
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2023, VOL. 69, NO. 3, PP. 485–491
Manuscript received July 7, 2023; revised July, 2023. DOI: 10.24425/ijet.2023.146496

Email Phishing Detection with BLSTM and Word
Embeddings

Rafał Wolert, and Mariusz Rawski

Abstract—Phishing has been one of the most successful attacks
in recent years. Criminals are motivated by increasing financial
gain and constantly improving their email phishing methods. A
key goal, therefore, is to develop effective detection methods to
cope with huge volumes of email data. In this paper, a solution
using BLSTM neural network and FastText word embeddings has
been proposed. The solution uses preprocessing techniques like
stop-word removal, tokenization, and padding. Two datasets were
used in three experiments: balanced and imbalanced, whereas in
the imbalanced dataset, the effect of maximum token size was
investigated. Evaluation of the model indicated the best metrics:
99.12% accuracy, 98.43% precision, 99.49% recall, and 98.96%
f1-score on the imbalanced dataset. It was compared to an
existing solution that uses the DL model and word embeddings.
Finally, the model and solution architecture were implemented
as a browser plug-in.

Keywords—phishing; BLSTM; word embeddings

I. INTRODUCTION

PHISHING is a well-known type of social engineering
attack that exploits human trust [1]. Phishing emails is

one of the most popular types of such attacks. Research shows
that 96% of phishing attacks originate from emails, while 3%
come from malicious websites and 1% through phone calls
[2].

A phishing email is a type of spam message that uses
deception to appear as if it is from a legitimate company
or bank. The email contains a link that redirects users to a
fake website designed to fraudulently obtain sensitive financial
information such as usernames, passwords, and credit card
numbers. The name phishing is reminiscent of fishing –
catching fish. Criminals, like fishermen, use appropriately
prepared ”bait”.

Despite over 10 years of research into phishing, there has
been no significant progress in reducing the prevalence of
phishing attacks. This may be due to several reasons: phishing
is more complex than human perception, practical techniques
used by researchers may have overlooked key problem param-
eters, and phishing attacks exploit human unawareness which
may not be addressed solely by technical methods and may
require human interventions such as training and awareness
[3].

There are several ways to combat phishing. One of them is
the use of artificial intelligence (AI) in cybersecurity [4]. AI

Authors are with the Institute of Telecommunications, Faculty of
Electronics and Information Technology, Warsaw University of Technology,
Poland (e-mail: {rafal.wolert.stud, mariusz.rawski}@pw.edu.pl)

has improved email security by providing speed, accuracy, and
the ability to conduct in-depth investigations. With the help of
pre-existing datasets, AI can identify various types of attacks,
including spam, phishing, spear phishing, and more.

The remainder of the paper is organized as follows: Section
II highlights existing work that apply machine and deep learn-
ing techniques with NLP. Section III presents the methodology
used in this research: used dataset, preprocessing, feature
extraction, deep learning model, and proposed tool. Section IV
describes experiments conducted in this research along with
described metrics, two dataset tasks, and summarized results.
Section V discusses model performance with comparison study
and the solution’s limitations along with future work.

II. RELATED WORK

In recent years, several reviews have been published on the
topic. In [5] authors make an update to previous systematic
literature surveys with a focus on the latest trends in phishing
detection techniques. According to the review, most research
papers propose approaches based on Machine Learning (ML)
techniques. Most studies used Random Forest Classifier, but
Convolution Neural Network (CNN) achieved the highest
accuracy of 99.98%.

In [6] the development of Phish Responder, a detection
solution to address the challenge of phishing and spam emails
is discussed. The authors propose a solution that uses a
hybrid machine learning approach combining natural language
processing (NLP). This Python-based command line solution
has presented an average accuracy of 94% with the MLP
model for numerical-based datasets.

The authors of the paper [7] developed MailTrout, a browser
extension that incorporates machine learning within a usable
security tool to assist users in detecting phishing emails.
TensorFlow was used to develop and train an ML model
using a dataset of fraudulent and legitimate emails. Proposed
solution demonstrated high levels of accuracy when detecting
phishing emails and high levels of usability for end-users.

The paper [8] discusses the need for an efficient mechanism
to detect phishing emails to provide better security against
such attacks to the common user. The authors created a
real-time in-house corpus of phishing and legitimate emails
and proposed efficient techniques to detect phishing emails
using word embedding and machine learning algorithms. The
proposed system uses only four email header-based heuristics
for the classification of emails.

