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Results on the controllability of Caputo’s fractional
descriptor systems with constant delays
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Abstract. The paper investigates the controllability of fractional descriptor linear systems with constant delays in control. The Caputo fractional
derivative is considered. Using the Drazin inverse and the Laplace transform, a formula for solving of the matrix state equation is obtained. New
criteria of relative controllability for Caputo’s fractional descriptor systems are formulated and proved. Both constrained and unconstrained
controls are considered. To emphasize the importance of the theoretical studies, an application to electrical circuits is presented as a practical
example.
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1. INTRODUCTION
Differential calculus of fractional order is the field of mathemat-
ics that is developed most rapidly in the 21st century. With the
rapid development of modern science and technology, it turns
out that the theory of fractional differential calculus, as a new
theoretical basis and mathematical tool, contributes to the de-
velopment of many scientific fields [1–4]. One of the reasons
for using fractional operators in the description of real pro-
cesses is their nature of inheritance. It is particularly suitable
for describing many physical processes, such as viscoelastic
systems [5], heat flow models [6], ultracapacitor models [7],
epidemiological models [8] and so on, with memory character-
istics and some historical dependencies. Many the systems are
descriptor (singular) systems, see also [9–13].

The study of controllability is a fundamental issue in con-
trol theory. Controllability of fractional-order linear control sys-
tems has been studied in many monographs and papers [14–19].
However, for many processes, the final state depends not only
on the input data of the system, but also on past states and con-
trols. This nonlocal property means that the equations describ-
ing the processes contain delays in the state or control. Because
of the multitude of mathematical models describing systems
with delays in control, the study of the controllability of such
control systems seems particularly important. The controllabil-
ity issues for continuous fractional-order systems with delayed
control were investigated in [20–28], among others.

The Drazin matrix has rarely been applied to study the con-
trollability of continuous fractional control systems. Control-
lability and observability for linear fractional systems with-
out delays were considered in [29], the existence of solution
for fractional-order descriptor systems was derived in [30], the
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minimum energy control of descriptor fractional-order systems
was studied [31], sliding-mode control for nonlinear fractional-
order systems was studied in [32]. Thus, the goal of the paper
is to investigate controllability issues for linear continuous-time
Caputo’s descriptor systems with constant delays in the control,
to find the solution of the state equation as well as to give cri-
teria for the controllability of the systems with constrained and
unconstrained controls.

The structure of the paper is as follows. Section 2 contains
basic formulas and definitions needed in this study. It also ex-
plains the notation used. Section 3 presents the mathematical
model of the studied Caputo’s descriptor systems with delays
in control. The solution of the discussed fractional matrix dif-
ferential equation is derived. The main results of the study –
new controllability criteria – are given in Section 4. Section 5
provides a practical example to illustrate the theoretical results.
Finally, concluding remarks are made in Section 6.

2. PRELIMINARIES
This section introduces some definitions of basic terms that will
be used in later sections, and indicates some notations used
throughout the paper.

For the system description we use the Caputo fractional
derivative. Using the Caputo derivative we ensure that the
Cauchy conditions for differential equations of fractional order
are similar to those for the case of integer order, which makes
them interpretable in the same way [1].

Definition 1. If f : R+→R, α ∈ 〈n−1,n), n∈N, and Γ stands
for the gamma function, then

CDα f (t) =
1

Γ(n−α)

t∫
0

f (n)(η)

(t−η)α−n+1 dη , (1)

is called the Caputo fractional derivative of order α , provided it
exists.
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In the search for solutions for differential equations of frac-
tional order, the one- and two-parameter Mittag-Leffler func-
tions Eα , Eα,β are of essential importance. They are defined as

Eα(z) =
+∞

∑
k=0

zk

Γ(αk+1)
, z ∈ C, α > 0, (2)

and

Eα,β (z) =
+∞

∑
k=0

zk

Γ(αk+β )
, z ∈ C, α > 0, β > 0. (3)

On the basis of the Mittag-Leffler functions the following
matrices can be defined [4, 15].

