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Abstract
The current solutions for pose estimation problems using coplanar feature points (PnP problems) can be
divided into non-iterative and iterative solutions. The accuracy, stability, and efficiency of iterative methods
are unsatisfactory. Therefore, non-iterative methods have become more popular. However, the non-iterative
methods only consider the correspondence of the feature points with their 2D projections. They ignore the
constraints formed between feature points. This results in lower pose estimation accuracy and stability. In this
work, we proposed an accurate and stable pose estimation method considering the line constraints between
every two feature points. Our method has two steps. In the first step, we solved the pose non-iteratively,
considering the correspondence of the 3D feature points with their 2D projections and the line constraints
formed by every two feature points. In the second step, the pose was refined by minimizing the re-projection
errors with one iteration, further improving accuracy and stability. Simulation and actual experiment results
show that our method’s accuracy, stability, and computational efficiency are better than the other existing
pose estimation methods. In the −45◦ to +45◦ measuring range, the maximum angle measurement error
is no more than 0.039◦, and the average angle measurement error is no more than 0.016◦. In the 0 mm to
30 mm measuring range, the maximum displacement measurement error is no more than 0.049 mm, and
the average displacement measurement error is no more than 0.012 mm. Compared to other current pose
estimation methods, our method is the most efficient based on guaranteeing measurement accuracy and
stability.
Keywords: pose estimation, line constraints, coplanar, non-iterative.
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1. Introduction

The absolute pose estimation based on a set of feature points is a classical vision measurement
problem, also known as the Perspective-n-Point (PnP) problem [1]. Given 𝑛 feature points and
their 2D projections, a target object’s pose (position and orientation) relative to a calibrated camera

Copyright © 2023. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives License (CC BY-NC-ND 4.0 https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits use, dis-
tribution, and reproduction in any medium, provided that the article is properly cited, the use is non-commercial, and no modifications or
adaptations are made.
Article history: received October 29, 2022; revised February 4, 2023; accepted February 6, 2023; available online June 18, 2023.

https://doi.org/10.24425/mms.2023.144871
http://www.metrology.wat.edu.pl/
mailto:zhangzimiao1985@foxmail.com
mailto:zzm19850126@aliyun.com
mailto:zhanghaoaa@163.com
mailto:zhangfumin@tju.edu.cn
mailto:zshky77@163.com.edu.cn


Z. Zimiao, Z. Hao, Z. Fumin, Z. Shihai: AN ACCURATE AND STABLE POSE ESTIMATION METHOD FOR PLANAR CASES . . .

is solved. The quality of the camera is crucial to pose estimation accuracy [2,3], and the camera’s
intrinsic parameters should be calibrated using the Zhang method [4] with a sufficient number
of target images in various poses. The pose estimation has numerous applications, including the
hand-eye calibration of industrial robots [5], Lidar-camera systems [6], medical surgery [7], visual
Simultaneous Localization and Mapping (SLAM) [8], etc.

Estimating pose through non-coplanar feature points is mature [9,10]. However, pose estima-
tion using coplanar feature points is still a challenge. The current solutions for pose estimation
using coplanar feature points can be divided into non-iterative and iterative solutions. The iterative
methods usually establish a nonlinear objective function to minimize the image-space error (re-
projection error) or object-space error. The Pose from Orthography and Scaling with Iterations
(POSIT) method is the typical one to minimize the image-space error [11, 12]. The improved
POSIT method for planar cases was proposed by Oberkampf et al. [13]. The object-space error
is the error of the feature point and its orthogonal projection on the corresponding perspective
projection line. The Lu, Hager and Mjolsness (LHM) method is the typical one to minimize the
object-space error [14, 15]. Sun et al. made some improvements to the LHM method. They used
the LHM method based on a perspective-ray-based camera model [16, 17].

The choice of the initial value impacts the iterative process. If the initial value selection is
inappropriate, the number of iterations will increase. The entire iterative process will take a long
time. In addition, the iterative method does not get a closed-form solution. Therefore, there may
be some local minima for the objective function, and the ambiguity problem of the pose will
occur [18]. Besides, the choice of the two possible error functions is also a problem.

