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Abstract: Polar snow and its accumulation preserve valuable information derived from the 
atmosphere on past climate and environmental changes in high resolution, particularly in 
coastal sites. A 2.5-m snow-pit was excavated from the coastal ice rise (Moore Dome) near 
Amundsen Sea region in February 2012. This study evaluated the isotopic and chemical 
compositions in the snow-pit and compared them with meteorological variables. Based on 
the seasonal peaks of the MSA and nssSO4

2– together with δ18O, δD, and d-excess, the 
snow-pit record was corresponded to accumulation during austral winter 2011 to summer 
2011/2012. The annual mean accumulation rate was assumed thus to be as large as or even 
higher than 1.03 m w.e. yr–1 at this site. A relatively warm winter temperature in 2011 was 
traceable in the variations of δ18O, δD, and d-excess. This study emphasizes the importance 
of the high snow accumulation observed at this site in providing valuable information on 
sub-annual variations in climate and environmental changes through the study of longer ice 
cores.  
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Introduction 

Snow-pits, firn cores, and ice cores provide us with excellent records of the 
past climate and environment from Antarctica where instrumental and 
meteorological data are rare and short (Jouzel et al. 2007; Sinclair et al. 2010; 
Klein et al. 2019). The chemical and isotopic components of snow-pits and ice 
cores give us insights to past climatic and atmospheric conditions, and changes in 
sources of water vapor or aerosol (Delmotte et al. 2000; Stenni et al. 2000; 
Sinclair et al. 2010; Rhodes et al. 2012; Tuohy et al. 2015). Significant 
environmental and climatic changes have been observed in the Antarctic regions 
over the past decades (Parkinson and Cavalieri 2012; Sinclair et al. 2014; 
Raphael et al. 2016; Swetha Chittella et al. 2022). The Antarctic regions are 
increasingly acknowledged as vital and dynamic components of the Earth's 
climate system due to their pivotal role in interaction with atmosphere, 
hydrosphere, biosphere, and cryosphere systems. 

The Amundsen Sea sector of West Antarctica is a critical site in terms of the 
rapid ice loss, particularly for the flowing glaciers in the Amundsen Sea 
Embayment due to the intrusion of warm circumpolar deep water through the 
base of coastal ice shelves coupling with variabilities in regional atmospheric 
circulation (Dinniman et al. 2012; Mouginot et al. 2013). The regional 
atmospheric circulation is highly dependent on the strength and location of the 
low-pressure center over Amundsen Sea sector, i.e., Amundsen Sea Low (ASL) 
(Fogt et al. 2012), which makes this region experience more variable atmospheric 
circulation than any other regions (Connolley 1997) in Antarctica. The change of 
the ASL is further influenced by the Southern Annular Mode (SAM) (Turner 
et al. 2017). Thus, there is particular interest in the linkage between surface mass 
balance and changes in pressure systems in the Ross-Amundsen and 
Bellingshausen Sea sectors. In addition, the Southern Hemisphere polar jet is 
strongly tied to the pattern of the SAM (Fogt et al. 2012). Particularly, the 
strengthening of westerly wind linked to the positive phase of SAM affects the 
mass balance of the coastal Antarctica (Zwally et al. 2021). Moreover, the multi- 
decadal changes in Antarctic surface mass balance are controlled by the 
combination of SAM and El Ninõ-Southern Oscillation (Kim et al. 2020). 

A recent numerical study of the West Antarctic Ice Sheet (Feldmann and 
Levermann 2015) reported that a complete disintegration of the West Antarctic 
marine ice-sheet will be taking place on a millennial timescale, leading to raise of 
the global sea level by at least 3 m, if the Amundsen Sea Sector is destabilized, 
which is in play. The consequent widespread thinning may cause the ice divides 
to migrate into the drainage basins of the Filchner-Ronne and Ross ice shelves, 
eventually inducing destabilization of those ice shelves. Another important 
information characterizing the Amundsen Sea sector is snow accumulation 
records from ice core, revealing spatio-temporal trends in ice-sheet mass-balance 
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in the region (Thomas et al. 2017), that correlates with sea ice extension 
(Winstrup et al. 2019). 