Definition 2. Let A be a square system matrix of CDα(t) =
Ax(t), α > 0. The matrix

Φ0(t) = Eα(Atα) =
+∞

∑
k=0

Aktkα

Γ(kα +1)

is called the pseudo-transition matrix of the system. Moreover,

Φ(t) = tα−1Eα,α(Atα)

= tα−1
+∞

∑
k=0

Aktkα

Γ((k+1)α)
.

It follows from Definition 2 that for α ∈ (0,1),

Φ0(t) =
t−α

Γ(1−α)
Φ(t).

The following two definitions will also be helpful in further
considerations.

Definition 3. [33] Let A be a n-th order square matrix of com-
plex variable. The index of A (Ind(A)) is the smallest number
q ∈ N∪{0} such that

rank(Aq) = rank(Aq+1).

Definition 4. [34] The unique solution of all the following
equations
1. AX = XA
2. XAX = X
3. XAq+1 = Aq, where q = Ind(A).

is called the Drazin inverse of A. It is denoted as AD.

Remark 1. Given a square matrix A, its Drazin inverse AD ex-
ists uniquely, and assuming detA 6= 0, we have AD = A−1.

Other notations used in the paper are: Rm – the real vector
space of dimension m, L2

loc(〈0,+∞),Rm) – the space of locally
square integrable functions with values in Rm, Mn×n(R) – the
set of n-th order matrices with real entries.

3. SYSTEM DESCRIPTION
Consider linear fractional-order descriptor systems with con-
stant delays in control functions. The systems are described by
the matrix differential state equation with the Caputo derivative
as follows

E CDα x(t) = Ax(t)+
M

∑
i=0

Bi u(t−hi), t ≥ 0, (4)

where: α ∈ (0,1), x(t) ∈ Rn is the pseudo-state vector,
u(t)∈Rm is the input vector (control), u ∈ L2

loc(〈0,+∞),Rm),
E ∈ Mn×n(R) is singular (det E = 0) with rank ne < n,
A ∈Mn×n(R), for each i = 0,1, . . . ,M, Bi ∈Mn×m(R), and
hi : 〈0, t1〉 → R, i = 0,1 . . . ,M, are such constant delays, that
∀i=0,1...,M−1 hi < hi+1.

For the system (4) the initial complete state z(0)= {x(0),u0},
where ut(s) = u(s) for s ∈ 〈t−hM, t), is considered.

In the case of α ∈ (0,1), n = 1, thus

CDα x(t) =
1

Γ(1−α)

t∫
0

x′(η)

(t−η)α
dη ,

where x′(t) =
dx
dt

.

We assume that for the singular matrix E the pencil (E,A)
of the fractional control system (4) is regular, i.e. there exists
s ∈ C such that

det[Esα −A] 6= 0.

Thus, let us select a number se ∈C for which det[Esα
e −A] 6=

0. Then [Esα
e −A] has the inverse [Esα

e −A]−1. Premultiplying
the equation (4) by the inverse, we obtain

[Esα
e −A]−1 E CDα x(t) = [Esα

e −A]−1 Ax(t)

+
M

∑
i=0

[Esα
e −A]−1 Bi u(t−hi).

Introducing the following denotation

Ẽ = [Esα
e −A]−1 E, Ã = [Esα

e −A]−1 A,

B̃i = [Esα
e −A]−1 Bi

(5)

for i = 0,1 . . . ,M, we have

Ẽ CDα x(t) = Ãx(t)+
M

∑
i=0

B̃i u(t−hi). (6)

Remark 2. The fractional differential equations (4) and (6) are
equivalent, which means that the solution x = x(t) for (4) is also
the solution for (6).

There exist (and are unique) the Drazin inverses ÃD and ẼD

of the matrices Ã and Ẽ, respectively.