The accuracy, stability, and efficiency of iterative methods are unsatisfactory. Therefore, non-
iterative methods have become more prevalent in recent years. The non-iterative methods were
initially derived from Zhang’s camera calibration method [4], the Direct Linear Transformation
(DLT) method. It is based on the homography between the coplanar feature points and cor-
responding image points. Lepetit et al. [19] proposed the Efficient Perspective-n-Point (EPnP)
method. In the solving process, a linearization strategy was adopted. Hesch et al. [20] proposed
the Direct Least-Squares (DLS) method. The pose of the target object included a rotation matrix
and a translation vector. The Cayley parameters were used to express the rotation matrix, which
was then used to represent the translation vector. The entire process of the DLS method requires
lots of matrix decomposition and transformation. Li et al. [21] proposed the Robust Perspective-
n-Point (RPnP) method. A new coordinate frame was constructed through the two feature points
with the longest 2D projection. Every three feature points and their 2D projections could form
a fourth-order polynomial according to the Perspective-3-Point (P3P) algorithm. The pose was
finally obtained by solving these polynomial equations. Wang et al. [22] made some improve-
ments to this method. Constructing the new coordinate frame using the two feature points with
the longest 2D projection is not necessary because they add one iteration. Zheng et al. proposed
the Accurate and Scalable Perspective-n-Point (ASPnP) [23] and O(n) Solution Perspective-n-
Point (OPnP) [24] methods. They used the quaternions to represent the rotation matrix and then
parameterized the translation vector by the rotation matrix to construct the polynomial equations.
At last, the polynomial equations were solved with the Gröbner basis method. Kneip et al. [25]
proposed theUnified Perspective-n-Point (UPnP) method which also solved the polynomial equa-
tions with the Gröbner basis method. The number 𝑛 of features should be greater than or equal to
4. The stability of the non-iterative methods can be enhanced by introducing redundant points as
additional information [26].

Although the non-iterative pose estimation methods have good performance, they are based
on the imaging constraint provided by each single feature point, that is, the correspondence of
each feature point with its 2D projection. Due to various noises in the measurement, the constraint
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provided by each single feature point is insufficient. Thus, the constraints formed between the
feature points should be considered to improve the measurement accuracy and stability of non-
iterative pose estimation methods. This has been achieved in some iterative methods [27,28]. As
to the non-iterative pose estimation methods, it still needs to be solved.

In addition, the following conditions should also be considered. The pose estimation accuracy
depends on the shape of the array itself [29]. Huo et al. [30, 31] proposed that trapezoidal arrays
should be applied as they are better than square arrays. Pose estimation accuracy also depends on
the distance of the camera from the array. Qu et al. [32] suggested that the pose estimation error
is proportional to the ratio of the distance from the camera to the array and the target size. They
also suggested that the circular feature points should be as small as possible [33].

Based on the discussion above, we proposed an accurate and stable pose estimation method
for the planar cases. We constructed the pose estimation model considering the correspondences
of the 3D feature points with their 2D projections and the line constraints formed by every two
feature points. The pose could be obtained non-iteratively. Because all the constraints are fully
considered when getting the pose, only one iteration is needed to refine the pose by minimizing the
re-projection errors. We compared and analysed our method with some typical pose estimation
methods through the simulation experiments with synthetic data and measurement experiments
with the real images. In the experiments with real images, we compared and analysed the influence
of the shape of the target array and the distance from the camera to the target on our pose estimation
method.

The motivation of our study is to provide an accurate and stable pose estimation method using
coplanar feature points. The main contributions are listed as follows:

– A novel non-iterative pose estimation model is established considering the imaging con-
straint provided by each feature point and the line constraints formed by every two feature
points.

– Only one iteration is needed to refine the solved pose because we fully consider all the
constraints in the non-iterative step.

– The measurement accuracy and stability are improved compared to other non-iterative
methods. Based on the non-iterative step’s efficiency, adding one iteration (unlike other
iterative methods, we reduce the number of iterations to only one) still guarantees the
solution’s efficiency.

The remainder of our paper is arranged as follows. We presented non-iterative and one-iteration
steps of our method in the corresponding sections. In Section 4, we compared and analysed the
experimental results of our method and other representative methods. Some conclusions were
made in Section 5.

2. Non-iterative step of the pose estimation method

Fig. 1 shows a set of 3D-to-2D correspondences between 𝑛 coplanar feature points 𝑀𝑖 and their
2D projections 𝑚𝑖 . The world coordinates of 𝑀𝑖 are M𝑤

𝑖 (𝑥𝑤
𝑖
, 𝑦𝑤

𝑖
, 𝑧𝑤

𝑖
)T. The pixel coordinates

of each 2D projection are m𝑖 (𝑢𝑖 , 𝑣𝑖)T, which can be obtained at the image processing stage. The
pose estimation problem is to solve the transformation matrix [R T] from the world coordinate
frame to the camera coordinate frame. R is a 3 × 3 matrix. T is a 3 × 1 vector.

Because the feature points are coplanar, 𝑧𝑤
𝑖

is equal to 0. The perspective projection equation
can be expressed as Eq. (1), where A is the camera intrinsic parameters matrix and 𝑑𝑖 is the depth

237

https://doi.org/10.24425/mms.2023.144871


Z. Zimiao, Z. Hao, Z. Fumin, Z. Shihai: AN ACCURATE AND STABLE POSE ESTIMATION METHOD FOR PLANAR CASES . . .

Fig. 1. Correspondence between feature point 𝑀𝑖 and its 2D projection 𝑚𝑖 .

of each feature point.
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 , T =


𝑡1
𝑡2
𝑡3

 .
(1)

