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especially in respect
to genetics and ecology Observing nature since time immemorial,

mankind has always noticed the
surprising regularities evidenced by many
biological phenomena. Mathematical
modeling is now helping explain them

With quite limited capacity to study such 
Dr. Radosław Wieczorek phenomena directly, humans have tried to 

applies stochastic capture the justification underlying these 
methods to individual-level regularities using the tools and knowledge at 

biological models their disposal. For example, English physician 
Alexander H. Howe made such an attempt in 
a book in 1865, reviewing detailed observa 
tions of infectious disease epidemics and 
seeking to explain their occurrence. Aside 
from quite sensible conclusions identifying 
large port cities as the source of many such 
diseases, he also posits some astounding 
hypotheses. For example, one of the "laws of 
pestilence" he offers to explain the eighteen 
and-a-half-year cycle observed in epidemic 
occurrences goes as follows: "The length of 
the interval between successive periodic visi 
tations corresponds with the period of a sin 
gle revolution of the lunar node, and a double 
revolution of the lunar apse line." Although 
absurd by modern standards, this attempted 
explanation was by no means so strange for 
its time. Astronomy was then a science held 
in high esteem, helping the English fleet to 
ply the world's oceans and the British Empire 
to flourish. The real causes of infectious dis 
ease had yet to be discovered: Louis Pasteur 
had just begun his research and Robert Koch 
was then still in medical school. 

Many phenomena in the natural world 
occur periodically, and we are not surprised 
to find annual, diurnal, or lunar cycles. But 
other, completely different cycles also occur, 
ones unjustified by the outside world. Even 
a quite solid understanding of biological 
processes does not always suffice to explain 
why they proceed as they do. Aside from the 
cyclical occurrence of epidemics, periodic 
fluctuations are also seen in the population 
number of certain animal species and the 
progression of many diseases. Such circum 
stances can only be accurately explained 
once a mathematical model is developed to 
describe these processes. 

First models
One of the first models of this type was put 

forward in 1926 by the Italian mathematician 
Vito Volterra. His model explained the sur 
prising fluctuations caused in the numbers of 
predatory fish, and of the species they prey 
upon, by the reduction in fishing activity dur 
ing WWI. Immediately after the war, fisher 
men noted a significant surge in predatory 
fish numbers in the Adriatic as compared to 
the prewar period. The phenomenon was hard 
to explain based on biology alone. Volterra 
proposed a simple mathematical model that 
described the relationship between predators 
and prey. Letting X(t) and Y(t) refer to the 
population numbers of prey and predators, 
respectively, these variables satisfy the fol 
lowing pair of differential equations: 

X'= (a - c Y) X, 
Y'=(-b+dX)Y, 
where a and -b are the growth rates for 

the two populations and the expressions -cY 
and dX describe the changes in these growth In Volterra's model,

the population sizes
of prey (X) and predators
(Y) fluctuate cyclically. The
population of predators
can be seen to increase
when the population
of prey is sufficiently large
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A phytoplankton bloom 
along the Argentine coast. 
Due to ocean currents 
and growth processes, 
the phytoplankton is 
not distributed evenly 
in the ocean but forms 
interesting fractal forms 

caused by the size of the other population. The
solutions to this system turn out to be period
ic functions, and the average population sizes
are x = b/d and y = a/c. If the population sizes
equal precisely x and y at the outset, they will
not vary over time. Using these equations it
is easy to conclude that the cessation of fish
ing will cause an upsurge in predatory fish
numbers and a corresponding decrease in
the population of their prey, as was seen to
occur after WWI. Volterra's model has since
been repeatedly modified, with one of its most
interesting versions proposed by Soviet math
ematician Andrey Kolmogorov. His model
has a limit cycle, that is a periodic solution
towards which other solutions tend - this can
explain the phenomenon of ecosystem stabil
ity, i.e. why a system can recover from small,
temporary disturbances.

Periodic illnesses 
Cyclical, repetitive phenomena play a cru

cial role for all of life. Some of them, such as
the pulse or breathing, proceed throughout an
organism's lifetime and their cessation entails
death. Other such phenomena, on the other
hand, are considered pathological and are dis
ease-related. Many diseases turn out to have
a periodic cycle. The mathematician Andrzej
Lasota and hematologist Maria Ważewska
Czyżewska, Polish scientists who in the 1970s
turned their interest to the temporal course
see□ in various forms of leukemia, developed
a model of hematopoietic system that corre
sponds quite well with experimental findings.
Their model was based on a relatively simple
principle. A decrease in the numbers of red

blood cells in circulation causes a signal to be
sent to the bone marrow, via a hormone called
erythropoietin, stimulating blood cell division
and differentiation and thereby boosting pro
duction of red blood cells. An important role
in this process is played by the coefficient h, 
representing the duration between when the
signal is sent and when fully-formed erythro
cytes are formed. The model itself then takes
the form of a differential equation with the
delay parameter h. For a healthy organism
h is around 5 days, and then the system is
stable. Even when a disturbance affects the
system, after some time the organism returns
to a state of equilibrium on its own. But a
longer time h required to produce erythro
cytes, caused by improper functioning of
blood cell production mechanisms in the bone
marrow, leads the system to become unstable
and periodic solutions to appear. In practice
that means cyclical changes in the numbers
of blood cells in circulation, and certain forms
of leukemia do indeed proceed in this way.
This mathematical model also enables us to
calculate the length of a single pathological
cycle, which depends on the time h but is not
a simple multiple of it.