Lemma 1. [30, 34] For Ã and Ẽ given by the formulas (5), all
the following conditions hold
1. ÃẼ = ẼÃ, ÃDẼ = ẼÃD, ÃẼD = ẼDÃ, ÃDẼD = ẼDÃD,
2. ker Ã∩ker Ẽ = {0},
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3. Ẽ =C

[
F 0
0 N

]
C−1, ẼD =C

[
F−1 0

0 0

]
C−1

where detC 6= 0, F ∈Mn1×n1(R) and detF 6= 0,
N ∈Mn2×n2(R) is nilpotent, n1 +n2 = n,

4. (In− ẼẼD)ÃÃD = In− ẼẼD, (In− ẼẼD)(ẼÃD)q = 0,
where In ∈Mn×n(R) – the identity matrix, q = Ind(Ẽ).

The next theorem gives the solution for the fractional differ-
ential equation (4).

Theorem 1. For any admissible control function
u ∈ L2

loc(〈0,+∞),Rm) there exists a unique solution x = x(t) of
the state equation (4) given by

x(t) = Φ̂0(t)ẼẼD
ν + ẼD

t∫
0

Φ̂(t−η)
M

∑
i=0

B̃i u(η−hi)dη

+
(

ẼẼD− In

)q−1

∑
k=0

(
ẼÃD

)k
ÃD

M

∑
i=0

B̃i u(kα)(t−hi), t ≥ 0, (7)

where ν ∈ Rn is an arbitrary vector,

q = Ind(Ẽ), u(kα)(t) = CDkα u(t), Φ̂0(t) =
+∞

∑
k=0

(ẼDÃ)ktkα

Γ(kα +1)
, and

Φ̂(t) =
+∞

∑
k=0

(ẼDÃ)kt(k+1)α−1

Γ((k+1)α)
.

Proof. To prove that x = x(t) given by (7) is the solution of
(4) we will apply Remark 2. We will prove that the function
x = x(t) is the solution of the matrix differential equation (6).
We substitute (7) into equation (6), then we apply properties of
the Caputo fractional derivative, Definition 2 for matrices Ẽ and
Ã, and Lemma 1. Hence, we have

Ẽ CDα x(t) = Ẽ CDα

[
Φ̂0(t)ẼẼD

ν

+ ẼD
t∫

0

Φ̂(t−η)
M

∑
i=0

B̃i u(η−hi)dη

+ (ẼẼD− In)
q−1

∑
k=0

(ẼÃD)kÃD
M

∑
i=0

B̃i u(kα)(t−hi)

]

= Ẽ CDα [ẼẼD
ν ]+ Ẽ CDα

[
+∞

∑
k=0

(ẼDÃ)ktkα

Γ(kα +1)
ν

]

+ Ẽ CDα

ẼD
t∫

0

(t−η)α−1

Γ(α)

M

∑
i=0

B̃i u(η−hi)dη

+ ẼD
t∫

0

+∞

∑
k=0

(ẼDÃ)k+1(t−η)(k+2)α−1

Γ((k+2)α)

M

∑
i=0

B̃i u(η−hi)dη


+ Ẽ CDα

[
(ẼẼD− In)

q−1

∑
k=0

(ẼÃD)kÃD
M

∑
i=0

B̃i u(kα)(t−hi)

]

=
+∞

∑
k=0

Ẽ(ẼDÃ)k+1tkα

Γ(kα +1)
v

+ ẼD
M

∑
i=0

B̃i u(η−hi)+(ẼD)2Ã
t∫

0

Φ̂(t−η)
M

∑
i=0

B̃i u(η−hi)dη

+(ẼẼD− In)
q−1

∑
k=0

(ẼÃD)kÃD
M

∑
i=0

B̃i u(kα)(t−hi)

