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The goal of this article is to present and compare recent approaches which use speech and voice analysis
as biomarkers for screening tests and monitoring of some diseases. The article takes into account metabolic,
respiratory, cardiovascular, endocrine, and nervous system disorders. A selection of articles was performed
to identify studies that assess voice features quantitatively in selected disorders by acoustic and linguistic
voice analysis. Information was extracted from each paper in order to compare various aspects of datasets,
speech parameters, methods of applied analysis and obtained results. 110 research papers were reviewed and
47 databases were summarized. Speech analysis is a promising method for early diagnosis of certain disorders.
Advanced computer voice analysis with machine learning algorithms combined with the widespread availability
of smartphones allows diagnostic analysis to be conducted during the patient’s visit to the doctor or at the
patient’s home during a telephone conversation. Speech analysis is a simple, low-cost, non-invasive and easy-to-
provide method of medical diagnosis. These are remarkable advantages, but there are also disadvantages. The
effectiveness of disease diagnoses varies from 65% up to 99%. For that reason it should be treated as a medical
screening test and should be an indication of the need for classic medical tests.
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Acronyms

Acc – accuracy,
AD – Alzheimer’s disease,
AI – artificial intelligence,

ALS – amyotrophic lateral sclerosis,
ALSFRS-R – sclerosis functional rating scale,

AMDF – average magnitude difference function,
APQ – amplitude perturbation quotient,
AR – average recall,

ASCVD – atherosclerotic cardiovascular disease,
ASR – automatic speech recognition,
AUC – area under a curve,

AUROC – area under the receiver operating characteristic,
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AVEC – audio visual emotion challenges,
AVQI – acoustic voice quality index,
BDI – Beck depression inventory,
BFI – big five inventory,

BIDR – balanced inventory of desirable responding,
BMI – body mass index,

BPRS – brief psychiatric rating scale,
CAD – coronary artery disease,
CH – control healthy,

CHD – coronary heart disease,
CHR – clinical high-risk,
CNN – convolutional neural network,
CSL – computerized speech lab,
CVR – cockpit voice recorder,
DAIC – distress assessment interview corpus,
DCT – discrete cosine transform,
DDK – diadochokinetic,
DM – diabetes mellitus,

DNN – deep neural network,
DSM – diagnostic and statistical manual of mental di-

sorders,
EM – expectation–maximization,
F0 – fundamental frequency,

FBS – fetal bovine serum,
FT4 – free thyroxine,
GC – NN gated convolutional neural network,
GFI – glottal function index,

GMM – the Gaussian mixture model,
GMM-UBM – the Gaussian mixture model-universal background

model,
GPR – the Gaussian processes regression,

GRBAS – grade-roughness-breathiness-asthenia-strain
scale,

H&Y – the Hoehn and Yahr scale,
HAMD – the Hamilton depression rating scale,
HbA1c – glycated hemoglobin A1c,

HC – healthy controls,
HLM – hierarchical linear modeling,
HMM – hidden Markov model,
HRSD – the Hamilton rating scale for depression,
HSC – hierarchical spectral clustering,
IQR – interquartile range,
IVR – interactive voice response,
JAD – Just Add Data,

K-SADS-PL – kiddie schedule for affective disorders and schi-
zophrenia (present and lifetime version),

KNN – K-nearest neighbours,
LLD – low-level descriptors,
LR – logistic regression,

LSA – latent semantic analysis,
LSTM – multi-layer long short-term memory,
LTAS – long term average spectrum,
MAE – mean absolute error,
MAP – maximum a posteriori,

MDS-UPDRS – Movement Disorders Society UPDRS,
MDVP – Multi-Dimensional Voice Program,
MFCC – mel-frequency cepstral coefficients,
MHMC – Multimedia Human-Machine Communication,

MLP – multilayer perceptron,
MMSE – mini-mental state examination,
MPT – maximum phonation time,
NB – naive Bayes,
NN – neural networks,

NN LSTM – neural net multi-layer long short-term memory,

PANAS – positive and negative affect schedule,
PANSS – positive and negative syndrome scale,
PCL-C – post-traumatic stress disorder checklist,
PCOS – polycystic ovary syndrome,

PD – Parkinson’s disease,
PDD – phase distortion deviation,

PHQ-9 – patient health questionnaire-9,
PPQ – period perturbation quotient,
PTP – phonation threshold pressure,

PTSD – post-traumatic stress disorder,
PVRQoL – Pediatric Voice-Related Quality-of-Life,

QIDS – quick inventory of depressive, symptomatology
(QIDS), clinician rating (QIDS-C), and self-report
(QIDS-SR),

RAP – relative average perturbation,
RBF – radial basis function,
RF – random forest,

RLR – randomized logistic regression,
RME – mental and emotional reinforcement,

RMSE – root mean square error,
RSI – reflux severity index,

RVM – relevance vector machines,
Sens – sensitivity,
SER – standard error of regression,
SIPS – semi-structured interview,
SIT – sentence intelligibility test,
SNR – signal-to-noise ratio,

SOPS – scale of prodromal symptoms,
Spec – specificity,
SPT – speech pause time,
STAI – state-trait anxiety inventory,
SVM – support vector machine,
T4 – thyroxine, thyroid hormone,

TSH – thyroid-stimulating hormone,
TSST-C – trier social stress test for children,

UAR – unweighted average recall,
UBM – universal background model,
UD – unipolar depression,

UPDRS – Unified Parkinson’s Disease Rating Scale,
Var – variance,
VC – vital capacity,

VHDAIC – virtual human distress assessment interview cor-
pus,

VHI – voice handicap index,
YMRS – Young’s rating scale for mania.

1. Introduction

Organs involved in the speech generation process
are highly sensitive to both physical and mental ail-
ments, hence the health of the speakers significantly
affects their manner of speaking, voice emission, syn-
tax, semantics and specific speech habits. Early detec-
tion and treatment of disorders can improve the effec-
tiveness of treatment. In spite of this, speech analysis
is currently rarely used in medical diagnostics of dis-
orders other than those directly affecting the organs
involved in speech generation and the respiratory sys-
tem.

There is a high volume of publications on the diag-
nosis of specific disorders using speech analysis. The
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largest number of publications concerns the diagnosis
of Parkinson’s disease (PD). This high number of pub-
lications is reflected in this paper.

Speech analysis is a simple, low-cost, non-inva-
sive and easy-to-provide preliminary test for disor-
ders which affect speech, even marginally. Publica-
tions usually present problems related to the diagno-
sis of a single disease entity and state a high likelihood
of diagnosis.

In this article we summarize different approaches
which create systems to detect voice and speech im-
pairments tackled by researchers around the world.
Authors take into account different languages, dialects,
types of speech (vowels, read text, monologue, etc.), al-
gorithms, and different disorders to be analyzed. The
current review aims to summarize the state-of-the-art
of voice analysis as a biomarker of diseases. In partic-
ular, we want to compare properties of speech corpora
and different approaches to speech processing paths.

Although some systematic reviews have been pre-
pared recently, they are usually dedicated to cer-
tain groups of disorders (Cummins et al., 2015a; Do-
gan et al., 2017; Low et al., 2020; Moro-Velazquez
et al., 2021; Stogowska et al., 2022). To the best
of our knowledge, there is a lack of a systematic re-
view of voice analysis in connection with somatic disor-
ders. In this study we did not include disorders which
directly affect organs involved in speech generation,
such as vocal cords or a vocal tract, as well as pul-
monary disorders. The papers present a range of disor-
ders that were analyzed by researchers and the results
they obtained. This includes cardiovascular, metabolic,
endocrine, COVID-19, schizophrenia, depression, amy-
otrophic lateral sclerosis (ALS), affective and neurode-
generative (Parkinson’s, Alzheimer’s, dementia) disor-
ders. Creating a system that could monitor and re-
veal whether a patient has any voice/speech abnor-
malities and whether further diagnostics are required
for a specific disease entity would be extremely useful
in the medical environment. Another highly desirable
tool would be a system allowing monitoring of treat-
ment through voice analysis. In this article, we present
scientific approaches to the problems of detecting dis-
orders through voice analysis and a summary of the
results, challenges, and problems.

2. Methods

2.1. Speech as an objective biomarker

For the purpose of this work, we have analyzed
the PRISMA checklist which includes reports of re-
views evaluating randomized trials. It is also a ba-
sis for reporting systematic reviews of different types
of research. Articles with publication dates between
January 2011 and November 2020 were selected from
PubMed and ISCA Archive, using keywords ‘voice’ and

‘speech’ and respective disorder names. The records
were screened for relevance to the topic of this review
in order to identify studies that quantitatively assessed
voice quality in the selected disorders by voice analysis.
Studies which included only a perceptual assessment of
voice were rejected.

For cardiovascular, metabolic and endocrine disor-
ders, schizophrenia and ALS, all records were included
as these disorders are less well documented (number of
research papers less than 10). In contrast, affective dis-
orders and neurodegenerative disorders (Parkinson’s,
Alzheimer’s, dementia) are well investigated and the
majority of publications describe automatic recogni-
tion with machine learning methods or even appli-
cations. Therefore only selected articles were included
in our analysis, selected on the basis of publication in
the ISCA archive and a high level of advancement.
In this review we mentioned the research articles as
well as three recent systematic reviews.

Determination of speech features we divided into
several categories depending on the source of their ori-
gin (prosodic, spectral, voice source, linguistic) with-
out going into further details. In some cases, stan-
dard feature vectors were selected. Machine learning
approaches are summarized with information on the
classifiers, the evaluation method and achieved best
scores. If there was no attempt at automatic classifi-
cation or regression, we report which statistical tests
were used.

Finally, reviewed papers were flagged (Tables 10,
11, and 13) with one of the tags describing how ad-
vanced it is: 1 – basic research (investigating the statis-
tical significance of acoustic parameters in the context
of disorders); 2 – automated (using machine learning
to classify regression); 3 – application (usually a smart-
phone app) for types of diagnostics (not simply collect-
ing recordings).

In Sec. 3, each subsection starts with a medical
description of how each disorder affects the voice and
contains a summary of different processing approaches;
they are supplemented by tables comparing cited stud-
ies. We reviewed a total of 110 papers, including dis-
orders: endocrine, cardiovascular, metabolic, neurode-
generative, mental, and COVID-19.

Creating a computerized system of speech recogni-
tion-based diagnostic tools includes three steps. Voice
recordings of a control group and individuals affected
by the disorder in question are required first. Next,
specific speech features are selected and calculated for
both sets. In the training phase, the computer com-
pares features of both sets of recordings and creates
a classifier. This classifies the recordings into one of
two sets: non affected individuals, or individuals sus-
pected to be affected by the ailment. The structure of
such a system is shown in Fig. 1.