When we multiply both sides of Eq. (1) by A−1, divide both sides of Eq. (1) by 𝑡3, and eliminate
the depth factor 𝑑𝑖 , we obtain Eq. (2), where H = [ 𝑓𝑥 ·𝑥𝑤𝑖 , 0]T, I = [ 𝑓𝑥 · 𝑦𝑤𝑖 , 0]T, J = [0, 𝑓𝑦 ·𝑥𝑤𝑖 ]T,
K = [0, 𝑓𝑥 · 𝑦𝑤𝑖 ]T, L = [(𝑢0 − 𝑢𝑖) · 𝑥𝑤𝑖 , (𝑣0 − 𝑣𝑖) · 𝑥𝑤𝑖 ]T, M = [(𝑢0 − 𝑢𝑖) · 𝑦𝑤𝑖 , (𝑣0 − 𝑣𝑖) · 𝑦𝑤𝑖 ]T,
N = [ 𝑓𝑥 , 0]𝑇 ,O = [0, 𝑓𝑦]T, P = [𝑢0 − 𝑢𝑖 , 𝑣0 − 𝑣𝑖]𝑇 .[

H I J K L M N O P
]
[𝑟11/𝑡3, 𝑟12/𝑡3, 𝑟21/𝑡3, 𝑟22/𝑡3, 𝑟31/𝑡3, 𝑟32/𝑡3, 𝑡1/𝑡3, 𝑡2/𝑡3, 1]T = 0 (2)

By solving Eq. (2) and based on the unit orthogonality of R, the pose [R T] can be solved.
However, more than the correspondence of each feature point with its 2D projection is required
for the pose estimation. In some iterative methods for calibrating the parameters of the binocular
vision system, the length or angle constraints formed between the calibration points are added
to the iterative function to ensure calibration accuracy and robustness [27, 28]. The non-iterative
methods are better than iterative ones for pose estimation, as illustrated above. However, for non-
iterative methods, the constraints formed between the feature points should also be considered to
strengthen the anti-noise ability.

As shown in Fig. 2, 𝑀𝑖 and 𝑀 𝑗 are any two feature points that form a line 𝑀𝑖𝑀 𝑗 . 𝑚𝑖 and 𝑚 𝑗

are the corresponding image points. Line 𝑀𝑖𝑀 𝑗 and optical centre𝑂𝑐 can form a plane 𝑀𝑖𝑂𝑐𝑀 𝑗 .
The expression of the normal vector of plane 𝑀𝑖𝑂𝑐𝑀 𝑗 is N𝑤

𝑖 𝑗 in the world coordinate frame. Line
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𝑚𝑖𝑚 𝑗 and O𝑐 can form a plane 𝑚𝑖𝑂𝑐𝑚 𝑗 . The expression of the normal vector of plane 𝑚𝑖𝑂𝑐𝑚 𝑗

is n𝑐
𝑖 𝑗

in the camera coordinate frame.

Fig. 2. Line constraint formed by any two feature points 𝑀𝑖 and 𝑀 𝑗 .

The relationship of N𝑤
𝑖 𝑗 and n𝑐

𝑖 𝑗
is expressed by Eq. (3), where [R′ T′] is the transformation

matrix from the camera coordinate frame to the world coordinate frame, and `𝑖 𝑗 is a scale factor.

`𝑖 𝑗 · R′ · n𝑐
𝑖 𝑗 = N𝑤

𝑖 𝑗 (3)

n𝑐
𝑖 𝑗

can be expressed by O𝑐
𝑐m𝑐

𝑖
× O𝑐

𝑐m𝑐
𝑗
. N𝑤

𝑖 𝑗 can be expressed by O𝑤
𝑐 M𝑤

𝑖 × O𝑤
𝑐 M𝑤

𝑗 . O𝑤
𝑐 is

the expression of 𝑂𝑐 in the world coordinate frame. O𝑐
𝑐 is the expression of 𝑂𝑐 in the camera

coordinate frame. Then we can get Eq. (4).

`𝑖 𝑗 · R′ · ((m𝑐
𝑖 − O𝑐

𝑐) × (m𝑐
𝑗 − O𝑐

𝑐)) = (M𝑤
𝑖 − O𝑤

𝑐 ) × (M𝑤
𝑗 − O𝑤

𝑐 ). (4)

O𝑤
𝑐 is equal to T′ and replace O𝑤

𝑐 with T′. Eq. (5) can be obtained.

`𝑖 𝑗 · R′ · (m𝑐
𝑖 × m𝑐

𝑗 ) = (M𝑤
𝑖 − T′) × (M𝑤

𝑗 − T′). (5)

According to the cross-product rule, Eq. (5) is expanded, and similar items are combined.
Then Eq. (6) can be deduced.

`𝑖 𝑗 · R′ · (m𝑐
𝑖 × m𝑐

𝑗 ) = M𝑤
𝑖 × M𝑤

𝑗 − T′ × (M𝑤
𝑗 − M𝑤

𝑖 ). (6)

T′ can be denoted with −R′ · T. Then Eq. (7) can be obtained.