Ice coring in coastal Antarctic areas is an emerging research subject in recent 
years in the context of ice-ocean-atmospheric interactions (Neff 2020; Mulvaney 
et al. 2021). In particular, regions like the coasts of Amundsen and 
Bellingshausen seas, that are closer or central to the warming and melting 
locations, are recommended for additional records (Steig and Neff 2018). Ice 
rises and ice rumples are features that are locally elevated and grounded within or 
in the margins of ice shelves or ice streams (Matsuoka et al. 2015). In general, the 
snow accumulation rate is high in the coastal sites and the ice flow on the ice 
rises is usually slow. This unique glaciological setup facilitates the sites in better 
preserving records of past deglaciation, climate, and ice flow dynamics 
(Matsuoka et al. 2015). Additionally, obtaining ice cores from coastal regions 
is more favorable in terms of logistical challenges compared to extracting long 
ice cores from inland sites (Matsuoka et al. 2015; Vega et al. 2016). Although 
there are potential local influences on the snow accumulation in ice rises (Vega 
et al. 2016), the ice core records from the sites can serve as a tracer for past 
atmospheric circulation (Emanuelsson et al. 2018). Additionally, the analysis of 
water stable isotopes in ice cores from West Antarctica can provide insights into 
temperature and the origins of moisture (Steig et al. 2013). 

A site-based evaluation of isotopic and chemical compositions in present-day 
snow is important to interpret the paleoclimate records from ice cores (Stenni 
et al. 2000; Tuohy et al. 2015; Stenni et al. 2017). Thus, there is a need to 
improve site-based records in Antarctica due to the significant spatial and 
temporal variabilities in snow accumulation and air temperature (Masson- 
Delmotte et al. 2008; Yang et al. 2018) and the sparse instrumental data (Stenni 
et al. 2000; Tuohy et al. 2015). This study aims to characterize the isotopic and 
ionic compositions of snow deposited in seashore near the Amundsen Sea sector. 
High snow accumulation in the coastal site reveals more high-resolution 
information in the chemical and isotopic compositions in the snow-pit. Thus, this 
study can serve as a background investigation for future studies on longer ice 
cores. 

Materials and methods 

Study area and sampling. — A 2.5-m deep snow-pit was excavated from 
the top of the Moore Dome (74°21´45.6˝S, 111°20´54.0˝W) in Bear Peninsula, 
West Antarctica on February 17–19, 2012, during the Amundsen Sea expedition 
by Korea Polar Research Institute (KOPRI) (Fig. 1). Bear Peninsula is in the 
central location of the Amundsen Sea Embayment and adjacent to the Dotson ice 
shelf and the north-west side of the Thwaites Glacier (Johnson et al. 2017). 
Particularly, the Thwaites Glacier is of special interest because it is the second 

Snow accumulation on Moore Dome ice rise 367 



largest marine ice stream in West Antarctica (Sutterley et al. 2014). Specifically, 
the Thwaites grounding zone retreated at a rate of >2.1 km yr–1 and is further 
projected to retreat rapidly (Graham et al. 2022). Moreover, continuous ice 
loss has been observed in the Crosson and Dotson ice shelves since the 1990s 
(Lilien et al. 2018). The sub-ice sediments also showed the fingerprints of the ice 
stream of the Thwaites and the Pine Island Glaciers (Pereira et al. 2020). 
Generally, the snow accumulation rate is high in the coastal sites and the ice flow 
on the ice rises is usually slow (Scarchilli et al. 2011; Matsuoka et al. 2015). Ice 
rise records will provide high resolution information on atmospheric and oceanic 
conditions in coastal areas (Matsuoka et al. 2015; Vega et al. 2016), and thus 
would provide a good background for long-term climate variability based on 
modern observations. 