Currently, the most difficult element is obtain-
ing a sufficiently high number of recordings for the
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Fig. 1. Elements of a system for determining:
speech features, training classifiers, and medical diagnosis.

training, validation, and testing phases. The recording
databases are diverse and require a brief introduction.
Software for determining speech features and creating
classifiers is generally widely available, so the main task
is selecting an effective algorithm. This means that
the same algorithms are used for a variety of issues
in speech technology, e.g., speech and speaker recogni-
tion, emotion detection and diagnosis of disease states.

We also performed a summary of available databa-
ses mentioned in the literature. Our analysis focused
on the language and content of speech (with categories
including sustained vowels, read speech, spontaneous
monologue, dialogue with a human or virtual inter-
viewer), recording protocol (how many times the in-
dividual was recorded, recording procedure, recording
duration), number of speakers, their age and gender (in
both the Control Healthy (CH) and affected persons),
and other modalities (usually video, sometimes motion
capture or biometric signals). We also included infor-
mation on metadata: clinical evaluation of patients and
perceptual evaluation of voice. Although the quality of
recordings may be crucial for further processing, we did
not compare technical details of recording procedures
(equipment, acoustic conditions, sampling frequency,
file parameters) because they are not usually system-
atically reported in the articles.

Finally, we reviewed 47 databases: 10 corpora of en-
docrine diseases (three of diabetes, four of polycystic
ovary syndrome (PCOS) and related disorders, three

of thyroid disorders), two of cardiovascular disorders
(one of CAD, one of CHD), six of metabolic disor-
ders (obesity), 12 of neurodegenerative disorders (two
of ALS, eight of Parkinson’s disease, two of Alzheimer’s
disease), and 17 of mental disorders (three of bipolar,
11 depression and/or anxiety and/or PTSD, three of
schizophrenia).

Additional diagrams were prepared to illustrate
general tendencies and to compare advancements in
the state-of-the-art in the analyzed groups of disorders.
The main sources of problems were identified and some
recommendations for future research were set.

2.2. Databases

Speech corpus development is generally time and
cost consuming; however, good quality recordings are
crucial for further processing. Figure 2 indicates that
the majority of speech recording databases for the pur-
poses of medical diagnostics emerged in 2016. This was
likely in response to publications reporting a satisfac-
tory effectiveness of speech analysis in an initial recog-
nition of disease symptoms.
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Fig. 2. Number of corpora created in 2007–2019.

There is a wide range of speech protocols, from
the shortest (sustained phonation of vowels only) to
the longest (interviews with a virtual agent). For read
speech, there are standard text passages to be read,
usually excerpts from stories or a short natural sen-
tence. Counting one to 10 is also used. Sometimes the
patient is asked for a short monologue. Just 21 of the 47
corpora contained more than two categories of speech
(Fig. 3).

Types of speech

N
um

be
r o

f c
or

po
ra

0

2

4

6

8

10

12

h v s m r r+m h+v s+m s+r s+r+m s+r+m+v

Fig. 3. Types of speech recorded in corpora 2009–2019:
h – dialogue with a human; v – dialogue with a virtual
agent; s – sustained vowels; m – monologue; r – read speech.
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2.3. Features

Deviations of voice features are generally the re-
sult of anatomical changes or changes in the function-
ing of the nervous system. The cited publications do
not concern analysis of sources of voice deviations, but
only the ability to detect the effects of these changes
is considered.

Three sets of speech parameters are usually dis-
tinguished: source parameters, vocal tract parameters,
and prosody. The first and second groups are usually
analyzed in the frequency domain of 20-30 milliseconds
frames. Therefore, they are described as low-level de-
scriptors (LLD).

Signal processing algorithms such as filtering or
linear prediction allow for the extraction of acoustic
features of the source and filter separately. The most
popular source parameters include jitter and shim-
mer, which describe the stability of fundamental fre-
quency production, and voice trembling. Examples of
typical vocal tract features include formants and mel-
frequency cepstral coefficients (MFCC). Prosodic fea-
tures, such as syllables, phrases, and sentences, are ob-
served in larger frames. For this reason, prosody pa-
rameters are also known as supra segmental or high-
level features. Prosody describes intonation (modu-
lation of fundamental frequency (F0) within the ut-
terance), intensity (loudness, energy), and rhythm of
speech (pauses, duration of speech segments, speech
tempo).

Most of the authors of the reviewed articles used
standard software tools to extract acoustic features.
The most popular software tools for acoustic feature
extraction are openSMILE, Praat, Multi-Dimensional
Voice Program (MDVP), Kay Elemetrics-Computer
Speech Lab, Dr. Speech, Snack Sound Toolkit and
MATLAB (toolboxes such as Voice Sauce).

2.4. Classification models and evaluation metrics

In the reviewed papers focusing on the relationship
between voice and the specified disorders, several study
design scenarios can be found:

Table 1. Comparison of speech databases in CAD and CHD
(v – sustained vowel; r – read speech; m – monologue; h – dialog with human; a – dialog with virtual agent).

Published Speaker
language

Number
of

patients

Number
of
HC

Age
Clinical

evaluation
Voice

evaluation

Type
of speech

Duration
per speaker
[h:min:s]v r m h a

Cardiovascular: CHD
Pareek, Sharma, 2016 N/A 80 80 53.4 NI – 1 0 0 0 0 00:00:04

Cardiovascular: CAD

Maor et al., 2018 English 71 37 63 ASCVD
risk score

– 0 1 1 0 0 NI

N/A – not applicable; NI – no information.

– ill/healthy comparison which leads to binary clas-
sification;

– comparison of subclasses of given disorders, which
leads to multiclass classification;

– comparison between pre-treatment and post-treat-
ment;

– monitoring the progression of disease severity;
– monitoring of treatment success;
– correlation with prodromal symptoms which leads

to the measure of risk of the given disorder.

Depending on the case, classification or regression
methods are applied. The most popular models are
Gaussian mixture model (GMM) and i-vectors. Two
type of classifiers are the most frequently used: support
vector machine (SVM) and neural networks (NN). Dif-
ferent measures are used according to the classification
of the regression model (Tables 2, 4, 6, 8, 10, 11, 13,
15, and 17).

3. Results

3.1. Cardiovascular diseases

Cardiovascular disease is the most common cause
of death in both developed and developing countries
(Kones, Rumana, 2017). There is currently little ev-
idence on any association between cardiovascular dis-
ease and voice features (Table 1). It has been posited
that the disease process may affect anatomical struc-
tures associated with voice generation, for example in
atherosclerosis; as a systemic inflammatory process, it
is associated with multiple pathological processes such
as chronic kidney disease, cerebrovascular disease, vas-
cular dementia, retinopathy and peripheral artery dis-
ease (Maor et al., 2018).

Pareek and Sharma (2016) studied coronary
heart disease (CHD) (Table 2). Their research reveals
significant variations in spectrograms, the long-term
average spectrum (LTAS) and other voice parameters
such as jitter, shimmer and amplitude perturbation
quotient (APQ), smoothed APQ, relative average per-
turbation (RAP), period perturbation quotient (PPQ),
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Table 2. Comparison of research methods in cardiovascular diseases
(pr – prosodic; sp – spectral; vs – voice source; li – linguistic; naf – number of acoustic features).

Features
Published Disease Tool used for features extraction

pr sp vs li naf
Classifier/Test

Pareek, Sharma, 2016 CHD MDVP, CSL 0 1 1 0 18 –
Maor et al., 2018 CAD Beyond verbal communications 0 1 0 0 81 Logistic regression

smoothed PPQ in comparison with the control group
(P < 0.05).

In research conducted by (Maor et al., 2018), coro-
nary artery disease (CAD) patients were compared to
CH (Table 2). MFCC parameters were extracted. Uni-
variate binary logistic regression analysis identified five
voice features that were associated with CAD. Multi-
variate binary logistic regression with adjustment for
atherosclerotic cardiovascular disease (ASCVD) risk
scores identified two voice features that were inde-
pendently associated with CAD (odds ratio OD =
0.37; 95% CI, interquartile range IQR = 0.18–0.79;
OD = 4.01; 95% CI, IQR = 1.25–12.84; p-value =
0.009 and p-value = 0.02, respectively). Both features
were more strongly associated with CAD when pa-
tients were asked to describe an emotionally significant
experience.

3.2. COVID-19

Acute respiratory disease caused by the SARS-
CoV-2 locates and multiplies mainly in the cytoplasm
of lung cells. Thanks to the techniques enabling pre-
cise voice analysis combined with artificial intelligence
(AI), it is possible to effectively and, above all early,
diagnose COVID-19. Diagnostic scenarios can be con-
ducted based on voice samples sent over a telephone.

Han et al. (2020) focused on developing some
potential use-cases of intelligent speech analysis for
COVID-19 diagnosed patients. By analysing speech
recordings they constructed audio-only-based models
to automatically categorise the health state of patients
from four aspects: severity of illness, sleep quality, fa-
tigue, and anxiety.

The prominent symptoms of COVID-19 include
cough and breathing difficulties. Sharma et al. (2020)
claim that respiratory sounds (cough, breath, and
voice) can provide useful insights, enabling the de-
sign of a diagnostic tool. In their research, they deter-
mined 9 sound categories describing the voice, breath
and cough. The acoustic analysis included the spec-
tral analysis, energy description and zero-crossing rate.
The accuracy on test data was 67%.

In order to better evaluate the COVID-19 infec-
tion, Wei et al. (2020) proposed an end-to-end method
for cough detection and classification. It is based on
real human-robot conversation data, which processes
speech signals to detect cough and classifies it if de-

tected. They find that the weighted sum can generate
a 76% top-1 accuracy.

Pinkas et al. (2020) studied the harnessed deep
machine learning and speech processing to detect
the SARS-CoV-2 positives. Their dataset of cellular
phone recordings included vocal utterances, speech,
and coughs that were self-recorded by the subjects
in either hospitals or isolation sites. They achieved
the following diagnostic efficiency: a recall of 78% and
a probability of false alarm (PFA) of 41%.

The papers of (Lechien et al., 2020; Stasak et al.,
2021) presented voice analysis to classify the sever-
ity of COVID-19, from mild to moderate. They have
reported the severity of COVID-19 might have influ-
enced abnormally high rates of vocal dysphonia likely
due to glottic (e.g., vocal folds) edema and tissue in-
flammation. In the study, the scientists used glottal,
prosodic and spectral acoustic features from short-
duration speech segments and applied them to ma-
chine learning algorithms. Experimental results indi-
cate that certain feature-task combinations can pro-
duce COVID-19 classification accuracy of up to 80%
as compared with using the all-acoustic feature base-
line (68%).

Despotovic et al. (2021) presents the experiments
with cough patterns using standard acoustic features
sets, wavelet scattering features and deep audio em-
beddings extracted from low-level feature representa-
tions. The models achieve accuracy of 89% confirm-
ing the applicability of audio signatures to identify the
COVID-19 symptoms.

