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Abstract
Quality profiling seeks to know the quality characteristics of products and processes to improve
customer satisfaction and business competitiveness. It is required to develop new techniques
and tools that upgrade and complement the traditional analysis of process variables. This
article proposes a new methodology to model quality control of the process and product
quality characteristics by applying optimization and simulation tools. The application in
the production process of carbonated beverages allowed us to identify the most influential
variables on the gas content and the degrees Brix of beverage.
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Introduction

Quality profiling consists of identifying key inputs
and outputs of the process, collecting data about the
behavior of the variables and the product quality char-
acteristics, and analyzing the interrelationships. Qual-
ity profiling allows estimating the result of the prod-
uct quality characteristics from known information
about the process variables values. The main objective
of quality profiling is to obtain mathematical models
that facilitate decision-making in process monitoring
and improving product quality.

Goal Programming (GP) was proposed by Charnes
and Cooper, as a derivation of linear programming
(Aouni & Kettani, 2001). Although GP aimed to solve
industrial problems, it has expanded with applica-
tions in areas such as economics, agriculture, and en-
vironmental resources. Today, GP is one of the most
popular multi-criteria approaches for solving complex,
large-scale problems.

The last 40 years have been a transformative era in
the progress of new methodologies to help decision-
making, especially for developing multi-criteria deci-
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sions and GP. Thus, GP is one of the best-known tools
that support a wide network of researchers and profes-
sionals who continuously feed it with theoretical de-
velopments and applications (Aouni & Kettani, 2001).

Decision-making is a complex issue in process man-
agement. Aouni and Kettani (2001) state that the de-
velopment of technological environments allows stake-
holders to make collective decisions by formalizing
procedures for process quality control using optimiza-
tion and simulation tools.

Schniederjans and Karuppan (1995) developed a
zero-one GP model to select the best quality control
tools for simultaneously optimizing various process
quality characteristics. In these cases, the response
variables may differ in many properties as scale, mea-
surement unit, and optimization type.

Uncertainty in perception of both priorities of the
objectives and their economic and environmental scale
can generate difficulties in making management de-
cisions. Therefore, Chang and Wang (1997) applied
a fuzzy goal programming (FGP) approach for op-
timal planning of solid waste management systems.
The fuzzy decision-maker goals are quantified by us-
ing specific membership functions in several types of
management alternatives for solid waste. Aouni et al.
(2009) stated that fuzziness is related to the nature
of the goals involved in managerial decision-making.

There are different approaches for modeling and
building optimization problems (Kazemzadeh et al.,
2008; Alazemi et al., 2022; Amorim et al., 2022). An
example is production scheduling in mining for mix-
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ing raw materials before concentration. Thus, Zhang
et al. (1993) developed and applied a variable tar-
get scheduling model for short and medium-term open
pit planning for a large-area coal mine. Chanda and
Dagdelen (1995) stated that it is necessary to imple-
ment a linear objective programming model in short-
term mine planning to achieve better results.

Optimal experimental designs aimed to predict
variance and improve performance. Optimal exper-
imental designs have been applied in quality man-
agement to improve products management. Ozdemir
(2021) proposed a lexicographic GP model by incor-
porating the i-optimal experimental design to find
controllable factors. In water supply management,
Musa (2020) developed a multi-target model to meet
growing demands across multiple sectors in Saudi
Arabia. The model allowed to forecast the supply and
demand of water from 2020 to 2050.

Frequently, identifying variables and control factors
in industrial processes is quite complex. Nuriani and
Gunawan (2020) applied response surface methodol-
ogy and GP to find the optimal combination of quality
characteristics in coconut oil production. Gholizadeh
and Tajdin (2019) developed a GP model with statis-
tical quality control to improve the process capability
indices of different quality characteristics. It reduced
waste and the cost of the finished product and im-
proved customer satisfaction.

Quality function deployment (QFD) allows for the
achievement of various objectives simultaneously. It
is complex for decision-makers to establish the final
value of each target in unknown and uncertain en-
vironments. Thus, Delice and Zülal (2013) proposed
a fuzzy programming model to determine a combi-
nation of optimal values by comparing the effective
alternatives of product design and its easy and fast
development.