The site is a dome-shaped ice rise ca. 20 km from the seashore of the 
Amundsen Sea embayment. The ice thickness was estimated to be >300 m based 
on the GPR survey (Mala ProEX system with RTA 50 MHz antenna) with an ice 

Fig. 1. Location of the snow-pit (red rhombus symbol) at Moore Dome ice rise in Bear Peninsula, 
West Antarctica is shown (A, B, C). Ice rises contoured in orange and maps are generated by the 
Quantarctica GIS package (Matsuoka et al. 2015, 2021). Ice flow speed map (MEaSUREs InSAR- 
based Antarctica Ice Velocity Map, version 2, 450 m resolution) (Rignot et al. 2011, 2017; 
Mougnot et al. 2012, 2017), RAMP2 virtual elevation model (200 m) (Liu et al. 2015) with 
CryoSat-2 elevation contours (100 m) (Helm et al. 2014) are shown. The snow-pit sampling 
procedure is shown (D). 
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velocity of 0.16 m s–1. Annual mean air temperature is –12.7°C, ranging between 
–44.0°C and 4.8°C, based on the temperature record from Bear Peninsula 
automatic weather station (AWS) from 2011 to 2021 (Antarctic Meteorological 
Research and Data Center 2021). The prevailing winds are directed from the east 
(22.5% of total counts), north (21.4% of total counts), and southeast (18.4% of 
total counts), based on the AWS observations during the period from 2011 to 
2017. Moreover, the mean wind speed was recorded to be <10 m s–1 (73.8% of 
total counts) based on the observations during the period from 2011–2016 
(Antarctic Meteorological Research and Data Center 2021). 

Snow-pit was sampled ca. 200 m away from the Moore Dome camp to 
minimize the influence of human activities during field activity period. The wall 
of the snow-pit was removed using precleaned low-density polyethylene (LDPE) 
shovels. A total of 50 samples was obtained with 5 cm resolution. During the 
field work, snow densities and temperatures were measured every 5 cm and 
10 cm, respectively (Fig. 2). Samples were collected into precleaned 

Fig. 2. Vertical profiles of snow temperature and density in the Moore Dome snow-pit. 
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polyethylene containers and transported to KOPRI in South Korea. The sampling 
procedure was designed to prevent sample contamination followed the procedure 
of Kwak et al. (2015). The snow samples were stored below –20°C until melting 
prior to chemical analysis. 

Analytical methods and data analysis. — The snow samples were melted at 
room temperature and analyzed for water isotopes (δ18O and δD) by a cavity 
ring-down laser-spectroscopy (L1102-i, L2130-i; Picarro Inc., USA) at KOPRI. 
The δD and δ18O express the relative ratios of D/H and 18O/16O in the sample to 
those in the Vienna Standard Mean Ocean Water (VSMOW), respectively. The 
standard materials including VSMOW, Greenland Ice Sheet Precipitation, and 
Standard Light Antarctic Precipitation from the International Atomic Energy 
Agency were used for calibration. Moreover, an in-house reference prepared 
from Antarctic snowmelt (−34.69‰ for δ18O and −272.30‰ for δD) was 
measured every 10 samples to monitor the operation of the analyzer (Kim et al. 
2022). The analytical reproducibility was < 0.1‰ and < 1‰ for δ18O and δD, 
respectively. The deuterium excess (d-excess, δD=8×δ18O–10), which represents 
the deviation from the global meteoric water line (GMWL), was also estimated 
(Craig 1961). Ions (Na+, K+, Ca2+, Mg2+, NH4

+, Cl–, SO4
2–, NO3

– and CH3SO3
– 

or MSA) were analyzed using a two-channel ion chromatography system 
combined with two Dionex ion chromatography sets (Thermo Fisher Scientific 
Inc., USA) at KOPRI. Anions were analyzed using a Dionex model ICS-2000 
with an IonPac AS15 column and KOH eluent (6–55 mM), and cations were 
measured using a Dionex model ICS-2100 with an IonPac CS12A column and 
MSA eluent (20 mM). The analytical detection limit, reproducibility, and 
accuracy were, 0.01–0.26 µg L–1, 0.4–17.4%, and 4.5–12.0% for cations and 
0.02–0.26 µg L–1, 0.1–27.6%, and 1.3–5.6% for anions (Hong et al. 2012), 
respectively. Using the theoretical ratio of a specific ion to Na+ in sea water 
(Pilson 2013), the non-sea-salt (nss) fraction of the ions was estimated to separate 
the contribution of sea-spray using the equation assuming that Na+ was 
exclusively of sea-salt origin (Kuramoto et al. 2011):  

nssX½ �¼ X½ �� X=Naþð Þsw �Naþ

where X is the target ion and (X/Na+)sw is the ratio of that ion and Na+ in 
seawater. 