`𝑖 𝑗 · R′ · (m𝑐
𝑖 × m𝑐

𝑗 ) = M𝑤
𝑖 × M𝑤

𝑗 − (−R′ · T) × (M𝑤
𝑗 − M𝑤

𝑖 ). (7)

R and R′ are mutually inverse matrices. When we multiply both sides of Eq. (7) by R, Eq. (8)
can be obtained, where m𝑐

𝑖
× m𝑐

𝑗
, M𝑤

𝑖 × M𝑤
𝑗 , and M𝑤

𝑗 − M𝑤
𝑖 are known quantities. m𝑐

𝑖
and m𝑐

𝑗

can be obtained through pixel image coordinates, and the intrinsic parameters matrix A. Eq. (8)
is the expression of the line constraint formed by every two feature points, 𝑀𝑖 and 𝑀 𝑗 .

`𝑖 𝑗 · (m𝑐
𝑖 × m𝑐

𝑗 ) = R · (M𝑤
𝑖 × M𝑤

𝑗 ) − (R · (M𝑤
𝑗 − M𝑤

𝑖 )) × T. (8)
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Next. we eliminate the scale factor `𝑖 𝑗 and divide both sides of Eq. (8) by 𝑡3. There are 20
unknown quantities in total, according to Eq. (2) and Eq. (8). Given 𝑛 feature points, according
to Eq. (2), we can obtain 2𝑛 equations. By 𝑛 feature points, 𝑛(𝑛 − 1)/2 lines can be obtained.
According to Eq. (8), we can get 𝑛(𝑛 − 1) equations. Therefore, for 20 unknown quantities,
𝑛 should be greater than or equal to 4. These equations are solved simultaneously. According
to the unit orthogonality of R, the pose [R T] can finally be obtained using the Single Value
Decomposition (SVD) method. In the above-solving process, we fully consider all the constraints,
including the 3D-to-2D correspondence of each feature point and the line constraints formed by
every two feature points.

3. One iteration step of the pose estimation method

One iteration step can further improve the solution’s accuracy and stability. We construct an
objective function to minimize the re-projection errors of the 𝑛 feature points, which is shown
in Eq. (9).

𝑟𝑒 =

𝑛∑︁
𝑖=1

m𝑖 − m𝑖 (R,T)
2
. (9)

The rotation matrix R can be parameterized with the Cayley parameters (𝑠1, 𝑠2, 𝑠3) according
to Eq. (10), where b = 1 + 𝑠2

1 + 𝑠2
2 + 𝑠2

3.

R =
1
b


1 + 𝑠2

1 − 𝑠2
2 − 𝑠2

3 2𝑠1𝑠2 − 2𝑠3 2𝑠1𝑠3 − 2𝑠2
2𝑠1𝑠2 + 2𝑠3 1 − 𝑠2

1 + 𝑠2
2 − 𝑠2

3 2𝑠2𝑠3 − 2𝑠1
2𝑠1𝑠3 + 2𝑠2 2𝑠2𝑠3 + 2𝑠1 1 − 𝑠2

1 − 𝑠2
2 + 𝑠2

3

 . (10)

We define the matrix D and E, as shown in Eq. (11).

D =

[
− 𝑓𝑥 0 𝑢𝑖 − 𝑢0
0 − 𝑓𝑦 𝑣𝑖 − 𝑣0

]
,

E =

[
𝑓𝑥𝑥

𝑤
𝑖

2𝑦𝑤
𝑖
(𝑢0 − 𝑢𝑖) 2𝑥𝑤

𝑖
(𝑢0 − 𝑢𝑖) −2 𝑓𝑥𝑦𝑤𝑖 𝑓𝑥𝑥

𝑤
𝑖

𝑓𝑦𝑦
𝑤
𝑖

2𝑦𝑤
𝑖
(𝑣0 − 𝑣𝑖) 2𝑥𝑤

𝑖
(𝑣0 − 𝑣𝑖) 2 𝑓𝑦𝑥𝑤𝑖 − 𝑓𝑦𝑦

𝑤
𝑖

2 𝑓𝑥𝑦𝑤𝑖 2𝑥𝑤
𝑖
(𝑢0 − 𝑢𝑖) − 𝑓𝑥𝑥

𝑤
𝑖

2𝑦𝑤
𝑖
(𝑢0 − 𝑢𝑖) − 𝑓𝑥𝑥

𝑤
𝑖

2 𝑓𝑦𝑥𝑤𝑖 2𝑥𝑤
𝑖
(𝑣0 − 𝑣𝑖) 𝑓𝑦𝑦

𝑤
𝑖

2𝑦𝑤
𝑖
(𝑣0 − 𝑣𝑖) − 𝑓𝑦𝑦

𝑤
𝑖

]
.