In addition, GP has been integrated with Design
of Experiments (DOE) to identify optimal levels of
process control in several areas. Gijo and Ravindran
(2008) conducted a full-factorial experiment with two
factors at three levels each and used GP to opti-
mize the two response variables of a concrete mixture.
Wang et al. (2016) combined chance-constrained pro-
gramming and GP to optimize the risk adjustable in
power system scheduling.

İç et al. (2022) determined critical variables of gas
metal arc welding and optimized the process perfor-
mance by integrating a full-factorial design, regression
analysis, and GP. Tansel Iç et al. (2022) combined a 2k

DOE and GP to determine variables optimum levels
of a flexible manufacturing cell considering multiob-
jective performance.

Despite the previous works, there is a gap in devel-

oping and implementing flexible models that integrate
optimization and simulation tools for solving complex
problems of process and product quality profiling.
Hence, this paper develops a process quality profiling
methodology by integrating GP to determine the op-
timal levels of the process variables and Monte Carlo
Simulation (MCS) to estimate the variability of the
quality characteristics of the product. The methodol-
ogy is implemented in a carbonated beverage produc-
tion process.

The main contribution of this paper is developing
a flexible modeling methodology that integrates op-
timization and simulation tools to solve complex en-
gineering problems. So, it is possible to predict the
behavior of the quality characteristics and then, elim-
inate or reduce deviations from meeting target specifi-
cations and improve making decisions in process man-
agement.

Goal Programming (GP)

The standard GP model considers the priority of
goals to be precise and deterministic. However, a typ-
ical quality control profiling problem is fixing the lev-
els of input process parameters to meet a required
output specification. In particular, when the product
has several quality characteristics that have to satisfy
different specifications (Zhang et al., 1993).

Therefore, it is necessary to establish a reference
procedure to formulate a GP model, considering the
following:
1. Set the f(x) goals (attributes) from least to most

important.
2. Determine the importance level (Yn) of each goal.
3. Goal Definition (negative deviation variable, δ−,

and/or positive deviation variable, δ+).
The decision space (Y ′) is the set of values vectors

that reach the different attributes in each object:

Y ′ = f(x) + δ− − δ+. (1)

In general, the i-th goal attribute (Yn) is given by:

Yn = f(x) + δ−n − δ+n . (2)

The target space is determined by the set f(s) ={
f1(x), . . . , fp(x)| x ∈ S

}
, S ⊆ RN , S 6= ϕ,

fj : S → R, j ∈ {1, . . . , p}. The multi-objective op-
timization problem is propound as:

min (fi(x), . . . , fp(x))

s.t. : x ∈ S.
(3)
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Obtaining an optimal solution in x̄j , with an optimal
value in f∗j .

Thereby, it is possible to obtain the following GP
solution types: ideal, efficient, weakly efficient, pre-
ferred, utility function, satisfactory, or compromise.
Due to the characteristics of this work, it is of inter-
est to obtain a satisfactory solution.

GP and modeling process quality control

Output variables in a quality control model cor-
respond to product specifications and meeting the
quality characteristics of a product depends on input
and process variables performance (Valdés-Manuel &
Cogollo-Flórez, 2022). Therefore, it is necessary to de-
termine the operating range of each input and process
variable.

The main issue in quality control modeling is to
find a solution with optimal values of input and pro-
cess variables that meet all the product specifications,
subject to some constraints. When there is no single
optimum, the best solution is in the set of feasible
solutions (Cherif et al., 2008).

Multiple and conflicting objectives in quality con-
trol modeling lead to efficient rather than optimal
solutions. Those are in the domain of feasible solu-
tions, such that meeting one objective affects at least
one other; that is, there are possible compromises be-
tween the objectives (Mohammed & Hordofa, 2016).
Thus, the decision maker must use an appropriate
method and select a more preferred and efficient solu-
tion, known as the best compromise solution (Belhoul
et al., 2014).