Meteorological data from the AWS located around 25 km east of the snow-pit 
site in Bear Peninsula (Antarctic Meteorological Research and Data Center 2021) 
was compared with the snow-pit data. Moreover, sea ice extent (SIE) data in the 
Bellinghausen-Amundsen Sea sector was retrieved and compared to the snow-pit 
data (Parkinson and Cavalieri 2012). The location map and distribution of ice 
rises in the map were generated by the Quantarctica GIS package (Matsuoka 
et al. 2015, 2021). 
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Results and interpretation 

Isotopic compositions of the snow-pit. — The δ18O-δD diagram is shown in 
Fig. 3. Processes other than evaporation, such as an isotopic exchange between 
liquid water and ice or between water vapor and ice can modify the slope of the 
δ18O vs. δD (Earman et al. 2006; Lee et al. 2010). Evaporation, sublimation, and 
percolation of summertime meltwater are considered major processes influencing 
the isotopic feature of original snow layers (Ham et al. 2019). In this study, the 
slope of the linear relationship for the snow-pit is 7.7, similar to the slope of 8 of 
the global meteoric water line (GMWL) (Craig 1961). The small difference in 
slope between GMWL and the snow-pit may be insignificant, but the slight 
difference may indicate isotopic modification of the sublimation of snow 
(Earman et al. 2006; Lee et al. 2010). The deviation of the GMWL in intercept 

Fig. 3. δ18O-δD diagram of the snow-pit marked as the dashed line with the Global Meteoric Water 
Line of Craig (1961) marked as the solid line. 
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can also occur from humidity differences of the water vapor source. The smaller 
intercept may reflect smaller kinetic effects during evaporation over the nearby 
ocean than for the worldwide average (Jouzel and Merlivat 1984). 

Figure 4 shows the vertical profiles of δ18O, δD, and deuterium-excess 
(d-excess; d=δD–8 δ18O) obtained from the snow-pit. The d18O values ranged 
between –20.85‰ and –9.03‰ while the δD values fluctuated from –156.65‰ to 
–70.96‰ (Table 1). The mean δ18O and δD values (–14.05‰ and –107.11‰, 
respectively) are in a similar range to records in seashore sites (Delmotte et al. 
2000; Hur et al. 2022) and relatively enriched values compared to other distant 
sites (Masson-Delmotte et al. 2008; Nyamgerel et al. 2020). This indicates the 
site proximity to the ocean. In general, the sinusoidal trends in δ18O and δD of 
polar snow-pit and ice cores primarily represent their conventional correlation to 
the annual temperature cycle (Dansgaard 1964; Petit et al. 1999; Kuramoto et al. 
2011; Küttel et al. 2012). The δ18O and δD of the snow-pit show no clear 
increasing trend, which may clearly represent the summer peak. Rather, by 
comparing the gradual increase in the MSA and nssSO4

2–, the single summer 
layer can be detected, which leads us to conclude that the snow accumulation 
does not exceed the annual scale. 

Chemical compositions of the snow-pit. — The variations of ions are 
presented in Fig. 4 and Pearson’s correlation matrix is shown in Table 2. Sea salt 
ions (Na+, K+, Mg2+, Ca2+, Cl–, and SO4

2–) positively correlated with each other 
(r > 0.76, p < 0.01). A high concentration of sea salts commonly occurs in the 
winter layer due to intensive storms which transport fragile sea-salt crystals 
formed above the sea ice surface (Udisti et al. 1998; Rankin et al. 2000; Abram 
et al. 2007). The sea salt ions in the snow-pit show no clear seasonal increase; 
rather, they show a less-variated distribution. Moreover, the Cl–/Na+ ratio was 
similar, except for the peak at 1.7–1.8 m, and less varied to those in seawater 
(1.18), indicating the dominant and consistent supply from sea salt aerosols. The 
excess Cl– peak at 1.7–1.8 m may represent the winter snow layer related to sea 
ice extent (Pasteris et al. 2014). For the average, non-sea-salt portion of Mg2+ and 
Ca2+ were 51.1% and 34.8%, respectively. This indicates their potential emission 
from continental mineral dust (Nyamgerel et al. 2020). An enhancement of 
nssCa2+ in spring was observed in the other studies relating to wind-induced 
transport of crustal dust due to cyclonic activity (Rhodes et al. 2012). 