The authors of (Hassan et al., 2020) applied six
speech features from a collected dataset and deep neu-
ral network (DNN) to create system for COVID-19 de-
tection. The results show the classification accuracy
for breathing sound reaching up to 98%, for cough
sounds an accuracy of 97% was attained, while the
voice accuracy of the system was only 88%. Their ana-
lysis shows that in the first place collecting cough and
breathing sounds should make a COVID-19 detection
system.

Subirana et al. (2020) showed that AI transfer
learning algorithms trained on cough phone record-
ings results in diagnostic tests for COVID-19. They
suggest a novel open collective approach to large-scale
real-time health care AI. They evaluated the perfor-
mance of four shallow machine learning classification
algorithms: SVM, K-nearest neighbors, random forest,
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logistic regression. The presented graphs show that,
depending on the methods used, the accuracy of
COVID-19 diagnostics ranged from less than 80%
(KNN and DenseNet201) to almost 100% (logistic re-
gression and DenseNet201).

Laguarta et al. (2020) noticed that COVID-19
subjects, especially including asymptomatic, could be
accurately discriminated from a forced-cough cell phone
recording using AI. When validated with subjects
diagnosed using an official test, the model achieved
COVID-19 sensitivity of 99% with a specificity of 94%.

Deshpande and Schuller (2020) summarised ef-
forts taken by the research community towards help-
ing the individuals and the society in the fight against
COVID-19 using speech signal processing.

3.3. Obesity and metabolic syndrome

Obesity is a growing health problem in many parts
of the world. Excessive body fat is associated with mul-
tiple disorders such as diabetes, heart disease, hyper-
tension, and stroke. Obesity itself is characterized by
chronic low grade inflammation with permanently in-
creased oxidative stress (Kopp, 2019). Given the po-
tential influence of obesity (body mass index (BMI)
of 30 or above) on the size and configuration of up-
per airway structures, it follows that other structures
involved in voice production may be affected by body
mass (Kopp, 2019).

Table 3. Comparison of speech databases used for obesity analysis
(v – sustained vowel; r – read speech; m – monologue; h – dialog with human; a – dialog with virtual agent).

Published Speaker
language

Number
of

patients

Number
of
HC

Age
Clinical

evaluation
Voice

evaluation

Type
of speech

Duration
per speaker
[h:min:s]v r m h a

Solomon et al.,
2011

English 8 8 53.1 laryngeal
imaging

severity,
roughness,
breathiness,

strain,
pitch,

loudness

1 1 0 0 0 NI

Celebi et al.,
2013

Turkish 20 20 38.8 BMI,
laryngoscopic en

VHI,
GRBAS

1 1 0 0 0 NI

de Souza et al.,
2014

N/A 44 30 42.45 – vocal
complaint

1 0 0 0 0 00:00:10

Hamdan et al.,
2014

English 9 0 35.56
BMI,

laryngeal
examination

simplified
GRBAS

1 1 0 0 0 NI

Barsties et al.,
2013

German 22 7 21.4
BMI,

body fat
volume

roughness,
hoarseness,
breathiness,

AVQI

1 1 0 0 0 NI

de Souza,
Santos, 2018

N/A 42 42 26.83 BMI 1 0 0 0 0 NI

N/A – not applicable; NI – no information.

The effect of obesity on voice changes is scarcely
analyzed in the literature. The results of the conducted
research suggest that there is a link between vocal
tract morphology and obesity. Research requires vast
databases and selecting patients with specific comor-
bidities. In this case, more effort to obtain data must
be made. The summary of databases used so far in the
literature is shown in Table 3.

Solomon et al. (2011) conducted a longitudinal
analysis over a period of six months on eight obese
and eight non-obese adults who underwent bariatric
surgical procedures. No significant differences were de-
tected between the groups during the preoperative as-
sessment for acoustic parameters, maximum phonation
time, laryngeal airway resistance and airflow during
a sustained vowel. The only minor differences were de-
tected for strain, pitch and loudness perception of voice
over time, but not between groups. Phonation thresh-
old pressure (PTP), at comfortable and high pitches
(30% and 80% of the F0 range), changed significantly
over time, but not between groups. Analysis of indi-
vidual data revealed a trend for PTP at 30% F0 to
decrease as BMI decreased.

da Cunha et al. (2011) posited that obese indivi-
duals’ voices are more aperiodic than non-obese indi-
viduals’ voices, as jitter and shimmer were increased
and harmonic-to-noise ratio was decreased in the for-
mer group in their study.
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Hamdan et al. (2014) investigated 15 subjects un-
dergoing bariatric surgery. They also found no signifi-
cant difference in any of the acoustic features or in the
laryngeal findings before and after surgery.

In the study conducted by Celebi et al. (2013),
20 obese and 20 non-obese volunteers underwent voi-
ce evaluation by laryngoscopy, acoustic analysis, aero-
dynamic measurement and perceptual analysis, us-
ing the grade-roughness-breathiness-asthenia-strain
(GRBAS) scale and the 10 scales voice handicap index
(VHI). No differences were found in acoustic analysis
parameters between the two groups (P > 0.05). Maxi-
mum phonation time in the obese group (mean ± stan-
dard deviation, 19.6± 4.9 seconds) was significantly
shorter than in the control group (26.4± 4.1 seconds)
(P < 0.001), although the S/Z ratio was similar be-
tween the two groups.

de Souza et al. (2014) verified the presence of vo-
cal complaints and a correlation between the auditory-
perceptual analysis of voice and vocal self-assessment
in a group of women with morbid obesity before and af-
ter bariatric surgery. There were no statistically signif-
icant differences regarding the mean fundamental fre-
quency of the voice in both groups; however, there was
a significant difference between the two groups regard-
ing maximum phonation.

Barsties et al. (2013) analyzed the impact of body
mass and body fat volume on selected parameters of
vocal quality, a phonatory range and aerodynamics in
women. Significant differences between three weight
groups were found across several measures of inten-
sity: vital capacity (VC), maximum phonation time
(MPT), and shimmer. As compared to other groups,
significantly higher values of maximum and minimum
intensity levels, as well as sound pressure level during
habitual running speech, were observed for the obese
group. In contrast, the underweight group had signifi-
cantly lower values for VC and the ratio of expected to
measured VC. Furthermore, underweight subjects dif-
fered significantly as compared to normal weight sub-
jects with lower MPT and the higher lowest F0. Fi-
nally, the obese group showed significantly lower shim-
mer values than normal-range weight subjects.

Table 4. Comparison of research methods used for obesity analysis
(pr – prosodic; sp – spectral; vs – voice source; li – linguistic; naf – number of acoustic features).

Features
Published Disease Tool used for features

extraction pr sp vs li naf
Classifier/Test

Solomon et al. (2011) MDVP 0 0 1 0 7 ANOVA

Barsties et al. (2013) Voice Profiler 4.2,
Speech Tool, Praat

0 1 1 0 20 Mann-Whitney U-test

Celebi et al. (2013) Praat 0 0 1 0 7 Mann–Whitney U
de Souza et al. (2014) ANAGRAF 0 0 1 0 4 –
Hamdan et al. (2014) Visi-Pitch IV 0 0 1 0 7 Wilcoxon
de Souza, Santos (2018)

obesity

Praat 0 0 1 0 2 Mann-Whitne

de Souza and Santos (2018) investigated the re-
lationship between BMI and average acoustic voice fea-
tures. The subjects were grouped according to BMI:
19 underweight, 23 in the normal range, 20 over-
weight, and 22 obese. Regarding the average F0, there
was a statistically significant difference between under-
weight and overweight and obese groups, and the nor-
mal range and overweight and obese groups. The ave-
rage MPT revealed a statistically significant difference
between underweight and obese, the normal range and
obese, and overweight and obese individuals. Obese
women showed lower MPT.

3.4. PCOS

Polycystic ovary syndrome (PCOS) is the most
common cause of hyperandrogenism in women of re-
productive age, with the prevalence of 10–15%. The
main characteristics of this endocrinopathy are men-
strual disorders, clinical and/or laboratory hyperan-
drogenism and polycystic ovary morphology on ul-
trasonography. The elevated serum concentration of
testosterone can account for symptoms such as hir-
sutism, acne and androgenic alopecia, as well as a deep,
low voice. Moreover, other common conditions in
women with PCOS are insulin resistance, disturbances
of glucose metabolism, and dyslipidemia. Recent stud-
ies have shown that insulin resistance is associated with
poorer verbal fluency in women (Ekblad et al. 2015;
Sirmans, Pate, 2014). The significant delay in diag-
nosing this endocrinopathy still remains a worldwide
issue. The use of speech analysis, as an easily acces-
sible, a convenient screening test, could possibly ex-
pedite establishing a proper diagnosis and, in conse-
quence, help provide the women with a proper treat-
ment and an early monitoring for metabolic compli-
cations of PCOS. The speech databases and methods
applied for classification to analyze PCOS diseases by
speech are shown in Tables 5 and 6.

Hannoun et al. (2011) found that there was no sta-
tistically significant difference in the acoustic parame-
ters except for an increase in the relative average per-
turbation (P < 0.035) and a decrease in the maximum
phonation time (P < 0.001) in patients with PCOS.
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Table 5. Comparison of speech databases in diabetes, thyroid and PCOS diseases
(v – sustained vowel; r – read speech; m – monologue; h – dialog with human; a – dialog with virtual agent).

Published Speaker
language

Number
of

patients

Number
of
HC

Age
Clinical

evaluation
Voice

evaluation

Type
of speech

Duration
per speaker
[h:min:s]v r m h a

Endocrine: diabetes
Chitkara,
Sharma, 2016

N/A NI NI 40–60 – GRBAS 1 0 0 0 0 00:00:04

Pinyopodjanard
et al., 2019

N/A 83 70 54 HbA1c, FBS – 1 0 0 0 0 00:00:05

Hamdan et al.,
2012

NI 82 29 52.83 HbA1c, FBS GRBAS 1 1 0 0 0 NI

Endocrine: thyroid
Dassie-Leite
et al., 2018

NI 100 100 3–12 altered T4,
FT4, TSH

PVRQoL 1 1 0 0 0 NI

Mohammadzadeh
et al., 2011

N/A 120 88 35.9
T4,

serum TSH
GRBAS 1 NI NI NI NI NI

Junozović-Žunić
et al., 2019

N/A 47 0 45 – GRBAS 1 1 0 0 0 00:00:02

Endocrine: PCOS
Huang et al.,
2015

English 48 0 41–62
free T

concentrations
VHI 1 1 0 0 0 NI

Hannoun et al.,
2011

N/A 17 21 26 testosterone
level

– 1 0 0 0 0 00:00:02

Gugatschka
et al., 2013

German 24 10 29 endocrinologic VHI 1 1 0 0 0 NI

Aydin et al.,
2016

N/A 30 22 23.8 endocrinologic,
laryngeal

VHI, GFI,
RSI

1 0 0 0 0 NI

N/A – not applicable; NI – no information.

