, B, C, G 0.4495 2.2730 10.1552 3 2 3 8

Note: TS = Training, TR = Testing.

Table 3. Parameter selection and performance total ranking

Model
Total

performance
rank

Rank Chosen Model

I 25 2 Model II
Settlement, Cutterhead Mileage,
Chainage, previous depth

II 18 1

III 29 3
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ranking for the model iteration of the three models with randomly selected datasets. The
determination index, like R2, MAPE and RMSE, were used to rate the performance of each
model.

2.5. Data normalization

The data was observed to have varying magnitude, range and units. It was therefore
normalized using the equation (2.2) below [12]:

(2.2) 𝑦 =
𝑦𝑖 + 𝑦min

𝑦max − 𝑦min

where, 𝑦 is the input or output variable, 𝑦𝑖 is the 𝑖-th observed data at 𝑖, 𝑦min is the minimum
value of the observed data, 𝑦max is the maximum value of the parameter values.

3. Results and discussion

3.1. ANN

The data for settlement, cutter head mileage, chainage, previous depth as the input
columns and cumulative ground settlement (𝐻) as the output were divided into training
60%, testing 20% and validation 20% [19, 24, 25]. The default divider and command in
MATLAB is used to divide the data into the three sets. The training function used is the
Levenberg Marquardt [26].

3.2. Optimum structure of ANN

Trial and error procedure is used to determine the optimum ANN structure based on
heuristics proposed by [27]. Minimum of 2 and Maximum of 9 neurons in one hidden
layer model based on the study by koopialipoor et al. [24, 27] is considered. Table SM2 in
supplementarymaterials shows proposedHeuristics by researchers for the optimumnumber
of hidden layer neurons [28, 29]. Considering four parameters in this study, 1 hidden layer
is considered sufficient for this multiple layer perceptron back propagation ANN, according
to [30]. The number of neurons in the hidden layer was obtained after 1000 iterations with
randomly selected samples based on a ranking technique by Zorlu et al. [12]. The optimum
model is the network with nine neurons in the hidden layer.
Figure 1 shows different frequencies of occurrence for minimum error at locations of

hidden neurons. The frequency for each quantity of neurons in the hidden layer is different.
This shows that the frequency in this study is dependent on the selected training data. The
model with the highest frequency is the 4 × 9 × 1 model. It has above 30 percent of the
iterations that is, for more than 300 instances of the 1000 iterations the minimum error
will be obtained at the model with nine hidden neurons. Hence, the optimum number of
neurons chosen is nine neurons in the hidden layer.
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(a)

(b)

Fig. 1. Histogram of frequency vs number of neurons in hidden layers and hidden layers at minimum
RMSE: (a) frequency vs number of hidden neurons; (b) frequency vs number of hidden layers

3.2.1. Transformation function

The chosen ANN of structure 4 × 9 × 1 was subjected to different combinations of
transformation functions to determine transfer functions ideal for optimum performance.
The tansig, logsig, purelin functions have been widely applied in previous studies in civil
engineering and tunnel settlement estimation [13, 31–33]. They have been applied for,
input, hidden and output layers. Both tansig-tansig and tansig-purelin gave the same score
shown in Table 4. Hence, either can be used. However, tansig-purelin was used due to
purelins transfer functions’ fast processing power [12].
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Table 4. Performance of ANN structure with different transfer functions

Model
No. Description

R2 RMSE Rank of R2 Rank of
RMSE Total

Rank
of
totalTrain Test Train Test Train Test Train Test

1 Purelin,
Purelin 0.5186 0.5158 9.9619 11.0927 8 8 7 9 32 8

2 Purelin,
Tansig 0.5870 0.3999 9.9775 9.5522 7 9 8 7 31 7

3 Purelin,
Logsig 0.4929 0.5442 10.8230 10.1611 9 7 9 8 33 9

4 Logsig,
Purelin 0.9268 0.8524 4.3281 5.5036 4 4 4 4 16 4

5 Logsig,
Tansig 0.9650 0.8733 4.0360 6.0588 1 3 3 5 12 3

6 Logsig,
Logsig 0.8151 0.8133 6.7568 6.3047 5 5 5 6 21 5

7 Tansig,
Tansig 0.9410 0.9188 3.6694 4.6694 3 1 1 2 7 1

8 Tansig,
Purelin 0.9560 0.9121 3.7406 4.4529 2 2 2 1 7 1

9 Tansig,
Logsig 0.8123 0.8040 7.0237 4.6973 6 6 6 3 21 5

3.2.2. Learning rate and momentum constant

In order to select the optimum learning rate and momentum constant, the model of
4 × 9 × 1 was subjected to 10 constant learning rates and momentum constants obtained
from. Table 5 shows proposed heuristics for learning rate and momentum term by vari-
ous researchers. Using the performance index, RMSE, the performance ranking for the
combination of learning rate and moment were plotted. Model No 4 (learning rate, 0.01,