= A

Φ̂0(t)ẼẼDv+ ẼD
t∫

0

Φ̂(t−η)
M

∑
i=0

B̃i u(η−hi)dη

+ (ẼẼD− In)
q−1

∑
k=0

(ẼÃD)kÃD
M

∑
i=0

B̃i u(kα)(t−hi)

]

+
M

∑
i=0

Bi u(t−hi),

since the Caputo derivative keeps the Mittag-Leffler function
invariant, CDα [ẼẼDν ] = 0, Ẽ(ẼDÃ)k+1 = Ãk+1(ẼD)k, Φ̂(t) =
+∞

∑
k=0

(ẼDÃ)kt(k+1)α−1

Γ((k+1)α)
=

tα−1

Γ(α)
+

+∞

∑
k=0

(ẼDÃ)k+1(t−η)(k+2)α−1

Γ((k+2)α)
,

and the fourth item of Lemma 1 holds.
This proves that the function x = x(t) defined by (7) satisfies

equation (6). Moreover, for t = 0 in (7) we have

x(0) = ẼẼD
ν

+
(

ẼẼD− In

)q−1

∑
k=0

(
ẼÃD

)k
ÃD

M

∑
i=0

B̃i u(kα)(0−hi) (8)

for an arbitrary vector ν ∈ Rn, where
M

∑
i=0

u(kα)(−hi) = u0. This

means that initial conditions z(0) = {x(0),u0} should satisfy
the equality (8). Especially, for u0 = 0 we obtain x(0) = ẼẼDν ,
hence x(0) is an element of the image of ẼẼD.

Definition 5. A set

K(t) =
{

x(t) ∈ Rn : x(t) = Φ̂0(t)ẼẼD
ν

+ ẼD
t∫

0

Φ̂(t−η)
M

∑
i=0

B̃i u(η−hi)dη

+(ẼẼD− In)
q−1

∑
k=0

(ẼÃD)kÃD
M

∑
i=0

B̃i u(kα)(t−hi)

}
(9)

for some ν ∈Rn, is said to be the attainable set for the fractional
system (4).

4. CONTROLLABILITY CRITERIA
In fractional differential systems, the so-called memory effect
occurs. It refers to the fact that the output of such systems at a
given time depends not only on the current input, but also on
the past inputs and outputs of the system. In other words, the
behavior of the system is affected by its history. This effect is
a consequence of the nonlocal nature of fractional derivatives,
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which involve integrals of the input signal over a time interval,
not just the current time.

In case of delays in control systems, the so-called relative
controllability is taken into account. Thus, in this paper we con-
sider relative controllability on an 〈0, t1〉. This means that the
goal is to determine a control u that will take the considered
system from the initial state z(0) = (x(0),u0) to a final state
x = x(t1). Necessary definitions are presented below.

Definition 6. If for any complete initial state
z(0) = (x(0),u0) and any vector x̂ ∈ Rn there exists a control
û ∈ L2

loc(〈0,+∞),Rm) for which

x(t1) = x(t1,z(0), û) = x̂,

then Caputo’s fractional descriptor system (4) is called rela-
tively controllable on 〈0, t1〉.

In particular, we say about null controllability as defined be-
low.

Definition 7. If for any complete initial state z(0) = (x(0),u0)
there exists a control û ∈ L2

loc(〈0,+∞),Rm) for which the solu-
tion of (7) at t = t1 is

x(t1) = x(t1,z(0), û) = 0,

then Caputo’s fractional descriptor system (4) is called rela-
tively null controllable on 〈0, t1〉.

If control values are bounded, that is u(t) ∈U ⊂Rm, the sys-
tem is called relatively null U-controllable.

The memory effect of fractional systems can be understood
in terms of the Mittag-Leffler function which appears in the
solution of fractional differential equations. This function de-
scribes the decay of the system response over time, and its prop-
erties depend on the order of the fractional derivative and the
initial conditions of the system. Linear fractional systems can
exhibit long-tail effects depending on the nature of the system
and the input signal. The long-tail effect can occur when the
system has poles close to the imaginary axis or when it has a
large number of poles with small damping coefficients. For this
reason, for very general cases, the definitions of controllability
and, in particular, null controllability are generalized (see [35]),
taking into account the possibility of the occurrence of the long-
tail effect.