Table 6. Comparison of research methods in endocrine diseases
(pr – prosodic; sp – spectral; vs – voice source; li – linguistic; naf – number of acoustic features).

Features
Published Disease Tool used for features

extraction pr sp vs li naf
Classifier/Test

Dassie-Leite
et al., 2018

thyroid VOXMETRIA 0 0 1 0 4 Student’s t-test,
Mann-Whitney

Hamdan et al.,
2012

diabetes

VISI-PITCH IV 0 0 1 0 7
Wilcoxon Mann–Whitney

rank sum,
Pearson’s Chi-square

Chitkara,
Sharma, 2016

MDVP, CSL 0 0 1 0 22 –

Pinyopodjanard
et al., 2019

MDVP, CSL 0 0 1 0 7 Logistic regression

Mohammadzadeh
et al., 2011

thyroid

Visipitch III, MDVP 0 0 1 0 13 Student t-test,
chi-square, Mann-Whitney

Junozović-Žunić
et al., 2019

Speech Training
for Windows, Dr. Speech,

EZ Voice Plus
0 0 1 0 4 Paired-samples

t-test

Huang et al., 2015 hysterectomy CSL 0 0 1 0 5 Linear regression

Hannoun et al.,
2011

PCOS

VISI Pitch (Model 3300) 0 0 1 0 6 Chi-square,
Mann-Whitney tests

Gugatschka
et al., 2013

MDVP 0 0 1 0 9 Student t-test

Aydin et al., 2016 Dr. Speech 0 0 1 0 8

Pearson chi-square,
Fisher’s exact test,
Student t-test,

Mann-Whitney U
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Gugatschka et al. (2013) observed a trend to-
wards a lower mean fundamental frequency, although
it was not statistically significant. Elevated serum lev-
els of androgens, as found in women with PCOS, were
shown not to have an impact on the subjective and
objective voice parameters.

Aydin et al. (2016) claimed that abnormal muscle
tension patterns and impaired vocal fold vibration are
common in patients with PCOS, although they are not
accompanied by increased vocal symptoms or deterio-
rated acoustic voice parameters.

Huang et al. (2015) showed that testosterone ad-
ministration in women with low T levels over 24 weeks
was associated with dose- and concentration-depen-
dent decreases in average pitch in the higher dose
groups. These changes were seen in spite of an ab-
sence of self-reported changes in voice. The partici-
pants were healthy women, 41–62 years of age, who
had undergone hysterectomy with or without partial
or total oophorectomy.

3.5. Diabetes

Diabetes mellitus (DM) is a group of metabolic dis-
eases characterized by chronic hyperglycemia which is
a result of defective secretion and/or action of insulin.
Type 2 DM is the most prevalent type of diabetes and
concerns about 90% of diabetic patients worldwide. In
the pathogenesis of Type 2 DM both mechanisms – im-
paired insulin action (insulin resistance) and impaired
insulin secretion – play a role. Chronic hyperglycemia
leads to development of diabetic complications and af-
fects among others neurological, vascular, and muscu-
lar systems, all of which are essential components of the
phonatory apparatus (Hamdan et al., 2012) and meth-
ods applied for classification used by the researchers to
analyze diabetes diseases are shown in Tables 5 and 6,
respectively.

Hamdan et al. (2012) measured fundamental fre-
quency, shimmer, relative average perturbation, har-
monic-to-noise ratio and voice turbulence index, and
reported no significant differences in any of the acous-
tic variables between diabetic patients and CH. There
was no significant difference in the mean score of any
of the perceptual evaluation parameters between di-
abetic patients and CH, despite the fact that mean
scores were all higher in the diabetic group except for
roughness. Patients with type 2 DM and poor glycemic
control or neuropathy showed a significant difference
in the grade GRBAS classification of their voice com-
pared to CH.

In research conducted by Chitkara and Sharma
(2016), the goal was to distinguish between vocal char-
acteristics of patients with type 2 DM and control
group. All the voice parameters that were investi-
gated (jitter, shimmer, smoothed amplitude perturba-
tion quotient, noise to harmonic ratio, relative average

perturbation, amplitude perturbation quotient) show
a significant difference in their values for the diabetic
group versus CH.

Pinyopodjanard et al. (2019) found that F0 in
female diabetic patients was significantly lower than
controls (222.23± 27.89 Hz versus 241.08± 28.21 Hz,
P < 0.01). In female diabetic subgroups with disease
duration of over 10 years, poor glycemic control or neu-
ropathy, F0 remained significantly lower. Multivariate
analysis showed that F0 was significantly associated
with diabetes after controlling for age, BMI, presence
of hypertension, and dyslipidemia. However, F0 was
not able to predict the presence of diabetes as shown
by the logistic regression analysis (P = 0.243).

3.6. Hypothyroidism and hyperthyroidism

Hypothyroidism is the state of insufficient hormone
production by the thyroid gland. Commonly reported
symptoms in patients with this condition are hoarse-
ness, deep or weak voice, vocal fatigue and tension
while speaking as a result of vagus nerve edema, laryn-
geal muscle weakness and vocal cord paresis caused by
an enlarged thyroid gland. Hyperthyroidism, as a state
of increased thyroid hormone secretion, can also sig-
nificantly reduce voice intensity and deepen its timbre.
Hoarseness, roughness and trembling voice are also ob-
served (Junozović-Žunić et al., 2019). The research
databases used in literature are shown in Table 5 and
methods for further speech analysis are shown in Ta-
ble 6.

Mohammadzadeh et al. (2011) found that F0,
voice turbulence index and soft phonation index were
significantly different from control values. There was
positive correlation between thyroid-stimulating hor-
mone (TSH) concentration and variation in F0 and
prevalence of voice disorders.

Dessie-Leite et al. (2018) led an observational,
analytical, cross-sectional study including 200 pre-
pubertal children, of whom 100 had congenital hy-
pothyroidism. The following parameters were evalu-
ated: 1) history (identification, complaints, and inter-
fering variables); 2) auditory-perceptual and acous-
tic evaluation; 3) self-assessment scores in the Pedi-
atric Voice-Related Quality-of-Life (PVRQoL) survey;
4) laryngological evaluation; 5) medical records (con-
genital hypothyroidism etiology, age at treatment ini-
tiation, disease severity at diagnosis, treatment qual-
ity, and thyroid function tests on the day of the ex-
amination). Both groups had mean/median acoustic
measurements within normal limits. There was no as-
sociation between voice/larynx characteristics and en-
docrinological data.

Junozović-Žunić et al. (2019) reported that pa-
tients with hypothyroidism displayed significant dif-
ferences in amplitude perturbation, jitter and noise-
to-harmonics ratio between pre-treatment and post-
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treatment periods. In the group of patients with hy-
perthyroidism, significant differences were noted in
the aerodynamic parameter maximum phonation time
only. There were significant differences in all percep-
tual parameters in both groups of patients (P < 0.05)
in pre- and post-treatment, except in the grade and
asthenia parameter in the group of patients with hy-
pothyroidism. The parameter grade was a border line
insignificant in the group of patients with hyperthy-
roidism.

3.7. Mental and neurodegenerative disorders

There is a high volume of publications on the diag-
nosis of neurodegenerative and mental disorders using
speech analysis. Most of the works concern the acoustic
analysis of speech, but there are publications inform-
ing about the high effectiveness of linguistic analysis,
an example is (Stasak et al., 2017).

The application described in (Kiss et al., 2021) is
capable of estimating the probability of three types of
voice disorders in English and Hungarian: depression,
dysphonia, and Parkinson’s disease.

Villatoro-Tello et al. (2021) used the available
lexicon for a mentally ill and control subjects in a clas-
sification process to detect depression and dementia.

3.7.1. Schizophrenia

Schizophrenia is a chronic psychiatric disorder that
affects 1% of the world’s adult population. Language,
thought and communication dysfunction characterize
all its symptoms. They can be broadly divided into two

Table 7. Comparison of speech databases used for schizophrenia analysis
(v – sustained vowel; r – read speech; m – monologue; h – dialog with human; a – dialog with virtual agent).

Published Speaker
language

Number
of

patients

Number
of
HC

Age
Clinical

evaluation
Voice

evaluation

Type
of speech

Duration
per speaker
[h:min:s]v r m h a

Mota et al., 2012 Spanish 16 8 35.75 DSM-IV,
BPRS, PANSS

0 0 0 1 0 00:20:00
–00:40:00

Bedi et al., 2015 English 34 0 14–27 SIPS/SOPS – 0 0 0 1 0 01:00:00
Gosztolya et al.,
2018

Hungarian 10 8 39.9 MMSE – 0 0 1 0 0 NI

NI – no information.

Table 8. Comparison of research methods in schizophrenia examination
(pr – prosodic; sp – spectral; vs – voice source; li – linguistic; naf – number of acoustic features).

Features
Published Disease Tool used for features

extraction pr sp vs li naf
Classifier/Test

Mental

Mota et al., 2012

schizophrenia

Network Analysis Toolkit, MATLAB 0 0 0 1 11 NB, RBF, MLP,
SVM, DT

Bedi et al., 2015
Natural Language Toolkit (NLTK),

POS-Tag Pen Tree Bank
1 0 0 1 7 Convexhull classifier

Gosztolya et al.,
2018

ASR with DNN, 1 0 0 0 8 SVM

groups: positive and negative. Positive thought disor-
der leads to a discourse that is difficult to understand
(derailment, contact, neologisms, etc.). The research
databases and conducted research are summarized in
Tables 7 and 8, respectively.

Mota et al. (2012) compared patients with schi-
zophrenia and mania. Global speech graph measures
were not significantly different for the groups; how-
ever, patients with schizophrenia produced signifi-
cantly fewer words per report than patients with ma-
nia. The authors observed poor speech, logorrhea and
flight of thoughts.

Bedi et al. (2015) reported a proof-of-principle
study which aimed to test automated speech analysis
combined with machine learning to predict later psy-
chosis onset in youths at clinical high-risk (CHR) for
psychosis. Thirty-four CHR youths had baseline inter-
views and were assessed quarterly for up to two and
a half years; five transitioned to psychosis. Speech fea-
tures included a latent semantic analysis (LSA) mea-
sure of semantic coherence and two syntactic mark-
ers of speech complexity: maximum phrase length and
the use of determiners (e.g., which). These speech fea-
tures predicted later psychosis development with 100%
accuracy, outperforming classification from clinical in-
terviews. Speech features were significantly correlated
with prodromal symptoms.