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/


486 R. WOLERT, M. RAWSKI

III. METHODOLOGY

This section presents the methodology used in this research.
In A. Overview, a general overview is presented. In B. Dataset,
the used dataset, is described. In C. Preprocessing, the prepro-
cessing is explained along with D. Feature extraction, where
feature extraction with FastText embeddings is brought up. In
E. Deep learning model, the deep learning model is explained.
Finally, in F. Proposed tool, the proposed browser extension
is demonstrated.

A. Overview

The general overview of the architecture and pipeline used
in this work is presented in Fig. 1.

Fig. 1. Overview of the used methodology

This figure represents four stages used in our approach:
dataset, data preprocessing, word embeddings, and deep learn-
ing model. The last three blocks represent elements used as a
browser extension’s backend.

B. Dataset

The two datasets used in the research consist of combined
email bodies from the Enron email corpus [9] and Jose
Nazario’s phishing corpus [10]. Both datasets are well-known
for their usage in phishing detection by providing real emails
received or sent by users.

The Enron email corpus consists of 619 446 messages
sent by 158 employees of Enron Corporation [11]. In our
work, we have loaded all messages with omitting directories
such as: discussion threads, notes inbox due to the fact stated
by the Authors that such folders do not appear to be used
by users and are instead a computer generated or already
present in the users’ other folders. We have also observed
that folder, sent mail, is irrelevant for the same reasons. An
initial preprocessing task was performed on the whole corpus
before selecting the random sample. The initial preprocessing
task was used to remove records with null email bodies or
email bodies that cannot be decoded. This ensured the selected
sample could be used in later pipeline processes. Then, we
randomly selected a sample of loaded emails and labeled them
benign ones, which will be further described in this section.

Jose Nazario’s phishing corpus is a private corpus compris-
ing phishing emails sent to its creator from 2005 to 2022. Our
work has focused on the data’s quantity and quality. Due to
that reason, we have included all emails ranging from 2005
to 2022 in our dataset, 10 706 total in raw format, before
preprocessing. By doing so, we are increasing the dataset’s size

and providing more examples of the newest phishing attacks
in the emails.

In provided work, two datasets were created for imbalanced
and balanced classification tasks. Table I presents the ratio of
phishing and ham emails in created datasets.

TABLE I
SUMMARY OF DATASETS

Task Phishing Ham Total count

Imbalanced 10 568 14 971 25 539

Balanced 10 568 10 568 21 136

As presented in Table I, created datasets have 138 fewer
emails than in the original Jose Nazario’s phishing corpus.
This is because preprocessing was done on the initial corpus,
which will be described later in the next section.

A subset of ham emails for imbalanced tasks was cre-
ated by randomly selecting 15 000 samples from the initial-
preprocessed Enron email corpus, of which 29 emails were
discarded in the later preprocessing phase. The same action
was applied to the subset of ham emails for balanced tasks.
An equal amount of 10 568 phishing emails was used as the
random sample size in the ham subset.

C. Preprocessing

This section is divided into two subsections containing
information about the preprocessing of email bodies and data
analysis of the whole dataset.

1) Email preprocessing: Preprocessing was done on
datasets created for imbalanced and balanced tasks for phish-
ing and ham emails. It involves steps in the order described
below:

1) Extract messages from HTML if necessary.
2) Lowercase all characters.
3) Replace all URLs with: fixedstringurl.
4) Replace all emails with: fixedstringsemails
5) Remove all nonalphanumeric characters; include only

characters (a-z or A-Z) and numbers (0-9).
6) Remove additional whitespaces like tabs and multiple

spaces to ensure only one whitespace between words.
7) Tokenize words based on whitespaces and remove stop

words.
If any steps above failed, the record was marked with a

fixed string as to manual extraction and looked at manually.
Step 7) involves tokenization and stop word removal, which

was conducted with the usage of spaCy Python library,
specifically en core web sm-3.5.0 pipeline [12]. This model
is described as a general-purpose model with components such
as tok2vec, tagger, parser, senter, attribute ruler, lemmatizer,
ner. Our work focused only on tokenization and stop word
removal, so we have used attributes such as: “text” and
“is stop” from Token class [13] to ensure that the pipeline
is explicitly narrowed to those two NLP techniques.