NO3
– shows a moderate positive correlation (r > 0.45) with d-excess and 

NH4
+ with two distinct peaks at 1.15 and 1.85 m depth. In addition, at the bottom 

depth, there was an increasing trend. Due to the shortness of the period covered in 
the snow-pit data, it is difficult to accurately interpret these values. Moreover, it 
is necessary to consider random variabilities induced by various precipitation 
timing and wind effect (Pasteris et al. 2014). NH4

+ shows an increase in 
summertime with biogenic sulfur (Legrand and Mayewski 1997). An enhance-
ment of NO3

– is usually observed during spring and summer periods, relating to 
more efficient stratosphere/troposphere exchange and higher irradiance (Caiazzo 
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Fig. 4. Depth vs. δ18O, d-excess, NO3
–, MSA, nssSO4

2–, SO4
2–, Ca2+, Na+, and Cl–/Na+. Thick lines 

represent the three-point running average profiles. 
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Ta b l e  1 .  

Mean, standard deviation, minimum, maximum values of isotopic ratios (‰) and ion 
concentrations (µeq L–1). 

Variables Mean Standard 
deviation 

Standard 
error Minimum Maximum Median 

δD –107.11 21.97 3.11 –156.65 –70.96 –111.06 

δ18O –14.05 2.83 0.40 –20.85 –9.03 –14.24 

d-excess 5.27 3.05 0.43 0.25 11.76 4.34 

Na+ 9.31 9.65 1.37 0.27 64.95 8.24 

NH4
+ 0.25 0.13 0.02 0.06 0.57 0.22 

K+ 0.21 0.25 0.04 0.00 1.57 0.16 

Mg2+ 2.20 2.15 0.30 0.26 14.00 1.85 

Ca2+ 0.52 0.43 0.06 0.07 2.40 0.41 

MSA 0.40 0.45 0.06 0.01 1.68 0.25 

Cl– 11.67 12.44 1.76 0.43 83.69 10.18 

SO4
2– 1.88 1.61 0.23 0.19 7.69 1.49 

nssSO4
2– 0.76 1.05 0.15 –0.43 3.53 0.38 

NO3
– 0.47 0.37 0.05 0.07 1.86 0.34    

Ta b l e  2 .  

Correlation matrix for the isotopic ratios and ion concentrations in the snow-pit. 
Correlation coefficient values > 0.4 at p value < 0.01 are shown in bold.   

δD δ18O d- 
excess NO3

– Cl– SO4
2– MSA Na+ NH4

+ K+ Mg2+ Ca2+ 

δD 1.00                       
δ18O 0.99 1.00                     

d- 
excess –0.15 –0.28 1.00                   

NO3
– 0.09 0.02 0.51 1.00                 

Cl– –0.22 –0.25 0.26 0.04 1.00               
SO4

2– –0.26 –0.31 0.45 0.04 0.76 1.00             

MSA –0.26 –0.30 0.38 –0.10 0.32 0.83 1.00           

Na+ –0.21 –0.24 0.27 0.05 1.00 0.76 0.32 1.00         

NH4
+ 0.18 0.12 0.45 0.50 0.35 0.56 0.42 0.36 1.00       

K+ –0.19 –0.22 0.27 0.08 0.99 0.74 0.30 0.99 0.39 1.00     

Mg2+ –0.23 –0.26 0.28 0.05 1.00 0.77 0.34 1.00 0.37 0.99 1.00   
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et al. 2017). Moreover, secondary peaks of NO3
– were also observed in the late 

winter in ice cores from the West Antarctic Ice Sheet (Pasteris et al. 2014). 
MSA and nssSO4

2– are mainly sourced from marine biogenic activity during 
the austral spring and summer period (Udisti et al. 1998) and the emission is 
large, especially in coastal sites (Dixon et al. 2004; Jonsell et al. 2005; Rhodes 
et al. 2012) Moreover, it can be derived from crustal erosion and volcanic 
emissions (Delmas et al. 1992; Legrand and Mayewski 1997). In this snow-pit, 
the MSA and nssSO4