Gosztolya et al. (2018) matched 10 subjects with
schizophrenia and eight HC with age and gender. The
speakers performed spontaneous speech about their
previous day for 5 min. The automatic speech recogni-
tion (ASR) system was trained to recognize the phones
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in the utterances. For acoustic modeling, a standard
deep neural network (DNN) with feed-forward topol-
ogy was applied. A detailed examination revealed that,
among the pause-related temporal parameters, those
which took into account both the silent and filled
pauses were the most useful in distinguishing the two
speaker groups.

In studies of links between voice and schizophre-
nia, more research has been conducted in the area
of voice perception (e.g., Pinheiro, Nizinkiewicz,
2019). Their findings support the hypothesis that
higher-order operations reflected in amplitude mod-
ulations are abnormal in schizophrenia in a valence-
dependent manner. The altered detection of vocal
changes with a positive quality may lead to deficits in
the comprehension of emotional states and intentions
of social partners during vocal communication.

Table 9. Comparison of speech databases in bipolar and depression disorder
(v – sustained vowel; r – read speech; m – monologue; h – dialog with human; a – dialog with virtual agent).

Published Speaker
language

Number
of

patients

Number
of
HC

Age
Clinical

evaluation
Voice

evaluation

Type
of speech

Duration
per speaker
[h:min:s]v r m h a

Mental: bipolar

Grünerbl et al.,
2014

German NI NI 18–65 HAMD,
YMRS

– 0 0 0 1 0 NI

Guidi et al., 2015 NI 11 18 NI QID, YMRS – 0 1 0 0 0 NI

Faurholt-Jepsen
et al., 2016

Danish 28 0 30.3± 9.3 HAMD,
YMRS

– 0 0 0 1 0 NI

Alghowinem
et al., 2016

English 30 30 21–75 DSM-IV – 0 0 0 1 0 00:08:33

Yang et al., 2012 English 57 0 39.7(19–65) HRSD – 0 0 0 1 0 NI

Mundt et al.,
2012

English 165 0 37.8± 12.5

HAM-D,
DSM-IV,
QIDS-C,
QIDS-SR

– 1 1 1 0 0 NI

Valstar et al.,
2013

German NI NI 31.5± 12.3 BDI-II Valence,
Arousal

1 1 1 0 1 00:25:00

Hönig et al., 2014 German 219 0 31.5± 12.9 BDI – 0 1 1 0 0 00:08:08

DeVault et al.,
2014

English 351 0 45.6± 12.2 – – 0 0 0 1 1 00:17:30

Afshan et al.,
2018

Mandarin 735 953 NI DSM-IV – 0 0 0 1 0 00:01:52

McGinnis et al.,
2019

English 71 0 3–8 TSST-C,
K-SADS-PL

– 0 0 1 0 0 00:03:00

Scherer et al.,
2013b

English 43 0 41.2± 11.6 PHQ-9,
PCL-C

– 0 0 0 0 1 00:60:00

Gratch et al.,
2014

English 110 NI 18–65

PCL-C,
PHQ-9,
STAI-T,
BIDR,

BFI, RME,
PANAS

– 0 0 0 1 0 00:38:11

NI – no information.

3.7.2. Depression and bipolar disorder

Reduced speech activity in patients with depres-
sion, especially with psychomotor impairment, is
confirmed by many systematic studies. A number of
clinical observations suggest that changes in voice
features, such as pitch, may be important measures in
diagnosing the early-stages of depression. They can
also assess the progress of treatment for a depressive
episode. Speech pause times (SPT), a silent interval
between phonations during automatic speech, can be
useful as an objective pathophysiological marker in
depression. In clinical remission, depressive patients
had comparable SPT values to the CH group. Studies
show that in bipolar disorder, increased speech ac-
tivity can predict a switch to hypomania. Depression
is characterized by psychomotor retardation; in speech,
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this shows up in reduction of pitch (variation, range),
loudness, tempo and in voice qualities different from
those of typical modal speech (Mundt et al., 2012;
Faurholt-Jepsen et al., 2016). The comparison of
speech databases and conducted research summary are
presented in Tables 9, 10, and 11.

One of the most popular corpora used for de-
pression research is the Mundt database. Thirty five
physician-referred patients beginning treatment for de-
pression were assessed weekly, using standard depres-
sion severity measures during a six-week observational
study. Speech samples were also obtained over the tele-
phone each week using an interactive voice response
(IVR) system to automate data collection (Faurholt-
Jepsen et al., 2016).

Helfer et al. (2013) measured articulatory pre-
cision manifested through formant frequency track-
ing. GMM and SVM were applied using the Mundt
database. They showed that a depression state can be
classified with only formant frequencies and their dy-
namics given by the velocity and acceleration.

Cummins et al. (2015a) also used the Mundt cor-
pus and the GMM model, although they focused on
the spectral and energy-based properties of speech.
They stated that depression-induced changes are in the

Table 10. Comparison of research methods and results in mental disorders
(pr – prosodic; sp – spectral; vs – voice source; li – linguistic; naf – number of acoustic features).

Features
Published Database Tool used for features

extraction pr sp vs li naf
Classifier/Test Evaluation

metrics
Best score Tag

Mental: depression

Alghowinem
et al., 2012

Black Dog openSMILE 1 1 1 0 NI HMM,
GMM

VAR, F1 VAR = 71% 2

Mundt et al.,
2012

Mundt 2 Praat 1 1 1 0 12
logistic

regression,
t-test

Log Odds
Response,
p-value

– 1

Cummins
et al., 2013

Mundt 1,
Black Dog

openSMILE 0 1 0 0 39 GMM-UBM Acc ∼65% 2

Scherer
et al., 2013a

VHDAIC NI 1 1 1 0 4 SVM Acc, F1 75% 2

Valstar
et al., 2013

AViD openSMILE 1 1 1 0 2268 CVR RMSE, MAE 10.35,
14.12

2

Hönig et al.,
2014

AVEC2014 openSMILE 1 1 1 0 3805 RLR spearman’s ρ,
pearson’s r

−0.46 1

Bozkurt
et al., 2014

Mundt 1 openSMILE,
Praat

0 1 0 0 2860 SVM UAR 69.48% 2

Cummins
et al., 2015c

Mundt,
AVEC2013

openSMILE 0 1 1 0 2268 RVM RMSE 10.89 2

Zhao et al.,
2020

AVEC2013,
AVEC2014

openSMILE 0 1 1 0 DCNN RMSE, MAE 9.57
7.9

2

Seneviratne
et al., 2020

Mundt

Aperiodicity,
Periodicity,
Pitch (APP)
detector

0 1 1 0 20 SVM Acc 81.77% 2

Alghowinem
et al., 2016

Black Dog,
Pitt, AVEC

openSMILE 1 1 1 0 504 SVM AR 96.90% 2

NI – no information.

laryngeal coordination and the vocal tract behavior.
They show that depression is associated with a de-
creases in the pitch variability, changes in formant fre-
quencies and decreases in the sub-band energy vari-
ability.

Hönig et al. (2014) observed a similar speech dis-
order in depression and sleepiness. They employed
a small group of acoustic features, modeling prosody
and spectrum, enriched with voice quality. The dataset
comprises 1122 recordings from 219 German subjects
(66 male); mean age 31.5 years, total duration of all
files 29.7h. The database consists of read and sponta-
neous speech. The length of the speech tasks is between
5.8sec and 5.3min (mean 1.6min).

Scherer et al. (2013a; 2013b) examined another
group of features – voice quality related, especially in
the breathy-tense dimension – and used SVM as a clas-
sifier. The authors introduced a new dataset: virtual
human distress assessment interview corpus with pa-
tients with depression and PTSD.

Experiments presented by Cummins et al. (2015b)
support the hypothesis that reduction in acoustic vari-
ation of speech is produced under more severe depres-
sion. Their dataset comprises the Mundt corpus and
AVEC2013. MFCC features were extracted. Universal
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Table 11. Comparison of research methods and results in mental disorders
(pr – prosodic; sp – spectral; vs – voice source; li – linguistic; naf – number of acoustic features).

Features
Published Database Tool used for

features extraction pr sp vs li naf
Classifier/Test Evaluation

metrics
Best score Tag

Stasak et al.,
2016

AVEC2014 openSMILE 1 1 1 0 2155 SVM, RVM RMSE 11.20% 2

Shau, Espy-
-Wilson, 2016

Mundt 1 NI 0 0 1 0 NI SVM Acc 62–87% 2

Simantiraki
et al., 2017

AVEC2014 openSMILE 0 0 1 0 247 JAD AUC 0.88 2

Stasak et al.,
2017

DAIC COVAREP speech
toolkit

0 1 0 1 74 DT Acc 82% 2

Afshan et al.,
2018

CONVERGE openSMILE,
VoiceSauce

0 1 1 0 >6300 GMM +
i-vectors

P, R,
F1, A

F1 = 0.95 2

Al Hanai
et al., 2018

DAIC NI 1 1 1 1 553 NN LSTM MAE,
RMSE

MAE = 4.97
RMSE = 6.27

2

Xezonaki
et al., 2020

DAIC,
General

Psychotherapy
Corpus
(GPC)

NI 1 1 1 1

SVM,
hierarchical

attention-based
Network

UAR,
F1-macro

UAR = 0.72
F1-macro = 0.69

2

McGinnis
et al., 2019

own MATLAB 0 1 1 0 NI LR, SVM
Acc,
Sens,
Spec

80%, 54%, 93% 2

Mental: bipolar disease

Grünerbl
et al., 2014

own openSMILE 1 1 1 1 17 NB
Acc,
recall,

precision
70% 2

Guidi et al.,
2015

own – 1 0 1 0 2
non-parametric
Friedman test
for paired data

P < 0.05 – 1

Faurholt-
-Jepsen et al.,
2016

own openSMILE 0 1 1 0 6552 RF
Acc,
Sens,
Spec

0.74,
0.97,
0.52

2

Guidi et al.,
2017

own NI 1 0 1 0 12

Friedman’s
test for paired

data,
Mann–Whitney

U-test

P < 0.05 – 1

NI – no information.

background models (UBMs) were trained with the
expectation-maximization (EM) algorithm. Speaker-
specific GMMs were formed using full adaptation, with
five iterations of the maximum a posteriori (MAP) al-
gorithm.

The goal of research conducted by Bozkurt et al.
(2014) was to find speech features that can distin-
guish speaking patterns of individuals with a diag-
nosis of clinical depression on a speaker-independent
basis. Speech parameters were obtained from spectral
analysis. Experiments for two-class depressed vs. non-
depressed subjects were performed using SVM classi-
fiers implemented on free speech recordings. Features
advanced recognition rates up to 69% of the arithmetic
average of individual class accuracies.

Stasak et al. (2016) showed performance boost-
ing for the depression classification by using speech
affect ratings in combination with low level features

vs using these descriptors alone. They also showed the
importance of setting thresholds for data selection for
a specific affect. An automatic emotion-rating system
derived from GeMAPS may positively contribute to
performance in combination with low level features.