Tokenization and stop-word removal are the most common
and basic NLP techniques. As mentioned by authors of [14],
in their systematic review of 100 research studies about



EMAIL PHISHING DETECTION WITH BLSTM AND WORD EMBEDDINGS 487

phishing detection using NLP techniques, 59 studies used NLP
techniques such as stop-word removal, punctuations, special
characters, stemming, and tokenization.

Tokenization is the process of breaking sentences into single
words, in our case, based on single whitespaces. Words created
from tokenization are referred to as tokens. Tokens were
discarded if they were a stopword, which are words that do
not carry significant information in the sentences such as: “a”,
“the”, “or”.

Additionally, records with emails that contained empty
bodies after preprocessing were dropped from both phishing
and ham datasets in both tasks.

2) Dataset analysis: To ensure that the feature extraction
task will be conducted in reasonable time with average re-
source usage, we have limited the token list length in the whole
dataset in both tasks to less than 20 000. Only two records, one
phishing email, and one ham email were found to be above
20 000 tokens in the imbalanced task; they contained 46 436
and 24 345 tokens, respectively.

D. Feature extraction

Feature extraction task was achieved using word embed-
dings. Word embeddings are a group of models and methods
used to represent a word as a real-valued vector in dense, low-
dimensional space [8], typically ranging from 100 to 300. Each
word has its vector, and words used in similar contexts have
similar vector representations; thus, their meaning is captured.

In our work, we are focusing on using word embeddings
with FastText. FastText is a library developed by Facebook
AI Research. Models used in FastText are learning word
representations for character n-grams and represent words as
the sum of the n-gram vectors and are referred to as subword
information [15].

FastText provides two architectures for creating word em-
beddings: SkipGram and Continuous-Bag-Of-Words (CBOW).
The main difference is that SkipGram uses a target word to
predict the context (surrounding words), whereas CBOW uses
the context, a window of words, to predict the target word.

The main advantage of FastText over other word embedding
models, such as Word2Vec, is its capability to handle Out-Of-
Vocabulary (OOV) words, which are words that do not appear
in the training set of the model. The embedding vector of OOV
words is represented as an average of the vector representation
of their n-grams. This is a crucial concept and motivation for
choosing FastText in the phishing detection task.

According to [16], phishing emails often contain spelling,
grammar, and punctuation mistakes that result from an at-
tacker’s lack of English proficiency. Our approach eliminates
that problem so that words with grammar or spelling mistakes
still have a decent embedding representation.

In our work, we have used one of the pre-trained word
vectors from the FastText library, named cc.en.300.bin, which
was trained for the English language. That model was trained
on Common Crawl [17], an open repository of web crawl data
using CBOW with position-weights, in dimension 300, with
character n-grams of length 5, a window of size 5 and 10
negatives [18]. Table II summarizes the parameters.

TABLE II
SUMMARY OF FASTTEXT MODEL WITH POSITION WEIGHTS

parameter value

dimension size 300

n-grams 5

window size 5

negative sample size 10

After creating the embeddings for tokenized words in the
dataset, the fixed size of vectors was set by padding the
sequences using the Tensorflow pad sequences method [19].
Table III summarizes the parameters used in this approach.

TABLE III
SUMMARY OF PAD SEQUENCES METHOD

parameter value

maxlen 300

dtype float32

padding post

value 0.0

Maxlen is the parameter that is the maximum length of all
sequences. It was set as a value from 0.90 to 0.95 percentile
of tokens length in both datasets: imbalanced and balanced.
Additionally, we have experimented with maxlen parameter
set to 324 as it represented 0.95 percentile of the used
balanced dataset. Due to memory requirements and resource
usage, the same experiment could not be performed with the
imbalanced dataset. Padding parameter was set to post so that
the parameter value set to 0.0 is added at the end of token
sequences.

E. Deep learning model

This section is divided into two subsections containing
information about data manipulations used on the datasets and
chosen model architecture.

1) Data transformations: Before feeding data to a neural
network, the train-test split method was performed on both
datasets for imbalanced and balanced tasks, in the ratio of
80% for training and 20% for testing.

Data manipulations were performed on both datasets for
imbalanced and balanced tasks to optimize the model pipeline
[20] as summarized in Table IV.