2– were high in top layers, with a gradually decreasing trend 
starting from 0.2 to 1.3 m depth. These increased values correspond to the 
summer period relating to a strong seasonality of dimethyl sulfide production 
(Udisti et al. 1998). Kofftman et al. (2017) reported the rapid transport and 
detection of sulfate sourced by the Puyehue-Cordón Caulle volcanic eruption 
(June 2011) in West Antarctic site during the winter of 2011. In the Moore Dome 
snow-pit, the nssSO4

2– shows no clear signal to this volcanic eruption which may 
be due to the spatial heterogeneity of this volcanic deposition or the shortness of 
the snow-pit record. 

Snow dating and accumulation. — A density measurement showed a slight 
increase from 356.0 kg m–3 to 436.0 kg m–3 with increasing depth. Moreover, the 
snow temperatures were below –6.5°C both at daytime and nighttime. In the 
daytime, the snow temperature ranged between –6.5 to –13.5°C with a decreasing 
trend as depth increased (Fig. 2). No melted layers or ice lenses were observed in 
the snow-pit, which is likely to indicate good preservation of snow layers at this 
snow depth. However, the snow accumulation on ice rises can be affected by the 
occurrence of ice lenses (Vega et al. 2016) and the precipitation amount, and 
post-depositional effects must be considered in the interpretation of ice rises 
records. 

We assume that the top layers (0–0.5 m) correspond to mid to late summer 
based on the clear increasing trend with MSA and nssSO4

2–. NssSO4
2– were used 

as summer indicators in other coastal cores (Thomas et al. 2015). Moreover, the 
depth range 1.5–2.5 m is characterized by very low concentrations of MSA and 
nssSO4

2–, which indicate austral winter period. Thus, the Moore Dome snow-pit 
is likely to cover austral summer 2011/2012 to winter 2011. The snow depth of 
2.5 m was estimated to correspond to 1.03 m in water depth by using the mean 
density of the snow-pit (412.7 kg m–3). Austral summer 2011/2012 peaks are 
certain; however, it is not possible to detect autumn 2011 or the previous summer 
(2011/2010) due to the shortness of the snow-pit record. At this point, although 
the Moore Dome snow-pit is short (not full year), we carefully state that the snow 
accumulation is relatively high at this period and comparable to other estimates in 
the coastal ice rises on Fimbul Ice Shelf (0.24, 0.68, 0.70 m w.e. yr–1) (Vega et al. 
2016) and in coastal areas in Thwaites Glacier (0.67 m w.e. yr–1 ) (Medley et al. 
2013). The precipitation data by the ERA-Interim reanalysis dataset in the nearest 
(20–70 km to the study site) two grid points (74.24°S, 111.75°W; 75°S, 111°W) 
(Dee et al. 2011) between 2011 to 2012 were very low (0.015 m w.e. yr–1) 
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compared to the snow accumulation in the snow-pit, which simply may be a shift 
due to single point comparison. The annual average snow accumulation at the 
Bryan Coast ice cores (ca. 190 km to the coast) was constantly around 0.40 m w. 
e. yr–1 before the 1900s, however increased with a rate of 0.0015 m w.e. yr–1 in 
the recent decade (2000–2009). This increasing trend in snow accumulation rate 
was large, particularly in the recent decade (2000–2009), related to the ASL 
deepening (Thomas et al. 2015). Moreover, a historical (up to 200 years) snow 
accumulation in the ice cores from Pine Island-Thwaites drainage systems was 
0.38 m w.e. yr–1 on average (Kaspari et al. 2004). 

The seasonality of δ18O can be assumed, with a summer high of –12.67‰ at 
0.3 m and a winter low of –18.77‰ at 1.9 m. This variation may be reasonable 
to assume as summer and winter peaks. Thus, we can assume that the δ18O at 
0.3 m was the summer (Dec to Jan) peak in 2012 with MSA and nssSO4

2–. 
Comparable ranges can be seen in the monthly mean air temperature in austral 
summer (–6.4 ±1.0°C) and winter periods (–18.1±3.1°C) during the years 
between 2011 and 2021. 