Khorram et al. (2016) took an approach for de-
pression detection in bipolar patients. They combined
two systems. The first was patient-specific and used
unlabeled personal calls along with assessment calls to
develop a unified background model and i-vectors, re-
spectively. The second system was cohort-general and
based on rhythm features. Their results showed im-
provement from the baseline with the unweighted aver-
age recall increasing from 0.66± 0.11 to 0.73± 0.09 and
the area under the receiver operating curve increasing
from 0.69± 0.15 to 0.78± 0.12.

Huang et al. (2016) collected six speech responses
from 30 subjects – 15 with unipolar depression (UD)
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and 15 with bipolar disorder – and used the hierar-
chical spectral clustering (HSC) algorithm to adapt
the larger Multimedia Human-Machine Communica-
tion (MHMC) emotion database to the obtained mood
database CHI-MEI. Experimental results show that
the proposed method achieved 73%, improving the de-
tection accuracy by 13% compared to the commonly
used SVM-based classifiers.

Sahu and Espy-Wilson (2016) explored features
which are important in detecting depression. They
used short audio samples of sustained vowels (5–6 s)
and longer (30 s – 2 min) of free speech from the
Mundt database and explored breathiness, jitter, and
shimmer-based features using the average magnitude
difference function (AMDF) to quantify them. Using
the AMDF based feature they got 62–87% frame-wise
accuracy for 5 out of 6 speakers.

Alghowinem et al. (2016) investigated the fea-
sibility of cross-cultural UD detection from z -score
normalized prosody features. They used German and
English datasets (AVEC, BlackDog, and Pitt, respec-
tively). Authors showed that binary (depressed/mild
or not depressed) classification trained on SVM per-
forms very well on each individual dataset.

Lopez-Otero et al. (2017) presented a study on
how speaker de-identification affects the performance
of a depression-detection system based on speech tran-
scriptions. For depression detection, it is necessary to
know which words are related to depression.

Stasak et al. (2017) proposed a novel measure for
quantifying articulation effort and demonstrated that
depression classification can be achieved by selecting
speech with the higher articulation effort, linguistic
complexity, or word-based arousal/valence.

Table 12. Comparison of speech databases in PD analysis
(v – sustained vowel; r – read speech; m – monologue; h – dialog with human; a – dialog with virtual agent).

Published Speaker
language

Number
of

patients

Number
of
HC

Age
Clinical

evaluation
Voice

evaluation

Type
of speech

Duration
per speaker
[h:min:s]v r m h a

Pinto et al., 2016 French,
Portugese

139 65 65–70 NI – 0 1 1 1 0 14:54:36

Skodda et al., 2011 German 138 50 66.74(8.48) UPDRS III,
H&Y

– 1 1 0 0 0 NI

Rusz et al., 2018 Czech 78 30 62.3(11.3) MDS-
-UPDRS III

MDS-
-UPDRS III

1 0 1 0 0 NI

Orozco-Arroyave
et al., 2014a

Spanish 50 50 62.2(11.2) UPDRS-III
and H&Y

– 1 1 1 0 0 00:01:34

Pettorino et al.,
2017

Mandarin 13 12 62.1(52–72) NI – 0 1 0 0 0 NI

Zhan et al., 2016 English 121 105 57.6(9.1) UPDRS – 1 0 0 0 0 NI

Hemmerling et al.,
2016

Polish 27 0 65(7.9) UPDRS,
H&Y

– 1 1 0 0 0 00:00:59

Anatolík,
Fougeron, 2013

French 79 26 32–89 NI
intelligibility

and articulatory
imprecision

0 1 0 0 0 NI

NI – no information.

Simantiraki et al. (2017) tested the hypothesis
that UD could be detected from glottal source sig-
nals by using discrete cosine transform (DCT) coef-
ficients of phase distortion deviation (PDD) preceded
by the feature selection using Just Add Data (JAD).
The models (SVM, ridge logistic regression and ran-
dom forest) were evaluated on read and spontaneous
speech from the AVEC2014 dataset. The researchers
concluded that the lack of harmonic clarity is mainly
disruptive in the region above F1 where harmonic am-
plitudes are relatively low.

Afshan et al. (2018) stressed that depression can
be characterized by prosodic abnormalities and/or ar-
ticulatory and phonetic errors. They verified vari-
ous aspects of speech signals: cepstral features, differ-
ence in harmonic amplitudes, formant amplitudes, and
i-vector-based systems using MFCCs ad score-level fu-
sion to combine the two systems.

3.7.3. Parkinson’s disease

PD is the second-most prevalent neurodegenerative
disease in the world. It is caused by a loss of dopamin-
ergic neurons and it causes severe motor and cogni-
tive dysfunctions. It is characterized by hypophonia
(reduced voice volume) and dysphonia (breathiness,
hoarseness or creakiness in the voice), typically preced-
ing more generalized speech disorders. About 90% of
PD patients develop speech impairments such as mono-
pitch, monoloudness, imprecise articulation and other
symptoms (Orozco-Arroyave et al., 2014a; 2014b).
The summary of speech databases and research meth-
ods are presented in Tables 12 and 13.

In comprehensive review Moro-Velazquez et al.
(2021) identified the most common features and ma-
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Table 13. Comparison of research methods and results in Parkinson’s disease
(pr – prosodic; sp – spectral; vs – voice source; li – linguistic; naf – number of acoustic features).

Features
Published Database Tool used for

features extraction pr sp vs li naf
Classifier/Test Evaluation

metrics
Best score Tag

Orozco-
-Arroyave
et al., 2014b

German,
Spanish,
Czech

Praat 0 1 1 0 68 SVM

Acc
Sens,
Spec,
AUC

Acc 97.6% 2

Mallela
et al., 2020

Indian NI 0 1 0 0 NI

CNN
+ Bidirectional

Long
Short-Term
Memory

Acc 97.41% 2

Pompili
et al., 2020

Portugese HTK 1 1 1 0 52 DNN
TensorFlow

Acc 95.27% 2

Vásquez-
-Correa
et al., 2015

PC-GITA,
German,
Czech

NI 0 1 0 0 NI CNN Acc 89% 2

Villa-Canas
et al., 2015

PC-GITA NI 0 1 1 0 NI
GMM,

GMM-UBM,
SVM

Acc 77% 2

Pettorino
et al., 2017

Mandarin,
Polish,
Italian

NI 1 0 0 0 2 t-test P < 0.05 – 1

Zhan et al.,
2016

own NI 1 0 1 0 9 RF Acc 71.0(± 0.4)% 3

Klumpp
et al., 2017

NI NI 1 0 0 0 NI – SER 1.34 3

Rusz et al.,
2018

own NI 1 0 1 0 NI binary logistic
regression

AUC 0.85 2

Wodzinski
et al., 2019

PC-GITA NI 0 1 0 0 NI LSTM Acc 0.917 2

NI – no information.

chine learning techniques employed in automatically
detecting and assessing the severity of PD using phona-
tory and articulatory aspects of speech and voice.

Orozco-Arroyave et al. (2014b) investigated the
detection of PD by analyzing speech recordings in
German, Spanish, and Czech. The Spanish database
contains speech recordings of 50 PD patients (mean
age 61), the set of German patients includes 88 indi-
viduals (mean age 66.5), and in the group of Czech
native speakers 21 were diagnosed with idiopathic PD
(mean age 62.2). For each language a CH group with
the same number of individuals was selected. The
databases contain recordings of sustained phonation of
vowels, diadochokinetic (DDK) evaluation, sentences,
and monologues. Three features in the phonation pro-
cess were taken into account: harmonics-to-noise ratio,
normalized noise energy, and glottal-to-noise excita-
tion ratio. Additionally, the first and second formant
and 12 MFCC were extracted. Authors suggest that
it is possible to detect PD using the same method in
different languages. Additionally, Orozco-Arroyave

et al. (2014a) presented further tests using jitter and
shimmer.

Villa-Canas et al. (2015) analyzed low-frequency
components of speech signals by using three different
time-frequency techniques. Their results showed that
the changes in the low frequency components are able
to discriminate between people with Parkinson’s and
healthy speakers with an accuracy of 77%, using a sin-
gle sentence.

Zlotnik et al. (2015) considered four groups of
features: phonation, articulation, prosody, and intel-
ligibility. Many techniques were tested for predicting
the stage of PD using the patient’s voice exclusively.
Finally, an ensemble of classifiers obtained the best
results (0.609), combining the output of the best Ran-
dom Forest, with intelligibility features.

Vásquez-Correa et al. (2015; 2017; 2018) found
that voice impairments appear in about 90% of speech
samples as reduced loudness, monopitch, monoloud-
ness, reduced stress, breathy, hoarse voice quality, and
imprecise articulation. Speech samples were subjected
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to frequency analysis: F0, its variability and MFCC
(Vásquez-Correa et al., 2015), wavelet transform
and short-time Fourier transform (Vásquez-Correa
et al., 2017; 2018). Physical parameters of voice were
used for modeling the SVM and the convolutional neu-
ral network (CNN). In the publication from 2015, they
declared the highest accuracies with the voiced frames
a range from 64% to 86%, while the results with un-
voiced frames range from 78% to 99%. In the paper
published in 2017, they mentioned accuracies of up
to 89% for the classification of Parkinson’s patients
vs. control group when a convolutional neural network
was used to extract features from the time-frequency
representations. Their study published in 2018 pro-
poses a multitask learning approach based on CNNs
to assess at the same time eleven speech aspects, in-
cluding difficulties of the patients to move articulators
such as lips, palate, tongue, and larynx. The input
to the CNNs are time-frequency representations ob-
tained from transitions between voiced and unvoiced
segments.

Hemmerling et al. (2016) explored phonatory and
articulatory features for modulated vowels in PD de-
tection. They used jitter, shimmer, F0, energy and
MFCC statistical values along side instantaneous en-
ergy and its range coming from the Hilbert-Huang
transformation. The data used contained sustained
and modulated vowels. As the result, the sustained vo-
wels covered higher binary accuracy classification.

Pettorino et al. (2017) investigated whether
speech of PD patients presents rhythmic abnormali-
ties. Twenty-five Mandarin speakers (13 PD and 12 HC
matched on age) and thirty-one Polish speakers (18 PD
and 13 HC matched on age) read aloud a passage of
story. The vowel percentage and the interval between
two consecutive vowel onset points were calculated.
They segmented the recorded speech into vocalic and
consonantal intervals, and then calculated the vocalic
portion in the utterance and the duration of the in-
terval between two consecutive vowels. The effective-
ness of the rhythmic metric appears to be language-
dependent. For Polish was distinctly higher while for
Mandarin there was no significant difference. They
concluded that the analyzed method could be used for
automatic diagnosis of PD for Polish and Italian, but
not for Mandarin.