The Belousov-Zhabotinsky reaction 
A breakthrough i n the study of cyclical phe

nomena came with Boris Pavlovich Belousov's
discovery in 1951 of a chemical reaction that
showed oscillating behavior, now known as
the Belousov-Zhabotinsky (B-Z) reaction.
His findings were overlooked in the USSR
for many years and only met with the proper
interest after knowledge of them reached the
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The charming spots 
on a Dalmatian's 

coat are the outcome 
of reaction-diffusion 
processes occurring 

in its body 

West in the early 1970s. Until then, the pre- I 
vailing view was that every chemical reaction ! 
tended towards equilibrium. Attempts at ex- f 
plaining the periodic behavior of this reaction ! 
inspired the Field-Noyes model, developed to 
describe it, as well as many other mathemati- 
cal models of biochemical phenomena that 
show periodic behavior. 

The B-Z reaction and similar biological 
phenomena (plus of course the models that 
describe them) evidence one more specific 
property. Namely, they give rise to traveling 
waves and dynamic spatial non-uniformities 
- i.e. various kinds of patterns and shapes 
that change over time. Mathematical mod 
els make it possible not only to understand 
why we witness such periodic or spatially 
non-uniform processes, but also to calculate 
such properties as the reaction period and the 
speed of wave propagation, or even to predict 
certain kinds of behavior never actualJy ob 
served before the model revealed the possibil 
ity of their occurrence. 

Spotted fur and Turing instability 
Nature is full of lavish forms and shapes 

that often astound us with their beauty yet 
also provoke questions: Why do they occur? 
Why do they take such form? Such thoughts 
may be inspired, for example, by the sight of 

Simulated solutions 
to reaction-diffusion 
equations 

the spotted coat of a leopard or Dalmatian, 
the stripes on a zebra or tiger, or the even 
more colorful wings of a butterfly. The devel 
opmental processes by which not just such 
patches of color but also individual bits of 
organisms and organs develop are known 
as morphogenesis. The emergence of shapes 
is governed by certain biochemical factors, 
greater or lesser concentrations of which 
cause cells to behave in certain specific ways. 
While the study of these chemical substances, 
called morphogens, and the cell reactions they 
trigger belongs to the fields of biochemistry 
and cytology, the question of how exactly they 
spread through an organism and why specific 
forms actually take shape frequently extends 
beyond the capacity of biology. 

Ordinary processes of diffusion tend 
toward the even dispersal of substances 
throughout a given medium. But if things 
always happened that way, a Dalmatian's 
coat would be uninteresting and uniformly 
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gray. As it turns out, a properly constructed
mathematical model can explain the coloring
patterns that are actually observed. In 1952,
Turing suggested that without assuming any
preexisting shapes, diffusion alone, plus
chemical reactions between several different
factors, can lead to the occurrence of spa
tially non-uniform patterns like spots on an
animal's fur. The behavior of the spatial dis
tribution of morphogens can be described as
a system of nonlinear partial equations of the
reaction-diffusion type. Such a system has
the interesting property that as the diffusion
coefficient increases, the uniform distribution
of the morphogen turns into a non-uniform
distribution, which leads for instance to the
occurrence of black spots on the white fur of
a Dalmatian.

process gives rise to interesting fractal struc
tures in the spatial distribution of a popula
tion. These phenomena can be captured using
quite advanced mathematical models.

All in all, the modeling of biological phe
nomena enables us to better understand not
just natural mechanisms but also the beauty
of the world around us. The community
pursuing this fruitful field of study includes
a number of Polish mathematicians, such
as the biomathematical school founded in
Katowice by the above-mentioned Andrzej
Lasota (which includes the present authors).
Other researchers include a strong group in
Warsaw led by Mirosław Lachowicz, Jacek
Miękisz, and Urszula Foryś, a bioinformatics
group led by Jerzy Tiuryn, and a team led by
Andrzej Świerniak at the Faculty of Automatic
Control, Electronics and Computer Science at
the Silesian University of Technology. The
European Society for Mathematical and
Theoretical Biology has chosen Poland to host
its gathering, the "European Conference for
Mathematical and Theoretical Biology," which
will be held in Kraków in 2011. ■

Population vs. individual perspective 
By observing whole populations from afar,

rather than individual organisms up close, we
can sometimes notice that they, too, form cer
tain patterns and shapes. Here we are think
ing primarily of colonies of smaller organisms
Like bacteria, ants, and plankton floating in
water, or somewhat larger schools of fish. It
is hard to imagine that the emergence of such
patterns is somehow intentional on the part
of each of the individual organisms; rather
it stems from their collective behavior and
of course the impact of the environment. To
properly explain the patterns created by a
whole population, one first has to observe the ~
mechanisms by which individual specimens ~ 

łbehave and how they react to one another and :g 
to the external conditions, and then to build ~
a model that accounts for those mechanisms. ~

~ Such an individual-level model precisely
describing each member of the population
usually cannot be studied directly - it has to
be properly scaled in order to obtain the mac
roscopic effect. Seemingly chaotic behavior on
the part of individual organisms can lead to
the emergence of interesting population-level
structure. For example, the fish in a school try
to move in the same direction as their neigh
bors, but their movement seems to be uncoor
dinated, involving considerable randomness.
Despite that, the motion of the school as a
whole demonstrates great regularity, which
frequently enables it to survive attacks by
predators. Similarly, the purely stochastic
movement of plankton and their reproductive
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A school of fish behaves 
like a single organism, 
even though each 
fish determines its 
direction on its own 
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