(11)

According to Eq. (1) and Eq. (11), we can deduce Eq. (12).

b · D · T = E · CA,

CA =
[
1, 𝑠1, 𝑠2, 𝑠3, 𝑠

2
1, 𝑠1𝑠2, 𝑠1𝑠3, 𝑠

2
2, 𝑠2𝑠3, 𝑠

2
3
]T

.
(12)

From Eq. (12), we can easily express the vector T with vector CA and b, which are composed
of the Caley parameters, as shown in Eq. (13).

T =
1
b

(
DTD

)−1
DTE · CA. (13)

The objective function is finally shown in Eq. (14) and solved with the Levenberg–Marquardt
method.

𝑟𝑒 = min
𝑛∑︁
𝑖=1

‖m𝑖 − m𝑖 (R(𝑠1, 𝑠2, 𝑠3), T(𝑠1, 𝑠2, 𝑠3))‖2 . (14)
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We fully consider the constraints in the non-iterative step. Then a good enough pose can be
obtained. Therefore, the number of iterations is only one. Fig. 3 depicts the complete procedure
for estimating the pose [R T]. The line constraints are formed by every two feature points,
including all the lines formed between the feature points. Taking 4 or 6 feature points as an
example, as shown in Fig. 4, when the number of feature points is 4, the lines constraints are
provided by 𝑀1𝑀2, 𝑀1𝑀3, 𝑀1𝑀4, 𝑀2𝑀3, 𝑀2𝑀4, and 𝑀3𝑀4. When the number of feature points
is 6, the line constraints are provided by 𝑀1𝑀2, 𝑀1𝑀3, 𝑀1𝑀4, 𝑀1𝑀5, 𝑀1𝑀6, 𝑀2𝑀3, 𝑀2𝑀4,
𝑀2𝑀5𝑀2𝑀6, 𝑀3𝑀4, 𝑀3𝑀5, 𝑀3𝑀6, 𝑀4𝑀5, 𝑀4𝑀6, and 𝑀5𝑀6. Considering the line constraints
formed between any two feature points in the non-iterative step of the method, the anti-noise
ability of our method is strengthened. With one-step iteration, the anti-noise ability is further
strengthened.

Fig. 3. Full procedure for estimating the pose [R T].

Fig. 4. Line constraints formed between feature points: (a) 𝑛 = 4. (b) 𝑛 = 6.
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4. Results and discussion

The setup used in our experiments is shown in Fig. 5. The camera’s resolution with a 12 mm
lens is 1440 × 1080 pixels. The target with circle feature points is 27 × 27. The diameter of
each circle is 5 mm. The distance between every two circle centres is 10 mm. A one-dimensional
turntable with a positioning precision of ±0.005◦ and a one-dimensional linear translation stage
with a positioning precision of ±0.003 mm are combined to alter the target pose. The CPU of the
experimental computer is an i5–7200U. All the programs run on the MATLAB platform.

Fig. 5. Experimental setup.

We calibrated the camera’s intrinsic parameters using the Zhang method [4] with 16 images of
different poses. They are shown in Table 1. The calibration re-projection error is 0.05 pixels. All
the pose estimation experiments are conducted with the same camera to ensure the consistency
of verification of the measurement method.

Table 1. Calibrated intrinsic parameters

size fx f y cx cy k1 k2 k3 p1 p2

1440 × 1080 3417.741 3417.007 733.604 548.936 –0.082 0.151 6.026 0.000799 0.000540

To accurately evaluate the performance of our method, it was compared with some typical
pose estimation methods during the experiments. These typical pose estimation methods are
shown below:

– only use the non-iterative step of our method to solve the pose.
– the DLT method [4]: The traditional linear pose estimation method. It only considers the

correspondence of each feature point with its 2D projection.
– the Perspective-Ray-Based (PRB)+LHM method [16,17]: It is the LHM method [14] with

the perspective-ray-based camera model. It is one of the iterative methods with the best
accuracy.

– the OPnP method [24]: A robust and accurate pose estimation method. It is a typical method
for solving the pose estimation problem using the Gröbner basis method.

– the Improved RPnP method [22]: A fast, robust, and non-iterative pose estimation method.
Compared with the RPnP method [21], it constructs the target coordinate frame with any
two feature points. It works well in all cases.
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This study includes two categories of experiments: simulation experiments with synthetic
data and measurement experiments with real images.

4.1. Simulation experiments with synthetic data

This part evaluates our pose estimation method through simulation experiments. First, we
constructed the camera coordinate frame. Next, we synthesized a virtual perspective camera with
a resolution of 1440 × 1080 pixels and an effective focal length of 1800 pixels. Then, 𝑛 feature
points 𝑀𝑖 were randomly generated in the world coordinate frame. Finally, the feature points were
projected to the image plane according to the virtual perspective camera and Gaussian noise could
be added to the image plane. The pose [RT] was calculated with our and the other 5 methods.
The measurement error of R was max( |𝛼 − 𝛼true |, |𝛽 − 𝛽true |, |𝛾 − 𝛾true |). 𝛼, 𝛽, and 𝛾 were the
Euler angles representing the rotation. The measurement error of T was ‖T − Ttrue‖/‖T‖.