Remark 3. The Kalman-type rank condition presented in this
paper is based on the Mittag-Leffler function and the controls
are sufficiently smooth to ensure controllability in a given inter-
val in terms of Definition 6 and Definition 7. There is no need
to generalize the definitions.

Using the substitution rule and the properties of definite in-
tegrals, we rewrite (7) as follows

x(t) = Φ̂0(t)ẼẼDv+
M

∑
i=0

t−hi∫
−hi

ẼD
Φ̂(t−η−hi)B̃i u(η)dη

+ (ẼẼD− In)
q−1

∑
k=0

(ẼÃD)kÃD
M

∑
i=0

B̃i u(kα)(t), t ≥ 0. (10)

To formulate controllability criteria, we first define the fol-
lowing matrix

WE(0, t)=
M

∑
i=0

t−hi∫
−hi

ẼD
Φ̂(t−η−hi)B̃iB̃T

i Φ̂
T (t−η−hi)(ẼD)T dη ,

where the symbol T means the transpose.

Theorem 2. The descriptor fractional system (4) is relatively
controllable on 〈0, t1〉 if and only if

rankWE(0, t1) = n. (11)

Proof. (⇒) Let the descriptor system (4) be relatively control-
lable on 〈0, t1〉. Assume that rankWE(0, t1) < n. It follows that
WE(0, t1) is singular. It follows that there is a nonzero vector x̃,
such that

x̃TWE(0, t1)x̃ = 0,

that is

M

∑
i=0

t−hi∫
−hi

x̃T ẼD
Φ̂(t−η−hi)B̃iB̃T

i Φ̂
T (t−η−hi)(ẼD)T x̃dη = 0.

Thus, for t ∈ 〈0, t1〉, we have

x̃T ẼD
Φ̂(t1− t−hi)B̃i = 0. (12)

Since the system (4) is controllable, it can be steered from z0
to any final state x(t1) ∈Rn. Therefore, there exists a control u0
that takes the system from the initial state z0 to zero, namely

0 = ẼDx(t1) = ẼD
Φ̂0(t)ẼẼDv

+ ẼD
M

∑
i=0

t−hi∫
−hi

ẼD
Φ̂(t−η−hi)B̃i u0(η)dη . (13)

Furthermore, there exists a control ũ that takes the system (4)
from the initial state z0 to the state x̃, hence

ẼDx̃ = ẼD
Φ̂0(t1)ẼẼDv

+ ẼD
M

∑
i=0

t−hi∫
−hi

ẼD
Φ̂(t−η−hi)B̃i ũ(η)dη . (14)

Comparing the equalities (13)–(14), it follows that

ẼDx̃− ẼD
M

∑
i=0

t−hi∫
−hi

ẼD
Φ̂(t−η−hi)B̃i [ũ(η)−u0]dη = 0.

Next we multiply the above equality by x̃T and apply (12). We
find that ẼDx̃T x̃ = 0 and thus x̃ = 0. It contradicts the assump-
tion. We proved that the WE(0, t1) is nonsingular, and hence
rankWE(0, t1) = n.
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(⇐) To prove the sufficient condition, we take any complete
initial state z(0) = {x(0),u0} of the fractional system (4) and
any vector x1 ∈ Rn. By the assumption WE(0, t1) = n, WE(0, t1)
is nonsingular. Thus, there exists W−1

E (0, t1). Let us consider a
control

ũ(t) = ẼDB̃T
i Φ̂

T (t1− t−hi)
(
ẼD)TW−1

E (0, t1)

·
(
−ED

Φ̂0(t)ẼẼD
ν
)

for a given vector ν ∈Rn. We will prove that the control defined
above takes the system (4) to the final state x(t1)= x

(
t1,z(0), ũ

)
.