Table 5. Proposed heuristics for learning rate and momentum term by [12, 29, 34–36]

Model
No.

Learning
rate

Momentum
constant

Model
No.

Learning
rate

Momentum
constant

1 0.1 0.3 6 0.15 0.075

2 0.04 0.02 7 0.2 0.6

3 0.05 0.5 8 0.25 0.9

4 0.01 0.00005 9 0.3 0.6

5 0.1 0.9 10 0.5 0.9
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Momentum Constant, 0.00005) in Table 5, was observed to perform better with minimum
ranking for RMSE. The proposed structure of proposed Artificial Neural Network with
4 inputs, 1 hidden layer, 9 hidden neurons, and 1 output.
MLR analysis is used to correlate the observed cumulative settlement and the predicted

results. The basic descriptive statistics of tunnelling data are shown in Table 1. Correlation
of predicted and target values of cumulative settlement for theMLRmodel, for 630 datasets
is shown in the supplementary data. The correlation between predicted and target values is
shown in Fig. 2, which displays a strong prediction capability.

(a)

(b)

Fig. 2. Comparison between target dataset and predicted values using (a) ANN; (b) MLR
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From Fig. 2, the ANN model can attribute the cumulative settlement to the selected
variables by 92.95%, while the MLR can attribute the target cumulative settlement to the
variables (settlement, cutter-head mileage, chainage, previous depth) by 50.53%.
The MLR regression equation is as follows:

(3.1) 𝑌 = 0.66811 + 0.1815𝐴 − 0.21644𝐵 + 0.40116𝐶 + 0.2452𝐹

In equation (3.1),𝑌 is the cumulative settlement, the values 𝐴, 𝐵, 𝐶, 𝐹, are, settlement,
cutter head mileage, chainage and previous depth values, respectively. R2, RMSE and
MAPE of this model are given in Table 6 and compared to ANN.

Table 6. Comparison of MLR and ANN performance

Item No. Description R2 RMSE MAPE Rank

1 ANN 0.9295 4.2563 3.3372 1

2 MLR 0.5053 11.2708 6.3963 2

From Table 6, ANN has higher value of R2, and least values of RMSE and MAPE,
which can be attributed to ANN models’ ability for generalization and learning of non-
linear data as an advantage over the MLR. Fig. 3 presents the performance of the ANN
and MLR against the target data, from which the ANN model is shown to be more efficient
than MLR consistent with previous studies [11, 32].

Fig. 3. Comparison between target dataset and predicted values using the ANN and MLR
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4. Conclusions

ANN andMLRmodels were used in this study to forecast the ground settlement caused
by shield tunnelling utilizing four effective parameters, settlement, cutter-head mileage,
chainage and previous depth. The parameters were employed as input parameters to model
cumulative settlement using 630 datasets obtained from Guang-zhou Urban Rail Transit
line 9. The following conclusions can be taken from this research:
For anANNnetwork, four neurons in the input layer, one hidden layerwith nine neurons,

and one neuron in the output layer were found to be the best ANN structure. The outcome
of the model for cumulative settlement prediction revealed that the equation derived from
the MLR model did perform well in terms of cumulative settlement prediction, and the
target data was within the upper and lower limit of the prediction margin. The prediction
performance of the ANNs model was shown to be higher than the MLR model based on
the performance indicators. The ANN and MLR models that have been achieved are solely
connected to Guangzhou Urban Rail Transit line 9, for the section covered in the period
January – March, 2015. These models should be modified in other circumstances other
than this shield tunnelling project.

5. Supplementary material

There are three Tables (Table SM1-Table SM4), two figures (Fig. SM1 and Fig. SM2),
and computer program in the supplementary material section.
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