Let R1 . . . , Rl be the l input variables, x1, . . . , xk
the k process variables and Y1, . . . , Yr the r output
variables. The linear relationship between the vari-
ables is:

Yi = Qi

(
R1, . . . , Rl;x1, . . . , xk

)
for i = 1, 2, . . . , r, (4)

where Q is the linear function.
Formulating the quality control problem as a GP

model requires modifying the specifications form and
setting of the regression equation (Sengupta, 1981).
Modifying the specifications form is made from a two-
sided specification to an upper single-sided specifica-
tion (USL) by transforming the respective variable
and subtracting its lower specification limit (LSL):

xk = xi − LSL ≤ (USL− LSL). (5)

The regression equation is refitted by rewriting (4) as:

Y ′1 = Q′i (R′1, . . . , R
′
l; x

′
1, . . . , x

′
k) , (6)

where Y ′1 , R′l and x
′
k are the modified variables. Thus,

the refitted regression equation is:

Y ′n = C +R′ + x′1 − x′2 + x′3 + . . .+ x′m , (7)

where C is the fitting coefficient.
The optimization problem can be expressed as fol-

lows: For i = 1, 2, . . . , r, find the values of x′m and R′
such that Y ′i meets the specifications considering the
constrains within their operating range on the values
of R′1, . . . , R′l and x

′
1, . . . , x

′
k.

Thereby, the problem was reduced to minimize the
sum of the deviation variables from the goal subject
to the constrains, considering the factors priority. So,
the general process control problem is formulated as
a lexicographic GP problem (Sengupta, 1981):

min

lkr∑
m=1

(
δ+m + δ−m

)
(8a)

min PYi

r∑
i=0

(
δ+Y ′ + δ−Y ′

)
+ PXk

r∑
j=0

(
δ+Y ′ + δ−Y ′

)
+ PDi

r∑
t=0

(
δ+Y ′ + δ−Y ′

)
. (8b)

Subject to:

D′i + δ−D′
i
− δ+D′

i
= z′Di

(for i = 1, 2, . . . , r), (8c)

x′j + δ−x′
j
− δ+x′

j
= z′xj

(for i = 1, 2, . . . , r), (8d)

Y ′i + δ−Yi
− δ+Yi

= z′Yi
(for i = 1, 2, . . . , r), (8e)

Y ′i , x
′
j and D′i ≥ 0,

where (8c) is the input goal constrain, (8d) is the pro-
cess goal constrain, (8e) is the output goal constrain,
PYi , PXi and PRi are the priority factors, z′Yi

, z′xj
and

z′Ri
are the modified specification limits.

For one-side solutions, only the positive or negative
deviance variables will exist and for “close to” speci-
fications both deviance must be considered (Cherif et
al., 2008).

Monte Carlo simulation (MCS)

The simulation principle is based on the logical-
mathematical model construction of the system or
the decision processes to assist in strategic decision-
making. One of the essential considerations in simu-
lation processes is the probability distribution identi-
fication that best fits the data set.
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The main objective of the simulation is to duplicate
the process characteristics and behaviors and to im-
itate the operation by mathematical modeling. Mul-
tiple Probability Simulation (MPS) or Monte Carlo
Simulation (MCS) is a mathematical technique for es-
timating the possible outcomes of an event (Salazar
& Alzate, 2018) that allows evaluating the behavior
of the incident variables within the analyzed problem
to know the uncertain behavior.

MCS is based on the differential principle that in-
creases as a function of the desired accuracy allowing
predict the results further in time with greater preci-
sion. Regardless of the tool used, the MCS consists of
three basic steps:
1. Set up the predictive model.
2. Consider historical data to define a range of prob-

able values to specify the probability distributions
of the independent variables (Xn).

3. Run simulations repeatedly.
The MCS methodology applies to various research

areas since it provides optimal solutions to vari-
ous mathematical problems, allowing experimentation
with samples. Thus, simulation involves generating an
artificial history of the system and monitoring this his-
tory through experimental manipulation. In addition,
it helps to infer the operating characteristics of the
system (Salazar & Alzate, 2018).