From Theorem 1 and properties of the Drazin inverse it follows
that

ẼDx(t1) = ẼD
Φ̂0(t1)ẼẼDv

+
M

∑
i=0

t1−hi∫
−hi

ẼD
Φ̂(t1−η−hi)B̃i u(η)dη .

Therefore, for the control ũ(t) defined above we have

ẼDx(t1) = ẼD
Φ̂0(t1)ẼẼDv

+WE(0, t1)W−1
E (0, t1)

(
−ẼD

Φ̂0(t)ẼẼDv
)
= 0.

Premultiplying both sides by ÃD, we have

ÃDẼDx(t1) = 0.

From Lemma 1(1) implies, that ẼDx(t1)∈ ker ÃD and ÃDx(t1)∈
ker ẼD. Since ker ÃD ∩ ker ẼD = {0}, it follows that x(t1) = 0.
Hence, Caputo’s fractional system (4) is relatively controllable
on 〈0, t1〉.

Next, we consider constraints put on the control values, i.e.,
u(t) ∈ U ⊂ Rm. To formulate a criterion for constrained con-
trols, we introduce the asymptotic stability condition for linear
descriptor systems of fractional order.

Lemma 2. [36] Assume that spec(E,A) = {λ ∈ C :
det(Eλ α −A) = 0} is a set of finite modes for the pair (E,A).
The descriptor fractional systems (4) is asymptotically stable if

|arg
(
spec(E,A)

)
|> α

π

2
. (15)

Theorem 3. Assume that U is a convex and compact subset of
Rm and 0 ∈ intU . If

rankWE(0, t1) = n (16)

and the pair (E,A) satisfies the condition (15), then Caputo’s
descriptor system (4) is relatively null U-controllable on 〈0, t1〉.

Proof. Let rankWE(0, t1) = n. Hence, based on Theorem 2, the
descriptor system (4) without constraints is relatively control-
lable on 〈0, t1〉. Moreover, if the pair (E,A) satisfies condi-
tion (15), then the system (4) is asymptotically stable accord-
ing to Lemma 2. We will show that it can be steered to 0 ∈ Rn

in finite time. Since u ∈ L2
loc(〈0,+∞),Rm, U is a convex and

compact subset of Rm and 0 ∈ intU , the attainable set K(t) de-
fined by (9) also is convex and compact and 0 ∈ intK(t). Due
to the asymptotic stability of the system (4), x = 0 is the solu-
tion of (4) for the control u(t) = 0. By means of this null con-
trol, the system is steered into a neighborhood N(0) of 0 ∈ Rn,
i.e. x(t,z(0),0) ∈ N(0) and lim

t1→+∞
x(t1,z(0),0) = 0. Thus, it is

possible to control any state x(t1,z(0),0) of the fractional de-
scriptor system (4) to 0 ∈ Rn. This proves the relative null U-
controllability on 〈0, t1〉.

5. PRACTICAL EXAMPLE
In this section, real-life system modeled by Caputo’s fractional
singular equation (4) is presented as possible applications of the
obtained theoretical results. The system is an electrical circuit
which scheme is presented in Fig. 1.

Fig. 1. Electrical circuit

The fractional electrical circuits are a generalization of the
classical circuits. The fractional time components change the
time constant and affect the transient response of the system.
For example, it was proved in [37] that the obtained fractional
differential system better describes the measurement of electri-
cal impedance spectroscopy. The model of resistance, induc-
tance, capacitance circuit using the fractional derivative is pre-
sented in [38]. For more details, see also [39–41].

In many electrical circuit applications, there are delays in
state or control. A delay(s) of a few seconds or minutes may
be required to ensure proper circuit operation, where without a
specified delay the circuit could malfunction or even get dam-
aged.