TABLE IV
SUMMARY OF DATA MANIPULATIONS

parameter value

train test ratio 80:20

batch size 32

prefetch buffer size AUTOTUNE

Batch size parameter was set to 32 as a compromise between
memory usage and model performance. Prefetch transforma-
tion overlaps the preprocessing and model execution of a



488 R. WOLERT, M. RAWSKI

training step to speed up the process of training [20]. Since
prefetch has buffer size attribute that should be equal to the
number of batches consumed in a single training step, we used
buffer size of AUTOTUNE. By doing so, the value is tuned
dynamically at the runtime.

2) Model architecture: The model was built with the usage
of TensorFlow [21], and Keras [22].

The used model architecture is built upon the Bidirectional
network. It is a type of recurrent neural network (RNN)
network that can learn long-term dependencies from past states
and future states [23], as opposed to Long Short-Term Memory
(LSTM), a similar network, which can learn dependencies
only from past context. This approach has been successful
in many NLP tasks, such as Part-of-speech (POS) tagging in
classification task [23].

Additionally, as stated in [14], after 2019, more deep
learning techniques were utilized in phishing email detection.
This suggested that further work, for example, in LSTM and
CNN models, is necessary to provide sufficient deep learning
tools.

Fig. 2 represents the used model architecture with cor-
responding layers. Besides every layer, there is a set of
parameters associated with it.

Fig. 2. Model architecture with used parameters

The first layer used in model architecture is Input layer. It
expects a numerical date of: maxlen by dimension size, which,
as described in D Feature extraction, was set to 300 by 300
on both imbalanced and balanced dataset or 300 by 324 only
on the balanced dataset.

The next layer is Masking layer. Its core function informs
the neural network that some data were padded with 0.0, as
described in D Feature extraction, and therefore should be
ignored.

The third layer consists of BLSTM layer, with 128 units.
After that, Dropout layer is inserted with ratio set to 0.2. This
layer is used as a regularization technique to prevent overfitting
to the present data.

The last layer consists of Dense layer with one unit and
sigmoid activation function as our work focuses on the binary
classification task. The defined loss function is binary cross-
entropy, and the optimizer is set to Adam.

The model’s configuration is summarized in Table V.

TABLE V
SUMMARY OF MODEL CONFIGURATION

parameter value

Input shape (300,300) or (324,300)

Masking value 0.0

BLSTM units 128

Dropout ratio 0.2

Dense units 1

Dense activation function sigmoid

loss function binary cross-entropy

optimizer Adam

F. Proposed tool

The model pipeline can be easily integrated into a browser
extension. This approach combines the accuracy of a deep
learning detection system and the usability of a browser
extension. The proposed tool has been tested with Gmail API
[24] for email access, and a browser extension was installed
on Google Chrome. The model pipeline with preprocessing
and embeddings was deployed using the FastAPI library [25].

Fig. 3. Proposed phishing detection tool

Fig. 3 presents the overview of the proposed tool. Core
elements and connections between them are described below:

• Gmail API: Used to authenticate/authorize the extension
to fetch email data within the user inbox using OAuth
2.0 provided in the Gmail API library.

• Browser extension: Used to fetch data using Gmail API,
forward the response in JSON format to Pipeline API, and
output the model’s response on the screen.

• Pipeline API: Used to perform all architecture tasks
on a given sample and return the model’s prediction
probability in JSON.

The extension was deployed as Proof-of-Concept. Fig. 4 a)
shows a successful authentication view using Gmail API while
b) shows the detection of opened e-mail in the inbox. Fig. 5
a), b), and Fig. 6 c) show views of corresponding: email with
low phishing rate, medium phishing rate, and high phishing
rate. The detection score is the model’s prediction output
rounded to three decimal places and scaled to 100%. The three
compartments are designated in thirty percent increments, and
each compartment has its own designated background color.

IV. EXPERIMENTAL RESULTS

This section is divided into four subsections containing
information about experiments conducted with imbalanced



EMAIL PHISHING DETECTION WITH BLSTM AND WORD EMBEDDINGS 489

a) b)

Fig. 4. View of Gmail authentication and opened e-mail

a) b)

Fig. 5. Views of low, medium and high phishing rate

(subsection B. Imbalanced dataset task) and balanced tasks
(C. Balanced dataset task) as well as metrics used within
(subsection A. Metrics). The last subsection, D. Summarized
results summarizes all results.