At the middle depth of the snow-pit, δ18O showed enriched values and 
reached –9.07‰ (1.45 m), which is higher than the expected summer peak 
(–12.67‰) at 0.3 m. Moreover, d-excess and NO3

– showed significant peaks at 
this depth range (1.1–1.2 m and 1.75–1.85 m) (Fig. 4). It likely indicated 
a particular event-based variation during this period. Moreover, it can be related 
to the temperature range (summer and winter months) which was slightly lower 
in 2011 (–8.0°C and –14.2°C) compared to 2012 (–6.8°C and –21.0°C). 
Particularly, mean temperatures in July and August 2011 were recorded higher 
than those in April, May, and June. A relatively higher and largely variated 
temperature in 2011 (Fig. 5) is likely to correspond to the lower sea ice extent in 
winter 2011 compared to those in 2012. Further the existence of polynya during 
winter months could also contribute the enriched δ18O observed at the middle 
depth (Stammerjohn et al. 2015). The relatively large variation was also reflected 
in the wind speed data during the 2011 winter. It may be assumed that the 
enriched δ18O and δD and the significant peaks of d-excess and NO3

– are likely 
related to the meteorological conditions in the austral winter to spring in 2011. In 
addition, Wang et al. (2019) reported that the negative anomalies of cloud 
fraction in July 2011 (winter) induced the decrease in sea ice extent that year and 
was further linked to the increase in 2012. 

The annual mean accumulation rate thus can be large as or even higher than 
1.03 m w.e. yr–1, corresponding to 2.5 m snow depth at the Moore Dome site. 
This high snow accumulation could be supportive to study correlations with 
climate variabilities (Emanuelsson et al. 2018). Vega et al. (2016) reported the 
three ice core records on the ice rise near western Dronning Maud Land and the 
water isotopes and estimated snow accumulation in these cores were preserving 
the linkage with atmospheric circulation patterns. Swetha Chittella et al. (2022) 
reported extreme precipitation events over the Amundsen Sea embayment, which 
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accounted for ca. 30% of total precipitation. It is reasonable to note that other 
factors would account for the snow accumulation and its temporal variation in 
this sector, which will be clearer with longer ice core records. For instance, 

Fig. 5. Daily mean (grey line) and 15-point running averaged (red line) meteorological data 
between January 2011 to December 2012 in Bear Peninsula automatic weather station with monthly 
mean sea ice extent data. The green line is 60 day-average air temperature. Purple and green 
shading indicate winter and summer seasons, respectively. The horizontal dashed line and arrow 
indicate the period covered in the Moore Dome snow-pit. We note that the top layers of the snow- 
pit corresponding to the summer 2011/2012 was relatively clear, however bottom depth is roughly 
assumed to extend to winter 2011. 
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Amundsen Sea Low (ASL) pressure and its location are becoming crucial for 
Antarctic climate variabilities (Hosking et al. 2013; Sinclair et al. 2014). Strong 
winds enhanced by the ASL changes increase the sea ice cover (Raphael et al. 
2016; Turner et al. 2022). Moreover, the ASL is linked to the rapid ice losses 
from some West Antarctic glaciers due to changes in ocean circulation (Thoma 
et al. 2008). It can be stated that high-resolution paleoclimatic records need to be 
studied to achieve a better understanding of the atmospheric and oceanic 
conditions in coastal Antarctic regions, which are the critical location for the 
projections on sea level rise (Jacob et al. 2012; Neff 2020) 

Conclusion 

This work analyzed the isotopic and chemical compositions of the snow 
deposited on the Moore Dome ice rises on the seashore of the Amundsen Sea. 
The seasonal increase of the MSA, nssSO4

2– was clearly shown and used as 
seasonal marker for snow dating. Based on the seasonal characteristics of these 
records, the 2.5 m depth of snow-pit corresponds to the deposition between the 
austral winter 2011 and austral summer 2011/2012. The annual mean 
accumulation rate was assumed thus to be as large as or even higher than 
1.03 m w.e. yr–1 at this site. The significant variations in the δ18O, δD, and 
d-excess were likely to be preserving the changes in meteorological conditions in 
winter 2011. This led us to make a statement that the snow accumulation is high 
enough to preserve the sub-annual variations in climate and environmental 
changes in longer ice cores in this location. 
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