Klumpp et al. (2017) introduced Apkinson – a smart-
phone application providing a mobile monitoring solu-
tion for PD patients. The severity and progression of PD
can be tracked. The patient has to perform a speech
exercise in which the person has to constantly produce
syllables of subsequent consonant-vowel combinations.
The Levenshtein distance evaluates the similarity by
computing the required insertions, deletions and sub-
stitutions to transform one string to the other. For the
recordings of the HC, the recognizer correctly counted
the number of keywords in 76% of the cases. For the

group of PD patients, the number of correctly assessed
records was slightly lower with 72%.

The most common scale for assessing the severity
of PD is the Unified Parkinson’s Disease Rating Scale
(UPDRS) and Movement Disorders Society UPDRS
(MDS-UPDRS), which evaluates non-motor and motor
experiences of daily living and motor complications.

The Computational Paralinguistics Challenge Spe-
cial Session of Interspeech 2015 was dedicated, along-
side two other topics, to the degree to which PD can be
detected by speech analysis. Recordings of 50 PD pa-
tients were provided. The dataset was divided into 42
tasks per speaker, yielding 1470 recordings in the train-
ing set (3 speakers), 630 recordings in the development
set (15 speakers), and 462 recordings (11 speakers) in
the test set. The duration of recordings ranges from
0.24 seconds to 154 seconds and consist of a mono-
logue, a read text and sentence recordings.

Grósz et al. (2015) applied two state-of-the-art
machine learning methods in the regression Sub-Chal-
lenges of the Interspeech 2015 Computational Para-
linguistics Challenge. They showed that both DNN
and Gaussian process regression (GPR) are compet-
itive with the baseline SVM, and the results can be
improved by combining the classifiers. They trained
DNNs with five hidden layers and 1000 neurons in
each hidden layer. The best results (0.671) they ob-
tained by using a feature selection and by averaging
out the scores of multiple recordings clustered to the
same person.

Sztahó et al. (2015) presented the method of lin-
ear regression models on a set of extracted acoustic
features from the middle of vowels in words, sentences
and continuous speech, and the partitioning of speech
samples according to their total length into parts with
long, medium and short duration. Jitter, shimmer, ar-
ticulation rate, intensity and its variation, rate of tran-
sients and MFCC were extracted. They notice that in
terms of the final results on the test set that was up-
loaded for the challenge, many conclusions cannnot be
deduced due to the variation in the data. They empha-
sized that correlations (and also the baseline results)
count as weak. They experienced high intra-variation
of the extracted features.

3.7.4. Alzheimer’s disease and dementia

Alzheimer’s disease (AD) is a progressive neurode-
generative disorder clinically defined as an impairment
of certain cognitive and functional abilities. As the re-
sult of the aging society, there are growing number of
people affected by AD.

Gosztolya et al. (2019) took an automatic ap-
proach focusing on features describing the number of
pauses in spontaneous speech, specifically filled gaps.
The authors constructed a large set of descriptors and
used correlation and the sequential forward selection
algorithm to find the most promising ones. Based on
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only the acoustic features, they were able to separate
the various groups with accuracy scores between 74–
82%. They attained similar accuracy scores using only
the linguistic features. With the combination of the two
types of features, the accuracy scores between 80–86%.

Sadeghian et al. (2017) presented empirical evi-
dence that AD patients can be reliably distinguished
from HC through a combination of acoustic featu-
res from speech and linguistic features extracted from
an automatically determined transcription of speech.

Wankerl et al. (2017) proposed a purely statis-
tical approach towards automatic diagnosis of AD,
solely based on n-gram models with subsequent evalua-
tion of the perplexity. The system works independently
in a concrete language. AD patients show emotional
prosodic impairment.

The Pitt corpus used by Warnita et al. (2018) con-
sists of speech samples and their transcriptions from
244 HC and 309 dementia patients. They used a gated
convolutional neural network (GCNN) for speech data.
The presented study is the non-linguistic approach for
detecting AD by utilizing only the speech audio data.
Since it does not utilize linguistic information, authors
can apply it to low resource languages. The proposed
method achieved the accuracy of 74%.

Weiner et al. (2016; 2018) investigated a way of
automatic classification of AD using conversational
speech. They derived 10 prosodic and textual features
from 98 voice samples from the interdisciplinary lon-
gitudinal study on adult development and the aging
(ILSE) dataset. They compared two pipelines of fea-

Table 14. Comparison of speech databases in Alzheimer’s disease and dementia
(v – sustained vowel; r – read speech; m – monologue; h – dialog with human; a – dialog with virtual agent).

Published Speaker
language

Number
of

patients

Number
of
HC

Age
Clinical

evaluation
Voice

evaluation

Type
of speech

Duration
per speaker
[h:min:s]v r m h a

Sattler et al., 2017 German NI NI >40

medical, psychological,
cognitive, physical,
dental examinations,
semi-standardized

biographic interview

– 0 0 0 1 0 NI

Ujiro et al., 2018 Japanese 12 12 74.5± 4.3 DSM-IV-T – 0 1 0 0 1 NI
NI – no information.

Table 15. Comparison of research methods and results in Alzheimer’s and dementia disorder
(pr – prosodic; sp – spectral; vs – voice source; li – linguistic; naf – number of acoustic features).

Features
Published Database Tool used for

features extraction pr sp vs li naf
Classifier/Test Evaluation

metrics
Best score Tag

Warnita et al., 2018 Pittcorpus openSMILE 0 1 1 0 12459 GCNN Acc 73.6% 2

Weiner et al., 2018 ILSE NI 1 1 0 0 40 GMM UAR 0.645 2

Ujiro et al., 2018 own Snack Sound
Toolkit

0 0 1 1 21 SVM
and logistic

AUROC 0.95 2

Pan et al., 2020 DementiaBank
dataset

NI 1 0 1 1 bi-LSTM F-score 78.34% 2

Mirheidari et al.,
2018

own Praat 1 0 1 1 12 HMM-GMM Acc 91% 2

NI – no information.

ture extraction for dementia detection: manual tran-
scription and ASR using samples from the ILSE cor-
pus. The acoustic and linguistic features were ex-
tracted and several models were built with the Gaus-
sian classifier as the top performer. Weiner et al.
(2018) stated that early detection of dementia is possi-
ble by automatically processing conversational speech.
They tested a group of more than 200 subjects. Con-
versational speech (12 min of interview) was chosen
since it is a natural form of communication that can be
recorded without causing stress to subjects. The best
results were obtained through a combination of acous-
tic and linguistic features. Finally, a Gaussian classifier
was trained to discriminate three cognitive diagnoses.
The authors declare that it is possible to detect demen-
tia using speech of duration 2.5 min, although the most
reliable results require between 10 and 15 min. In the
publication of 2016, the authors declared the F-score
of 0.8 for the detection of AD. In the paper from 2018,
they stated detected dementia with an UAR of 0.64 us-
ing acoustic features extracted from speech segments.

Rohanian et al. (2021) present two multimodal
fusion-based deep learning models that consume ASR
transcribed speech and acoustic data simultaneously
to classify whether a speaker in a structured diagnostic
task has AD. They achieved an accuracy of 84% using
words, word probabilities, disfluency features, pause
information, and a variety of acoustic features.

The summary of speech databases and research
methods applied for AD and dementia analysis are
shown in Tables 14 and 15.
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Table 16. Comparison of speech databases in ALS
(v – sustained vowel; r – read speech; m – monologue; h – dialog with human; a – dialog with virtual agent).

Published Speaker
language

Number
of

patients

Number
of
HC

Age
Clinical

evaluation
Voice

evaluation

Type
of speech

Duration
per speaker
[h:min:s]v r m h a

Horwitz-Martin et al., 2016 English 34 0 NI – SIT 1 1 0 0 0 NI

Wang et al., 2016 English 11 11 60 ALSFRS-R SIT 1 1 0 0 0 NI
NI – no information.

Table 17. Comparison of research methods in ALS
(pr – prosodic; sp – spectral; vs – voice source; li – linguistic; naf – number of acoustic features).

Features
Published Disease Tool used for features

extraction pr sp vs li naf
Classifier/Test

Neurodegenerative
Horwitz-Martin et al., 2016

ALS
MATLAB 1 1 0 0 36 Spearman correlations, regression

Wang et al., 2016 openSMILE 1 1 1 0 6373 RLR, i-vectors, SVM, DNN

3.7.5. Amyotrophic lateral sclerosis

ALS is a rapidly progressing disorder that causes
the death of neurons controlling voluntary movements.
Symptoms include difficulty in speaking or swallowing.

Antolík and Fougeron (2013) found that among
consonant distortions, the most frequent type of distor-
tion in ALS is an incomplete closure of stops.

Wang et al. (2016) explored the option to diag-
nose ALS from short speech acoustic and articulatory
samples. They examined 11 affected patients and 11
HC, and constructed a large dimensionality dataset of
acoustic features from audio samples and articulatory
features derived from tongue and lip sensors. Further-
more, randomized logistic regression (RLR) was used
as a feature selection method, and the i-vector was
calculated for each speaker and concatenated to fea-
ture the vector for speaker normalization. Next, they
trained two classes of models: SVM with a radial basis
function (RBF) kernel, and DNN achieving maximum
performance when all acoustic and sensor features were
combined and provided to train the DNN model.

Horwitz-Martin et al. (2016) presented research
into an objective and automatic assessment of speech
loss with features extracted from the first and second
formant. They found that acceleration features derived
from F2 were the most informative for speech predict-
ing the rate of speech decline and assessing the intelli-
gibility decline.

The speech databases and research methods ap-
plied for ALS analysis are shown in Tables 16 and 17.

4. Discussion

4.1. Recruitment process

To create an effective computer system it is neces-
sary to have the right number of recordings of individ-

uals affected by each given disorder. Each patient must
have an official diagnosis from a physician. Recordings
taken at early disease stages are the most desirable
since the main purpose of computer systems is to rec-
ognize the onset of the disease. Sometimes it is diffi-
cult to convince patients of the desirability of collect-
ing recordings. Patients must consent to participate
in research. Thus, the recruitment process is difficult
and frequently time-consuming. Collecting recordings
requires approval from the Ethics Committee.

4.2. Standardization of database descriptions

We commonly encountered insufficient descriptions
of the collected speech databases. As shown in Ta-
bles 1, 3, 5, 7, 9, 12, 14, 16 only some of the param-
eters of recordings are reported systematically across
the corpora. The descriptions frequently omit the du-
ration of the recordings or detailed technical informa-
tion on the conditions of the recording process. We
propose to standardize the descriptions as a table or
an annex, which would clearly outline the properties
of the corpus, especially when the database is not
publicly available. Important parameters assessing the
usefulness of recording databases are the number of
recorded speakers (Fig. 4), the duration of each speech
and total recording times representing the size of the
database speaker (Tables 1, 3, 5, 7, 9, 12, 14, 16). In
addition, it may be useful to divide the recordings by
gender. Generally, patients’ age ranges are given, al-
though some authors present the average age of pa-
tients and standard deviation. Similar information is
presented regarding the age of CH. Comparing these
data sets shows that frequently the patients are more
advanced in age than the CH group. The correlation
between the patient age and their health may affect
the functionality of the classifiers. An older patient’s
voice may be incorrectly classified as a voice of an ill
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patient. Conversely, a young person’s voice may be in-
correctly classified as a voice of a healthy individual.
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Fig. 4. Corporas from 2009–2019.