In all experiments, the dataset presented in III. Methodology
B. Dataset was split into 80% for training and 20% for
validation. Also, early stopping technique was used with a
target metric to loss function on the validation dataset. As a
result, training is stopped after a certain number of epochs,
named patience, and the best weights based on target value
are restored for the final model. For all experiments, patience
was set to 10.

Experiments were performed with the usage of Google
Colab with GPU acceleration.

Three experiments were conducted: one considering Imbal-
anced dataset task and two considering Balanced dataset
task as summarized in Table VI.

A. Metrics

Four metrics were chosen: accuracy, precision, recall, f1-
score for evaluating model’s performance. Metrics are defined
in the equations (1), (2), (3), (4), where:

c)

Fig. 6. Views of low, medium and high phishing rate

TABLE VI
SUMMARY OF EXPERIMENTS CONFIGURATION

dataset input shape early stopping patience epochs

imbalanced (300,300) 10 17/100

balanced (300,300) 10 22/100

balanced (300,324) 10 21/100

• TP is defined as the number of phishing e-mails classified
as phishing,

• TN is defined as the number of ham e-mails classified as
ham,

• FP is defined as the number of phishing e-mails classified
as ham,

• FN is defined as the number of ham e-mails classified as
phishing.

accuracy =
TP + TN

TP + FP + TN + FN
∗ 100 (1)

precision =
TP

TP + FP
∗ 100 (2)

recall =
TP

TP + FN
∗ 100 (3)

f1− score =
2 ∗ TP

2 ∗ TP + FP + FN
∗ 100 (4)

B. Imbalanced dataset task

An imbalanced dataset task was performed on the imbal-
anced dataset. The training process stopped at 17 epochs out
of 100 epochs set due to early stopping. The best set of
parameters was found at the six epochs, achieving 99.12%
accuracy, 98.43% precision, 99.49% recall, and 98.96% f1-
score on the validation set.

C. Balanced dataset task

A balanced dataset task was performed on the balanced
dataset. The first experiment was conducted with a data input
shape of (300, 300) and stopped at 22 epochs out of 100
epochs set due to early stopping. The best set of parameters
was found at 11 epochs, achieving 98.77% accuracy, 98.96%
precision, 98.59% recall, and 98.77% f1-score on the valida-
tion set.

The second experiment was conducted with a data input
shape of (300, 324) and stopped at 21 epochs out of 100
epochs due to early stopping. The best set of parameters was
found at 10 epochs, achieving 98.58% accuracy, 98.41% pre-
cision, 98.68% recall, and 98.54% f1-score on the validation
set.

D. Summarized results

The summarized results of all experiments are presented in
Table VII.



490 R. WOLERT, M. RAWSKI

TABLE VII
SUMMARY OF EXPERIMENTS

task imbalanced balanced balanced

input size (300,300) (300,300) (300,324)

best epoch 6 11 10

accuracy 99.12% 98.77% 98.58%

precision 98.43% 98.96% 98.41%

recall 99.49% 98.59% 98.68%

f1-score 98.96% 98.77% 98.54%

V. EVALUATION AND DISCUSSION

This section is divided into three subsections. Subsection
A. Model performance describes model performance in terms
of the experiments conducted. In Subsection B. Comparison
study presented model is compared to existing solutions. Sub-
section C. Limitations and future work discuss the limitations
of a featured solution and future work to conduct.

A. Model performance

The model with the highest metrics: accuracy, recall, and
f1-score, was trained on the imbalanced dataset with an input
shape of 300 by 300. The highest precision was achieved on
a balanced dataset task with an input shape of 300 by 300.
The last experiment with an increased maximum token length
to 324 did not improve model performance compared to the
imbalanced dataset with a maximum token size set to 300.

B. Comparision study

We have compared the provided architecture with existing
solution utilizing deep learning and word embeddings. We se-
lected the imbalanced task model, which achieved the highest
three metrics out of four from all experiments. In the article
[26] Word2Vec embedding was used with LSTM architecture
achieving 0.876 accuracy, 0.957 precision, 0.90 recall, and
0.928 f1-score on the dataset without email headers. A detailed
comparison has been presented in table VIII.