Jacobs and Chase (2021) state the MCS reproduces
the values of a variable from its behavior based on the
selection of random numbers. Therefore, the applica-
tion of MCS requires having enough historical infor-
mation to establish the behavior of the variables and
how they affect or are affected by other variables.

MCS provides advantages to predictive models with
fixed inputs, such as calculating input correlations or
performing sensitivity analysis. MCS has been applied
to analyze diverse real-life scenarios, such as project
management, sales forecasting, pricing, and even Ar-
tificial Intelligence (Ji & AbouRizk, 2018).

GP-MCS methodology

The Goal Programming – Monte Carlo Simulation
(GP-MCS) methodology for modeling process quality
control has two main stages with their respective steps
(Fig. 1). The GP-MCS methodology was applied in
a carbonated beverage bottler located in the city of
Medellin (Colombia) and the results are detailed in
the following section.

Results

Results stage 1: Goal programming

Multiple regression analysis and description
of model variables

Carbon dioxide and syrup are the two main raw
materials for producing carbonated beverages and
they are responsible for astringency and flavor, re-
spectively. The amount of Brix degrees of the syrup is
the input variable considered for this study. The two
main quality characteristics of carbonated beverages
are the carbon dioxide content and the Brix degrees.

All variables are controllable and can be directly
measured. The input variable is the sugar concentra-
tion of the syrup, measured as degrees Brix (◦Bx).
The process variables are the beverage temperature
in the carbo-cooler (◦C), the beverage temperature in
the filler (◦C), the filler speed (bottles per minute -
BPM), and the refrigerant suction pressure (PSI). The
output variables correspond to two quality character-
istics of the finished product: the gas content in the
beverage (CO2 volumes) and the Brix degrees of the
beverage (◦Bx). Details of input and process variables
and quality characteristics are in Table 1.

For the multiple linear regression analysis, a pro-
cess capability study was carried out by randomly

Fig. 1. The GP-MCS Methodology stages (Own work)
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Table 1
Description of Model Variables (own work)

Variable Type Variable Target

Input Variable (D) Degrees Brix of Syrup (%) [55.13, 55.33]

Process Variables

(x1) Carbo-Cooler Temperature (◦C)
(x2) Filler Temperature (◦C)
(x3) Filler Speed (BPM)

(x4) Refrigerant Suction Pressure (PSI)

[0, 2]
[2, 4]

[530, 550]
[43, 47]

Output Variable
(Y1) Gas Content (Volumes of CO2)

(Y2) Degrees Brix of Drink (%)
[3.70, 4.00]
[10.35, 10.55]

selecting thirty samples of size four. The models as-
sumptions of linearity, independence, homoscedastic-
ity, normality, and non-collinearity were validated by
calculating the correlation coefficient, the Durbin-
Watson statistic, the Levene statistic, the Anderson-
Darling statistic, and the variance inflation factor, re-
spectively. The matrix with the respective correlation
coefficients between the variables is shown in Table 2.

Table 2
Correlation matrix (own work)

Origin
variable

Destination
variable

Correlation
coefficient

x1 x2 0.1961

x1 x3 –0.2633

x1 x4 –0.0808

x1 D 0.0111

x1 Y1 0.3353

x1 Y2 –0.3911

x2 x3 0.0214

x2 x4 –0.0605

x2 D 0.1147

x2 Y1 0.0535

x2 Y2 –0.3740

x3 x4 0.1070

x3 D –0.1598

x3 Y1 0.0504

x3 Y2 0.1328

x4 R 0.1454

x4 Y1 –0.1907

x4 Y2 0.1110

D Y1 0.1468

D Y2 0.4540

Y1 Y2 –0.2133

Thus, the following relationships were obtained:

Y1 = −17.0745 + 0.3449D + 0.1009x1

− 0.0132x2 + 0.0038x3 − 0.0057x4 , (9)

Y2 = −7.8798 + 0.3313D − 0.0423x1

− 0.0464x2 + 0.0003x3 + 0.0027x4 . (10)

In addition, Table 2 shows the results of the corre-
lation coefficients between the input variable and the
process variables.