We set the Gaussian noise level to 1 pixel and 2.5 pixels, respectively. Then, we changed
the number of feature points. The measurement errors of R and T are shown in Fig. 6. It can
be seen that with the increasing number of feature points, the measurement errors decrease for
all the methods. This indicates that redundant feature points (n>4) can improve pose estimation
accuracy.

Fig. 6. Measurement errors of pose estimation for different numbers of feature points: (a) Noise level of 1 pixel,
(b) Noise level of 2.5 pixels.
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Then, we set the number of feature points to 12, 16, and 20, respectively, and observed the
change in the measurement error as the noise level changed. Gaussian noise of 0 to 5 pixels with
an interval of 0.5 pixels was added to the image plane. The measurement errors of R and T are
shown in Fig. 7. It can be seen that with the increase in noise level, the solution accuracy of
each method decreases. An approximately linear relationship exists between the measurement
errors and the noise level. The PRB+LHM method is iterative. The OPnP method transforms
the pose estimation problem into a nonlinear optimization problem. Therefore, their anti-noise
ability is better. However, their solving process is complicated. Under the condition of redundant
feature points, the disadvantage of solving efficiency is more prominent. Compared to the RPnP
method, the improved RPnP method can establish the target coordinate system with any two
feature points while still ensuring the pose estimation accuracy. The anti-noise ability of the DLT
method is worse because it is a non-iterative method and considers less constraint information
(only considering the correspondences of each feature point with its 2D projection). The non-
iterative part of our method considers the line constraints formed by every two feature points. The
anti-noise ability is strengthened. Adding only one iteration, the anti-noise ability of our method
is further strengthened and almost equivalent to that of PRB+LHM and OPnP methods.

Fig. 7. Measurement errors of pose estimation under different noise levels: (a) 𝑛 = 12, (b) 𝑛 = 16, and (b) 𝑛 = 20.

4.2. Pose estimation experiments with the real images

Pose estimation experiments – influence of the shape of the target array

We placed the target at 24 positions arbitrarily. The target’s pose [R T] was estimated using
our and the other 5 methods with different shapes of target arrays like a rectangle, an isosceles
trapezoid, and a right-angled trapezoid which were formed by 4 feature points, as shown in Fig. 8.
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Fig. 8. Different shapes of the array.

The mean re-projection errors corresponding to these 24 positions were calculated. They are
shown in Fig. 9. As seen from the figure, compared to the other pose estimation methods, the
measurement results of our method are very stable and hardly affected by the shape of the target
array. Compared to the DLT method, the non-iterative part of our method considers the line
constraints formed by every two feature points. The solution stability is strengthened. Adding
only one iteration, the solution stability of our method is further strengthened. The re-projection
error of our method is also the lowest.

Fig. 9. Re-projection errors using different shapes of the array.

Pose estimation experiments – rotation angle measurement

The target was fixed and rotated at 5◦ intervals within the range of −45◦ to 45◦. The captured
images are shown in Fig. 10.
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Fig. 10. Images captured for the rotation angle measurement.

The target’s pose [R T] was estimated using our and the other 5 methods. The rotation angle
\ of each position relative to position 0◦ was obtained. The measurement errors, which were
|\ − \true |, are shown in Fig. 11. As can be seen from the figure, the PRB+LHM method is
iterative, even though it is based on the incident-ray-camera model. When the initial solution
is unsuitable, it is easy to fall into a local optimum. The corresponding measurement error
is significant. The DLT method is based only on the constraints of each single feature point.
There is various noise in real measurement environments caused by image processing, non-
concentric errors of circular feature points, uneven illumination, etc. The measurement results
are not stable. The simulation experiment results of the OPnP method are good. However, the
real experimental results of the OPnP method are worse. This is because the noise in the real
experiments is more complex, as illustrated above than in the simulation experiments. The OPnP
method uses the Gröbner basis method to solve the equations, which takes lots of time and
does not guarantee the solution stability. The improved RPnP method is suboptimal. It solves
the pose based on the three-point (P3P) subsets formed by the two points of the rotation axis
and any other feature point to avoid the unit orthogonality problem of the matrix. Therefore,
it can obtain relatively better results. The non-iterative step of our method fully considers the
constraints formed by the feature points, including the correspondences of the 3D feature points
with their 2D projections and line constraints formed by every two feature points. A pretty good
pose solution can be obtained, and the measurement accuracy and stability are further improved
after one iteration. The measurement accuracy and stability of our method are the best. In the
−45◦ to +45◦ measuring range, the maximum measurement error is no more than 0.039◦, and the
average measurement error is no more than 0.016◦. Compared with the DLT, PRB+LHM, OPnP,
and Improved RPnP methods, our method lowered their measurement errors by 83%, 91%, 92%,
and 69%, respectively.
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Fig. 11. Results of measuring the rotation angle.