TABLE VIII
COMPARISION WITH DEEPANTI-PHISHNET

our approach DeepAnti-
PhishNet

dataset 10568 phishing
14971 ham

612 phishing
5088 ham

train test ratio % 80:20 73:27

type of embeddings FastText Word2Vec

embedding vector size 300 200

type of NN BLSTM LSTM

max epochs 100 1000

accuracy % 99.12 86.00

precision % 98.43 96.20

recall % 99.49 87.60

f1-score % 98.96 91.70

As presented in Table VIII, there are some major differ-
ences between the used approaches. Firstly, our approach

utilizes more email phishing samples which are crucial in the
neural network training process. By giving a more balanced
dataset, we avoid model overfitting, which was the case with
DeepAnti-PhishNet, as mentioned by the authors. Also, au-
thors of DeepAnti-PhishNet used preprocessing that included:
conversion of all characters to lower case, ignoring punctuation
marks and special characters, and assigning a unique number
for the unknown word [26], where our solution utilizes tok-
enization and stop-word removal along with padding the token
sequences to gain fixed size of vectors.

Another difference was the type of embeddings used.
Authors of DeepAnti-PhishNet used Word2Vec embeddings
which has a disadvantage compared to FastText embeddings
that can produce OOV embeddings for words that, for ex-
ample, are misspelled in phishing emails. Additionally, our
approach used a vector size of 300 compared to a 200 vector
size in DeepAnti-PhishNet, which can capture more semantic
information.

One of the main differences is the neural network archi-
tecture used in both approaches. Our proposed solution uses
BLSTM, which, compared to LSTM, can learn dependencies
from past and future states, which can be beneficial when
dealing with email bodies.

Our work also implemented the Early Stopping technique
that stopped model training after not improving the validation’s
loss. On the contrary, the authors of DeepAnti-Phishnet used
10-fold cross-validation, which in our case was not imple-
mented.

Although both approaches have differences in feature ex-
traction methods and neural network architectures, our ap-
proach outperforms DeepAnti-PhishNet in all used metrics.

C. Limitations and future work

Our presented work on phishing email detection has its
limitations. The main point to consider is the dataset. We have
created datasets for both imbalanced and balanced tasks, yet
no deep data analysis was done on both datasets to ensure
their representativity in phishing detection. This is a crucial
point, as a lack of variety in provided samples could lead to
model overfitting or underfitting. Also, the email headers can
be considered as they carry another source of information that
could improve the overall model score.

In addition, one must consider the word embeddings used as
a feature extraction task. We have used a pre-trained FastText
model, which can be improved by fine-tuning it with phishing-
related texts, to capture semantic information from email
bodies better. Due to computation limitations, we have not
used an increased maximum token size of 324 with balanced
dataset tasks, which could potentially improve the model’s
performance.

Besides dataset and feature extraction tasks, hyperparameter
tuning must be provided to ensure that the neural network has
the best performance on a given dataset. Additionally, k-fold
cross-validation could be used to prevent overfitting.

Moreover, our solution could potentially be used for dif-
ferent phishing detection tasks. One thing to consider is the
multilanguage model for phishing emails written in different



EMAIL PHISHING DETECTION WITH BLSTM AND WORD EMBEDDINGS 491

languages. FastText library provides pre-trained models for
different languages, and used with different datasets could
lead to multilanguage phishing detection solutions. Further-
more, using Tensorflow, our model could be compiled to its
lightweight version to detect phishing sent over SMS, called
smishing.

Using word embeddings combined with BLSTM, we can
efficiently detect phishing emails and apply that solution to
real-world scenarios using the browser extension. Further work
must be conducted to explore the usage of deep learning mod-
els combined with word embeddings in phishing detection.

VI. CONCLUSIONS

The paper explores the use of deep learning and word
embeddings in detecting phishing. We used a BLSTM neural
network architecture with FastText embedding and conducted
experiments on two datasets: one imbalanced and one bal-
anced. The model performed best on the imbalanced dataset,
achieving 99.12% accuracy, 98.43% precision, 99.49% recall,
and 98.96% f1-score.

We also developed a proof-of-concept tool that uses our
model as the backend and can be easily deployed as a browser
extension. Our approach was compared to another method that
used an LSTM neural network and Word2Vec embeddings.
We discussed the limitations of our work and potential future
improvements, as well as other phishing detection tasks that
our solution could be applied to.