Example 1. Suppose that an electrical circuit presented in
Fig. 1 is considered. A resistance R and capacitances C1, C2,
C3 are given constants. Also, we have constant delay h, and the
current voltage sources (controls) e1, e2, for 0 < α < 1.

The equations describing the system can be derived from
Kirchhoff’s laws as follows

e1(t) = RC1
CDα x1(t)+ x1(t)+ x3(t),

e2(t−h) = x2(t)+ x3(t),

C1
CDα x1(t)+C2

CDα x2(t)−C3
CDα x3(t) = 0.
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Hence, the matrix state equation has the form

E CDα x(t) = Ax(t)+B0u(t)+B1u(t−h), (17)

for t ≥ 0 and u(t) ∈ 〈0,+∞), where

x(t) =

x1(t)
x2(t)
x3(t)

 , u(t) =

[
e1(t)
e2(t)

]
,

E =

RC1 0 0
0 0 0

C1 C2 −C3

 , A =

−1 0 −1
0 −1 −1
0 0 0

 ,

B0 =

1 0
0 0
0 0

 , B1 =

0 0
0 1
0 0

 .
Therefore, we get the descriptor fractional system (4) that has

a regular pencil of the pair (E,A), because detE = 0 and

det[Esα −A] = det

RC1sα +1 0 1
0 1 1

C1sα C2sα −C3sα


=−(RC1sα +1)(C3sα +C2sα)−C1sα .

Taking specific values of constants, for example R= 10, C1 = 1,

C2 = 1, C3 = 1 with delay h= 1 and α =
1
2

, on the interval 〈0,2〉
we have

WE(0,2)=
1

∑
i=0

2−hi∫
−hi

ẼD
Φ̂(2−η−hi)B̃iB̃T

i Φ̂
T (2−η−hi)

(
ẼD)T dη ,

where h0 = 0 and h1 = h. Let us find the matrices Ẽ, Ã and

B̃i. Taking se = 1 we have det
[

Es
1
2
e −A

]
=−23 6= 0. Therefore

there exists the inverse

[
Es

1
2
e −A

]−1

=

11 0 1
0 1 1
1 1 −1


−1

=
1
23

 2 −1 1
−1 12 11
1 11 −11

 .
In consequence,

Ẽ =
1

23

21 1 −1
1 11 −11
−1 11 11

 , Ã =
1

23

−2 1 −1
1 −12 −11
−1 −11 −12


and

B̃0 =
1

23

 2 0
−1 0
1 0

 , B̃1 =
1

23

0 −1
0 12
0 11

 .

Finally,

ẼD =
1

23


11

230
− 1

230
0

0
1

22
1

22
1

230
− 58

1265
1

22


and, since n = 3,

Φ̂(t) =
2

∑
k=0

(
ẼDÃ

)k
t

1
2 (k−1)

Γ

(
1
2
(k+1)

) .

With the help of the MATLAB environment we get

rankWE(0,2) = rank

 2∫
0

ẼD
Φ̂(2−η)B̃0B̃T

0 Φ̂
T (2−η)

(
ẼD)T dη

+

1∫
−1

ẼD
Φ̂(1−η)B̃1B̃T

1 Φ̂
T (1−η)

(
ẼD)T dη

= 3.

It follows that for given data the system is controllable on the
time interval 〈0,2〉.

6. CONCLUDING REMARKS
Linear Caputo’s fractional descriptor systems with constant de-
lays in control and their application to electrical circuits were
studied in the paper. It was proved that the solution of the dis-
cussed systems has the form (7). For this purpose the method of
Laplace transformation and Drazin inverse were applied (Theo-
rem 1). New relative controllability criteria for the discussed de-
scriptor systems with delays were established and proved. Both
constrained (Theorem 3) and unconstrained (Theorem 2) con-
trols were considered. Practical application of the theoretical re-
sults was proposed. Further work could focus on extending the
study for positive linear descriptor systems of fractional order.
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