The camera was moved backward, and the previous steps were repeated for some additional
experiments. The captured images of the target are shown in Fig. 12.

Fig. 12. Images captured for the rotation angle measurement at a long measurement distance.

The measurement errors are shown in Fig. 13. The experimental results are similar to the
previous ones. They also demonstrate our method’s advantages in measuring rotation angle. The
line constraints formed by every two feature points and the redundant feature points help ensure
our method’s solution accuracy. Compared with the DLT, PRB+LHM, OPnP, and Improved
RPnP methods, our method lowered their measurement errors by 91%, 96%, 97%, and 81%,
respectively.
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Fig. 13. Results of measuring rotation angle at a long distance.

The mean measurement errors at different distances of the camera from the array are shown
in Fig. 14.

Fig. 14. Mean measurement errors at different distances of the camera from the array.

The DLT, PRB+LHM, and OPnP methods are easily affected by the distance between the
camera and the target array. When the measurement distance becomes larger, the measurement
error increases. The robustness of the Improved RPnP method is better. However, our method
lowered its measurement errors by 69% and 81%, corresponding to the near and far distances,
respectively. Our method is not easily affected by the measurement distance. This is because our
method considers more constraint information and has a one-iteration step.

Pose estimation experiments – displacement measurement

The target was fixed and moved at 2 mm intervals from 0 mm to 30 mm. The captured images
are shown in Fig. 15.

The target’s pose [R T] was estimated using our and the other 5 methods. The linear displace-
ment 𝑡 between each position and the position 0 mm was obtained. The measurement errors, which
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Fig. 15. Images captured for the displacement measurement.

were |𝑡 − 𝑡true |, are shown in Fig. 16. The Improved RPnP method completes the pose estimation
by constructing a new coordinate frame, and it is unnecessary to choose the two feature points
with the longest 2D projection to be the rotation axis. The solving process is stable. Therefore, the
measurement accuracy of the Improved RPnP method is better than that of the DLT method. Also,
there was various noise in the real measurement environment. For binocular vision calibration,
the length or angle constraints formed between the calibration points are added to the iterative
function to ensure calibration accuracy and robustness [27, 28]. The non-iterative methods are
better than iterative ones for pose estimation, as illustrated in our paper. However, for non-iterative
methods, adding the constraints provided between feature points to increase the accuracy and sta-
bility of the solution still constitutes a problem. The non-iterative step of our method solves this
problem and fully considers the constraints. Its measurement accuracy is almost equivalent to
that of the Improved RPnP method. One iteration is needed to further improve the measurement
accuracy and stability. However, the measurement accuracy of the OPnP method is low compared
with that of the DLT method. This is caused by its complex solution process and complex noise
in real measurement experiments. The PRB+LHM method is improved from the LHM method.
It is a non-iterative method, and the inappropriate initial solution makes its measurement re-
sults unstable. As to our method’s measurement accuracy and stability, in the 0 mm to 30 mm
measuring range, the maximum measurement error is no more than 0.049 mm, and the average
measurement error is no more than 0.012 mm. Compared with the DLT, PRB+LHM, OPnP, and
Improved RPnP methods, our method lowered their measurement errors by 81%, 82%, 93%, and
67%, respectively.
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Fig. 16. Measurement errors of the displacement.

The position of the camera was moved to the left and right accordingly. The previous steps
were repeated for some additional experiments. The measurement errors are shown in Fig. 17.
The measurement error of the PRB+LHM method is still unstable. The measurement accuracy of
positioning the camera to the left is better than setting the camera to the right. The experimental
results of other non-iterative methods like the DLT, OPnP, and Improved RPnP methods are
similar to the previous. This proves that the measurement accuracy of the non-iterative methods
is more stable. The experimental results also demonstrate the high accuracy of our method in
terms of displacement measurements. Compared with the DLT, PRB+LHM, OPnP, and Improved
RPnP methods, our method lowered their measurement errors by 86%, 81%, 92%, and 72%,
respectively.

Fig. 17. Measurement errors of the displacement with a long measurement distance: (a) The measurement errors set the
camera to the right. (b)The measurement errors set the camera to the left.
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Pose estimation experiments – arbitrarily selected place the target

Placed the target at 12 positions arbitrarily. The captured images are shown in Fig. 18. The
target’s pose [R T] was estimated using our and the other 5 methods.

Fig. 18. Images of the arbitrarily placed target for pose estimation.