Transformation of variables and
modified regression equations

Transformation of variables to obtain one-side spec-
ifications and modify the constant terms in the re-
gression equations according to (5) is shown from
(11) to (17):

D′ = D − 55.13 ≤ 0.2, (11)

x′1 = x1− ≤ 2, (12)

x′2 = x2 − 2 ≤ 2, (13)

x′3 = x3 − 530 ≤ 20, (14)

x′4 = x4 − 43 ≤ 4, (15)

Y ′1 = Y1 − 3.70 ≤ 0.30, (16)

Y ′2 = Y2 − 10.35 ≤ 0.20. (17)

Then, the modified regression equations applying
(7) are the following:

Y ′1 = 2.7702 + 0.3449D′ + 0.1009x′1

− 0.0132x′2 + 0.0038x′3 − 0.0057x′4 , (18)

Y ′2 = 9.9032 + 0.3312D′ − 0.0423x′1

− 0.0464x′2 + 0.0003x′3 + 0.0027x′4 . (19)
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Determination of penalty equation and
constraints

The minimization of the GP problem can be for-
mulated as follows:

min z : PY1

(
δ−Y1

+ δ+Y1

)
+ PY2

(
δ−Y2

+ δ+Y2

)
+Px1

(
δ−x1

+ δ+x1

)
+ Px2

(
δ−x2

+ δ+x2

)
+Px3

(
δ−x3

+ δ+x3

)
+ Px4

(
δ−x4

+ δ+x4

)
+PD

(
δ−D + δ+D

)
. (20)

Subject to:

Input constraint:

D′ + δ−D − δ
+
D = 0.2. (21)

Process constraints:

x′1 + δ−x1
− δ+x1

= 2, (22)

x′2 + δ−x2
− δ−x2

= 2, (23)

x′3 + δ−x3
− δ−x3

= 20, (24)

x′4 + δ−x4
− δ−x4

= 4 (25)

with: ≥ D ≤ 2, x′t ≥ 0, t = [1, 2, 3, 4].

Output constraints:

Y ′1 + δ−Y1
− δ+Y1

= 4; i.e.

0.3449D′ + 0.1009x′1 − 0.0132x′2

− 0.0038x′3 − 0.0057x′4 = 0.3196, (26)

0.3313D′ − 0.0423x′1 − 0.0464x′2

+ 0.0038x′3 + 0.0027x′4 = 0.6468. (27)

The constrain (22) guarantees the fulfillment with
the carbo – cooler temperature target, (23) guarantees
fulfilling with the filler temperature target, (24) guar-
antees to fulfill with the filler speed target, and (25)
guarantees the fulfillment with the refrigerant suction
pressure target.

Solving the Lexicographic GP problem described
in (20), the optimal solution to guarantee the process
capability to meet the target specifications of the re-
sponse variables is D =55.23, x1 =1, x2 =2, x3 =530
and x4 = 43. Moreover, the positive (δ+) and negative
(δ−) deviations of the response variables are equal to
zero and there is a satisfactory solution in Y1 = 3.85
and Y2 = 10.45.

Results Stage 2: Monte Carlo simulation

The results of the stage 1 became in inputs of the
stage 2 (MCS). Thus, the multiple regression equa-
tions obtained in (9) and (10) are used as the mathe-
matical models for running the MCS.

Establishing of probability distributions
The parameters and probability distributions of

the input and process variables were selected from
the initial process capability study. Goodness-of-fit
tests were performed and the Anderson-Darling (AD)
statistic, with a significance level of 0.05, was used to
select the distribution that best fits the data for each
variable (Table 3).