REFERENCES

[1] A. Almomani, B. B. Gupta, S. Atawneh, A. Meulenberg, and
E. Almomani, “A survey of phishing email filtering techniques,” IEEE
Communications Surveys Tutorials, vol. 15, no. 4, pp. 2070–2090, 2013.
[Online]. Available: https://doi.org/10.1109/SURV.2013.030713.00020

[2] F. Labs, “2020 phishing and fraud report,” 2020, [Accessed:
14 June 2023]. [Online]. Available: https://www.f5.com/labs/articles/
threat-intelligence/2020-phishing-and-fraud-report

[3] A. Das, S. Baki, A. El Aassal, R. Verma, and A. Dunbar, “Sok: A
comprehensive reexamination of phishing research from the security
perspective,” IEEE Communications Surveys Tutorials, vol. 22, no. 1,
pp. 671–708, 2020.

[4] S. Salloum, T. Gaber, S. Vadera, and K. Shaalan, “A systematic
literature review on phishing email detection using natural language
processing techniques,” IEEE Access, vol. 10, pp. 65 703–65 727, 2022.
[Online]. Available: https://doi.org/10.1109/ACCESS.2022.3183083

[5] A. Safi and S. Singh, “A systematic literature review on phishing website
detection techniques,” Journal of King Saud University - Computer and
Information Sciences, vol. 35, no. 2, pp. 590–611, 2023. [Online].
Available: https://doi.org/10.1016/j.jksuci.2023.01.004

[6] M. Dewis and T. Viana, “Phish responder: A hybrid machine
learning approach to detect phishing and spam emails,” Applied
System Innovation, vol. 5, no. 4, 2022. [Online]. Available: https:
//doi.org/10.3390/asi5040073

[7] P. Boyle and L. Shepherd, “Mailtrout: a machine learning browser
extension for detecting phishing emails,” in 34th British Human
Computer Interaction Conference 2021 proceedings, ser. Electronic
Workshops in Computing, J. Nocera, H. Petrie, G. Sim, T. Clemmensen,
and F. Spyridonis, Eds. BCS Learning Development Ltd., Jul.
2021, pp. 104–115, 34rd British Human Computer Interaction

Conference : Post-Pandemic HCI – Living digitally ; Conference
date: 19-07-2021 Through 21-07-2021. [Online]. Available: https:
//doi.org/10.14236/ewic/HCI2021.10

[8] S. M. and A. R. Pais, “Classification of phishing email using
word embedding and machine learning techniques,” Journal of Cyber
Security and Mobility, vol. 11, no. 03, p. 279–320, May 2022. [Online].
Available: https://doi.org/10.13052/jcsm2245-1439.1131

[9] Enron email dataset. [Accessed: 14 June 2023]. [Online]. Available:
https://www.cs.cmu.edu/∼enron/

[10] Jose nazario phishing email corpus. [Accessed: 14 June 2023]. [Online].
Available: https://monkey.org/∼jose/phishing/

[11] B. Klimt and Y. Yang, “Introducing the enron corpus,” in First
Conference on Email and Anti-Spam (CEAS), Mountain View, CA,
2004, [Accessed: 14 June 2023]. [Online]. Available: https://www.ceas.
cc/papers-2004/168.pdf

[12] spacy python model. [Accessed: 14 June 2023]. [Online].
Available: https://github.com/explosion/spacy-models/releases/tag/en
core web sm-3.5.0

[13] spacy token class attributes. [Accessed: 14 June 2023]. [Online].
Available: https://spacy.io/api/token#attributes

[14] S. V. K. S. Said Salloum, Tarek Gaber, “A systematic literature
review on phishing email detection using natural language processing
techniques,” IEEE Access, vol. 10, pp. 2169–3536, June 2022. [Online].
Available: https://doi.org/10.1109/ACCESS.2022.3183083

[15] A. J. T. M. Piotr Bojanowski, Edouard Grave, “Enriching word
vectors with subword information,” Transactions of the Association for
Computational Linguistics, vol. 5, pp. 135–147, June 2017. [Online].
Available: https://doi.org/10.1162/tacl a 00051

[16] S. J. H. Marcus Butavicius, Ronnie Taib, “Why people keep
falling for phishing scams: The effects of time pressure and
deception cues on the detection of phishing emails,” Computers
and Security, vol. 123, December 2022. [Online]. Available: https:
//doi.org/10.1016/j.cose.2022.102937

[17] Common crawl. [Accessed: 14 June 2023]. [Online]. Available:
https://commoncrawl.org/

[18] G. P. J. A. M. T. Grave Edouard, Bojanowski Piotr, “Learning word vec-
tors for 157 languages,” in Proceedings of the International Conference
on Language Resources and Evaluation (LREC 2018), 2018.