The re-projection errors were then calculated. They are shown in Fig. 19. As seen from
Fig. 19, the re-projection error of our method is the lowest. The accuracy of the PRB+LHM
method depends on the choice of the initial pose. The OPnP method has a complex solution
process. The re-projection errors of these two methods fluctuate more than the other methods.
The DLT method established the pose estimation model only according to the constraints formed
by each single feature point, and there is no iterative step. It is easily affected by the various
noise in the real environment. The re-projection error of the Improved RPnP method is lower than
that of the DLT method. This is because its solving process avoids the unit orthogonality of the
rotation matrix. However, it is a suboptimal method, and the accuracy can still be improved. The
non-iterative step of our method considers the line constraints formed by every two feature points
in addition to the correspondences of the feature points with their image points. The re-projection
error is reduced compared to the DLT method. The re-projection error of the non-iterative step
of our method is higher than that of the Improved RPnP method at some measurement positions.

Fig. 19. Re-projection errors of the experiments.
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After one iteration, the re-projection error is reduced. The pose estimation accuracy and stability
of our method are the best. Compared with the DLT, PRB+LHM, OPnP, and Improved RPnP
methods, our method lowered their errors by 38%, 68%, 70%, and 33%, respectively.

The position of the camera was moved backward. The previous steps were repeated for some
additional experiments. The captured images of the target are shown in Fig. 20.

Fig. 20. Images of the arbitrarily placed target at a long measurement distance for pose estimation.

Figure 21 depicts the corresponding re-projection errors. The re-projection errors of the
PRB+LHM and OPnP methods are unstable. The experimental results of other non-iterative
methods, like the DLT and Improved RPnP, are similar to the previous ones. The re-projection
error of our method is the lowest. Compared with the DLT, PRB+LHM, OPnP, and Improved
RPnP methods, our method lowered their measurement errors by 57%, 78%, 83%, and 39%,
respectively.

Fig. 21. Re-projection errors of experiments at a long measurement distance.

The mean re-projection errors with different distances of the camera from the array are shown
in Fig. 22. It can be seen that we obtain similar experimental results and our method is not easily
affected by the measurement distance.
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Fig. 22. Re-projection errors at different distances of the camera from the array.

Pose estimation experiments – pose estimation of the real objects

We estimated the pose of a book. The images for pose estimation are shown in Fig. 23. The
re-projections of pose estimation with different methods are shown in Fig. 24.

Fig. 23. Images of a book: (a) Reference image, (b) Images for pose estimation.

Fig. 24. Re-projection errors with different methods.
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We estimated the pose of the suction cup of a climbing robot. The images for pose estimation
are shown in Fig. 25. The re-projections of pose estimation with different methods are shown in
Fig. 26.

Fig. 25. Images of the suction cup of a climbing robot: (a) Reference image, (b) Images for pose estimation.

Fig. 26. Re-projection errors with different methods.

As shown in Fig. 24 and Fig. 26, the number of feature points is 4. At the same time,
the extraction of the corner points of the object is more easily affected by the noise in the
measurement environment than the circular feature points of the test board, which are specially
machined. Therefore, the re-projection errors of estimating the real objects increase for all the
methods compared with those of estimating the test board pose. However, due to the incorporation
of line constraints provided between the feature points in our method and the subsequent one-step
iteration, our method yields more accurate results than the other methods. Also, our method
outperforms the other methods in real-life applications. This further proves our previous claims.

Pose estimation experiments – computational time

The computational time of each method for estimating the target’s pose with the images
shown in Fig. 18 was calculated and is shown in Fig. 27. The PRB+LHM method is iterative and
therefore the efficiency is the lowest. The OPnP method is based on matrix synthesis technology,
thus the solution process takes more time and the solution efficiency is low. On the other hand,
the DLT method only considers the correspondences of the 3D feature points with their 2D
projections and its computational time is the least. Compared with the DLT method, the improved
RPnP method is suboptimal, and the computational time increases. The non-iterative step of our

254



Metrol. Meas. Syst.,Vol. 30 (2023), No. 2, pp. 235–258
DOI: 10.24425/mms.2023.144871

method considers more constraints than the DLT method and the computational time slightly
increases. The one-iteration step refines the pose obtained in the non-iterative step and takes a
little extra time. As for the current computer platform, the average computational time of our
method was 0.00189s. However, either the accuracy of the non-iterative step of our method or
that of our entire process is significantly better than that of the DLT method. The results obtained
in the non-iterative step are satisfactory enough for some applications that emphasize real-time.
On the premise of ensuring measurement accuracy, our method is the most efficient compared
with the other existing pose estimation methods.

Fig. 27. Computational time of each method for estimating the target’s pose.

In summary, simulation and real experiment results demonstrated the superiority of our
method in accuracy, stability, and efficiency. On the premise of ensuring measurement accuracy,
our method is the most efficient compared with the other existing pose estimation methods.

5. Conclusions

This paper proposed an accurate and stable pose estimation method for planar cases. A novel
non-iterative pose estimation model is established considering the imaging constraint provided by
each feature point and the line constraints formed by every two feature points. Only one iteration
is needed to refine the solved pose because we fully consider all the constraints in the non-iterative
step. The measurement accuracy and stability are improved compared to the other non-iterative
methods. Based on the non-iterative step’s efficiency, adding one iteration still guarantees the
solution’s efficiency.
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