Table 3
Probabilistic Distributions (own work)

Variable Type of
distribution Parameters

D Normal (N) (55.22; 0.1)

x1 Rayleigh (R) (1.01; 0.15)

X2 Exponential (E) (4.38; 0.07)

X3 Beta (B) (1.15; 0.64; 530; 540)

x4 Lognormal (LN) (43; 0.04; 0.14)

Construction of mathematical model
and run simulation

The mathematical models of the MCS are based on
(9) and (10) and presented in (28) and (29). They
consider the correlation coefficients between variables
(Table 2) and the probabilistic distributions (Table 3).
Next, 1000 simulation runs were performed.

Y1 = −17.0745 + 0.3449{D → N [55.22; 0.1]}
+ 0.1009{x1 → R[1.01; 0.15]}
− 0.0132{x2 → E[4.38; 0.07]}
+ 0.0038{x3 → B[1.15; 0.64; 530; 540]}
− 0.0057{x4 → LN [43; 0.04; 0.14]}, (28)

Y2 = −7.8798 + 0.3313{D → N [55.22; 0.1]}
− 0.0423{x1 → R[1.01; 0.15]}
− 0.0464{x2 → E[4.38; 0.07]}
+ 0.0003{x3 → B[1.15; 0.64; 530; 540]}
+ 0.0027{x4 → LN [43; 0.04; 0.14]}. (29)

Fig. 2 and Fig. 3 show the histograms of simulation
results for gas content and degrees Brix, respectively.
The selected reliability percentage for the confidence
intervals is 95%. Thereby, there is a 95% probabil-
ity that the beverage gas volumes are between 3.76
and 3.95 and that the Brix degrees are between 10.37
and 10.56.

These ranges contain the target specifications of
3.85 and 10.45 for gas and Brix, respectively. Further-
more, it was possible to determine the capability to
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Fig. 2. Histogram of simulation results for gas content
(own work)

Fig. 3. Histogram of simulation results for degrees Brix
(own work)

consistently meet the specifications through interval
estimation of the centered capability ratio, Cpk. Thus,
the Cpk estimate for gas is 1.34, ranging from 1.16 to
1.52, and the Cpk estimate for Brix is 0.89, ranging
from 0.76 to 1.02.

A sensitivity analysis was performed to predict
the optimal results of the response variables, Y1 and
Y2, considering uncertainty conditions and using the
Pearson ratio coefficient as the statistic for determin-
ing the strength of the relationship between the vari-
ables (Fig. 4 and Fig. 5).

Fig. 4 shows that the most influential variables on
the gas content are the degrees Brix of syrup and the
degrees Brix of drink. Fig. 5 shows that the degrees
Brix of syrup and the gas content are the variables
that have the highest impact on the degrees Brix of
drink.

Also, all variables are relevant for implementing the
GP-MCS methodology proposed in this work. How-
ever, some variables generate a higher impact on the

Fig. 4. Pearson sensitivity analysis for gas content
(own work)

Fig. 5. Pearson sensitivity analysis for degrees Brix
(own work)

product quality characteristics and compliance with
specifications. So, it is possible to make better deci-
sions for process improvement based on the scenario
analysis regarding the uncertain behavior of the pro-
cess variables.
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Conclusions

GP provides higher flexibility in process modeling
and optimization when there are many variations of
constraints and goal priorities in multi-objective prob-
lems. MCS allows treating uncertainty and perform-
ing risk analysis by creating new models of possible
outcomes by permuting a range of values.

This GP-MCS methodology is a novel approach
in quality control profiling and allows performing a
full mapping of the optimal operating ranges of the
process and response variables. Moreover, it is possi-
ble to probabilistically estimate the process capability
for meeting multiple quality characteristics. The GP-
MCS methodology has a generalized approach that
allows its application in other types of industrial pro-
cesses or services.

The main contribution of this work is the imple-
mentation of a lexicographic model using optimiza-
tion and simulation tools for solving complex product
and process quality profiling problems. This issue is a
relevant research avenue in Quality Engineering in the
current context of the fourth industrial revolution.

Future work will focus on the application of the
tool in other business sectors and the integration of
multi-objective optimization and artificial intelligence
tools.
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