[19] Tensorflow pad sequences method. [Accessed: 14 June 2023].
[Online]. Available: https://www.tensorflow.org/api docs/python/tf/
keras/utils/pad sequences

[20] Tensorflow data performance. [Accessed: 14 June 2023]. [Online].
Available: https://www.tensorflow.org/guide/data performance

[21] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[22] F. Chollet et al., “Keras,” https://keras.io, 2015, [Accessed: 14 June
2023].

[23] P. Wang, Y. Qian, F. K. Soong, L. He, and H. Zhao, “Part-of-speech
tagging with bidirectional long short-term memory recurrent neural
network,” 2015. [Online]. Available: https://doi.org/10.48550/arXiv.
1510.06168

[24] Gmail api. [Accessed: 14 June 2023]. [Online]. Available: https:
//developers.google.com/gmail/api/guides

[25] Fastapi. [Accessed: 14 June 2023]. [Online]. Available: https:
//fastapi.tiangolo.com/

[26] P. P. M. A. K. S. K. Vinayakumar Ravi, Barathi Ganesh Hb,
“Deepanti-phishnet: Applying deep neural networks for phishing email
detection cen-aisecurity@iwspa-2018.” Tempe AZ USA, March 2018,
1st AntiPhishing Shared Pilot at 4th ACM International Workshop on
Security and Privacy Analytics (IWSPA 2018) [Accessed: 14 June
2023]. [Online]. Available: https://ceur-ws.org/Vol-2124/paper 9.pdf

https://doi.org/10.1109/SURV.2013.030713.00020
https://www.f5.com/labs/articles/threat-intelligence/2020-phishing-and-fraud-report
https://www.f5.com/labs/articles/threat-intelligence/2020-phishing-and-fraud-report
https://doi.org/10.1109/ACCESS.2022.3183083
https://doi.org/10.1016/j.jksuci.2023.01.004
https://doi.org/10.3390/asi5040073
https://doi.org/10.3390/asi5040073
https://doi.org/10.14236/ewic/HCI2021.10
https://doi.org/10.14236/ewic/HCI2021.10
https://doi.org/10.13052/jcsm2245-1439.1131
https://www.cs.cmu.edu/~enron/
https://monkey.org/~jose/phishing/
https://www.ceas.cc/papers-2004/168.pdf
https://www.ceas.cc/papers-2004/168.pdf
https://github.com/explosion/spacy-models/releases/tag/en_core_web_sm-3.5.0
https://github.com/explosion/spacy-models/releases/tag/en_core_web_sm-3.5.0
https://spacy.io/api/token#attributes
https://doi.org/10.1109/ACCESS.2022.3183083
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1016/j.cose.2022.102937
https://doi.org/10.1016/j.cose.2022.102937
https://commoncrawl.org/
https://www.tensorflow.org/api_docs/python/tf/keras/utils/pad_sequences
https://www.tensorflow.org/api_docs/python/tf/keras/utils/pad_sequences
https://www.tensorflow.org/guide/data_performance
https://www.tensorflow.org/
https://keras.io
https://doi.org/10.48550/arXiv.1510.06168
https://doi.org/10.48550/arXiv.1510.06168
https://developers.google.com/gmail/api/guides
https://developers.google.com/gmail/api/guides
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/
https://ceur-ws.org/Vol-2124/paper_9.pdf

	Introduction
	Related Work
	Methodology
	Overview
	Dataset
	Preprocessing
	Email preprocessing
	Dataset analysis

	Feature extraction
	Deep learning model
	Data transformations
	Model architecture

	Proposed tool

	Experimental results
	Metrics
	Imbalanced dataset task
	Balanced dataset task
	Summarized results

	Evaluation and discussion
	Model performance
	Comparision study
	Limitations and future work

	Conclusions
	References