The recordings were divided into three groups. The
first includes read texts or, far less frequently, individ-
ual words or chosen vowels. Such recordings can be
used to analyze the same statements for all respon-
dents, which is a valuable advantage when analyzing
the acoustic features of voices. In this case, there is
no dependency on the content of the statements. The
second group includes recordings of spontaneous state-
ments. These enable linguistic analysis, which is espe-
cially useful when diagnosing mental illness (Stasak
et al., 2017; Lopez-Otero et al., 2017). The third group
includes recordings from dialogues between subjects
and interviewers (Weiner et al., 2016). Conversational
speech is the most natural form of communication that
can be recorded without putting subjects under stress.
Moreover, acoustic and language information can be
obtained from conversations between patients and vir-
tual agents. Generally, subjects receive instruction on
how to speak. This applies to duration, avoiding emo-
tions, monologue topics and sometimes loudness. For
example, in sporadic cases, patients are asked to give
a prolonged statement of the desired vowel.

The most frequently recorded statements are in one
language only (sporadically dialect). The main rea-
son is that such recordings are the easiest to obtain.
Their effective analysis is also easier, especially linguis-
tic analysis.

Recordings can be obtained using a variety of equip-
ment, such as computers or mobile phones. Specialist
recording equipment can be used to obtain a wider fre-
quency range. However, such equipment is less widely
available, and recordings must be taken at specific lo-
cations. Acoustic conditions for recordings using mo-
bile phones are poorer than those in recording studios.
If possible, the signal-to-noise ratio (SNR) parameter
should be determined.

There is a general view that speech does not con-
tain frequencies above 8 kHz. Determining the thresh-
old frequency of recorded speech determines the sam-
pling frequency of the digital signals. The size of sampling
and the resolution (usually 16 bits per sample) deter-
mines the size of the acoustic files.

It is extremely important to label recordings with
accurate information on the health of the subjects. In-

formation about any medication taken by the patient
is also useful, as it can have a significant impact on the
features of the recorded speech.

4.3. Standardization of recording protocols

There is no consistent scenario for the content of re-
corded speech. Some corpora contain recordings of sus-
tained vowels only, while others use read speech or in-
terviews (Weiner et al., 2018). Each form of speech
has its own advantages: sustained vowels provide ma-
terial which is standard in phoniatric investigations,
read speech gives the same content for each speaker,
while dialogues are usually the most natural.

4.4. Controlled clinical laryngeal examination

Only a few of the studies included phoniatric/
laryngeal imaging (i.e., laryngoscopic, laryngostrobo-
scopic, videokymography, and high-speed digital imag-
ing). In the absence of such evaluation, the condition
of the vocal folds and surrounding structures cannot
be determined accurately, and potential laryngeal dis-
orders could interfere with the disorder being investi-
gated and have an impact on acoustic parameters of
the voice. Such findings would have been bolstered by
including additional information regarding thew vocal
fold structure and physiology. Future studies should in-
clude endoscopic methods to place these results in the
diagnostic context, especially in case of somatic dis-
orders. This recommendation is especially relevant to
disorders for which the state-of-the-art is less advanced
or where voice sample sizes are small. The issue is that
such examinations are costly.

4.5. Exclusion criteria

There is a lack of consistency concerning excluding
voice recording of certain subjects. In some cases, re-
searchers only excluded recordings which did not follow
the recording protocol; however, in most cases specific
exclusion criteria were chosen, e.g., excluding subjects
who were under the influence of alcohol of drugs, smok-
ers (de Souza, Santos, 2018) or individuals whose
jobs put an increased strain on their voice. In some
cases exclusions were made on the basis of medical
records (e.g., the disorder was too advanced). In gen-
eral, the criteria should be standardized. Additionally,
the excluded recordings can be valuable for case stud-
ies investigating factors influencing the human voice.

4.6. Selection criteria for the HC group

In the majority of studies, control groups were
matched by age and gender only. In some cases, addi-
tional factors were also considered, e.g., BMI. In gene-
ral, there is no standardized approach.
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4.7. Single disease

While some of the disorders may be intercorrelated
(e.g., obesity and CAD, depression, and diabetes), the
reviewed articles rarely took into account more than
one or two disorders at a time.

4.8. Sample size

The number of speakers in the corpora varies from
around 10 to several thousand. If the number is low,
their medical records are generally more detailed. In
order to apply certain modern machine learning meth-
ods, e.g., DNN, large datasets are required. This could
be achieved through crowdsourcing, which has been
effective in other fields of speech technology.

4.9. Legal issues of voice recording

While state-of-the-art algorithms are able to iden-
tify individuals using their voice prints, new problems
are emerging. When speech is recorded on smartphones
(Dogan et al., 2017), user data should be treated as
sensitive and protected with appropriate privacy pol-
icy security procedures for transfer and storage.

4.10. Numbers of recordings

In most cases, just one recording is taken for each
individual and there are no reference points from the
onset of disease or from its progression. There is a need
for more frequent monitoring of the patient voice sta-
tus.

4.11. Availability of corpora

The majority of datasets were prepared for spe-
cific studies and were not available publicly to other
researchers (Low et al., 2020). This makes results
less comparable and reproducible while new methods
are being developed. However, several corpora have
become international benchmark standards on which
novel methods can be validated. This trend should also
be adopted for other disorders.

4.12. Feature sets

Tables 2 and 4 clearly show that there are no stan-
dards in speech parameterization or, if they exist, that
they are rarely used. Only a few results were obtained
using standard feature vectors, such as those offered by
openSMILE. The number of extracted features varies
from several to several thousand features (e.g., openS-
MILE vectors such as AVEC or ComPare) (Fig. 5).
In most cases, researchers choose one or two param-
eters from four categories (prosodic, spectral, voice
source, linguistic), on the basis of their previous ex-
perience or their tools. Technically, there are no lim-
itations on verifying features from all the categories,
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Fig. 5. Acoustic features investigated
in the articles 2009–2019.

which could improve our understanding of the corre-
lations of voice features with disorders (Sadeghian
et al., 2017). When novel parameterizations are in-
troduced, their implementations are usually not made
public.

4.13. Lack of cross-cultural and cross-language
comparisons

The majority of articles focus on a single corpus
or language. Gathering recordings to create databases
is time consuming, and requires a high level of co-
operation between engineers and medical profession-
als from different specializations. It is necessary to
identify patients who meet the criteria set out in the
study (e.g., no specific comorbidities, addictions, etc.).
Being able to share databases (including speech and
voice signals) among researchers usually requires for-
mal consent and the willingness to cooperate. In the
literature, there are still few studies that take into ac-
count more than one language (Orozco-Arroyave
et al., 2014b), even though there is a need for sys-
tematic comparisons of findings between languages
(Maor et al., 2018; Vásquez-Correa et al., 2017;
Pettorino et al., 2017). The importance of heteroge-
neous training sets in machine learning should also be
emphasized. Acoustic features of speech are affected by
the diagnosed disorder, as well as by the language spo-
ken by the subject. In many cases the same algorithms
can be used effectively regardless of the language, and
only the acoustic feature values will change. The sit-
uation is significantly more complicated in linguistic
testing of speech. Transferring research methods from
one language to another may not be sufficiently effec-
tive (Warnita et al., 2018).

5. Conclusions

Current disease diagnostic methods are adapted
from those which have been verified as useful in speech
or speaker recognition and investigating emotions.
However, it should be remembered that speech analy-
sis for medical purposes should follow different rules
than speech recognition analysis. As a result of evolu-
tion, the human voice has adapted to the perceptual
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capabilities of the hearing system. This has greatly
improved the efficiency of communication by speech.
The human ear is a frequency analyzer with nonlin-
ear characteristics. Imitating these properties in speech
technology has been shown to be highly effective, e.g.,
MFCC. We suppose that in the case of speech analysis
for medical purposes there are no indications to take
the perceptual properties of the hearing system into
account. Authors of the studies included in our pa-
per an attempt to detect speech features which can be
indicative of specific disorders. To achieve this, they
mainly use acoustic analysis and sometimes linguistic
analysis.

Determining the reasons (e.g., anatomical or neu-
rological) for voice changes in specific disease states is
a separate issue and not the subject of the cited pub-
lications. Characteristic features of speech result from
the anatomical structure of the vocal tract and the way
it is stimulated by the nervous system. Therefore, med-
ical speech diagnostics are aimed at neurodegenerative
and mental disorders as well as disorders affecting the
physical structure of the vocal tract. The majority of
publications refer to speech deviations caused by disor-
ders of the nervous system (e.g., depression, dementia,
Parkinson’s and Alzheimer’s diseases).

Both acoustic and linguistic properties of speech
are taken into account. The methods of acoustic ana-
lysis are more useful and were tested for all the dis-
eases presented above. Linguistic methods have been
tested for mental and neurodegenerative diseases. The
conducted experiments show that the combination of
both methods improves the efficiency of diagnosis. The
relatively large number of publications in this field is
testimony to the influence of the nervous system on the
generation of speech. This is particularly important for
psychiatry, which usually lacks objective clinical mea-
surements used in other specializations. While nervous
system disorders result in both acoustic and linguistic
features of speech, somatic disorders are diagnosed by
analyzing acoustic parameters of the voice.

Speech analysis systems provide a promising ap-
proach for creating low-cost, non-invasive and remote
diagnostic tools for automatic assessment or monitor-
ing of certain disorders. Early and sensitive disease
detection can support medical intervention and treat-
ment. Speech corpora can be collected conveniently in
a clinical environment or at home using smartphones.

Various methods of assessing the effectiveness of di-
agnosing diseases through acoustic voice analysis and
linguistic speech analysis were used. This diversity
makes it difficult to answer the question for which dis-
eases the analyzed methods are by far the most ef-
fective and for which the least reliable. Effectiveness
of disease diagnosis varies from 65% up to 99%. From
a medical point of view, such results should be treated
as a screening tests only and should be an indica-
tion of the need for standard medical tests. According

to literature reports, the highest effectiveness was ob-
tained for: COVID-19, schizophrenia, and Parkinson’s
disease. Worse results were obtained for depression,
bipolar disorder and Alzheimer’s disease. Relatively
weaker results were obtained for PCOS, diabetes, hy-
pothyroidism, hyperthyroidism, and amyotrophic lat-
eral sclerosis. The weakest accuracies were obtained for
the diagnosis of obesity and metabolic syndrome.
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