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Abstract. The wind energy conversion systems (WECS) suffer from an intermittent nature of source (wind) and the resulting disparity between
power generation and electricity demand. Thus, WECS are required to be operated at maximum power point (MPP). This research paper
addresses a sophisticated MPP tracking (MPPT) strategy to ensure optimum (maximum) power out of the WECS despite environmental (wind)
variations. This study considers a WECS (fixed pitch, 3KW , variable speed) coupled with a permanent magnet synchronous generator (PMSG)
and proposes three sliding mode control (SMC) based MPPT schemes, a conventional first order SMC (FOSMC), an integral back-stepping-based
SMC (IBSMC) and a super-twisting reachability-based SMC, for maximizing the power output. However, the efficacy of MPPT/control schemes
rely on availability of system parameters especially, uncertain/nonlinear dynamics and aerodynamic terms, which are not commonly accessible
in practice. As a remedy, an off-line artificial function-fitting neural network (ANN) based on Levenberg-Marquardt algorithm is employed
to enhance the performance and robustness of MPPT/control scheme by effectively imitating the uncertain/nonlinear drift terms in the control
input pathways. Furthermore, the speed and missing derivative of a generator shaft are determined using a high-gain observer (HGO). Finally,
a comparison is made among the stated strategies subjected to stochastic and deterministic wind speed profiles. Extensive MATLAB/Simulink
simulations assess the effectiveness of the suggested approaches.

Key words: WECS; robust control; MPPT; back-stepping; SMC; super-twisting algorithm (STA); high gain observer; ANN; function fitting.

1. INTRODUCTION
Wind, an infinite gift of nature, encompasses a major portion as
green energy alternative, opposed to the traditional resources.
An obvious environment friendly nature, low operating cost,
high energy yield, cost-effectiveness high efficiency accompa-
nied by the recent technological advancements have raised wind
energy to a leading resource amongst its competitors. Thus, the
wind energy has been covering a major portion of the ever-
increasing energy demands [1].

Optimizing the efficiency and hence maximum power output
of WECS has been relying on both the system point of opera-
tion and wind speed. Thus, an optimal efficiency, from WECS,
requires an MPPT scheme to be robust. The MPPT, in relation
to the wind speed offered to the wind turbines (WT), has to ad-
just/regulate the AC generator speed. Research conducted pre-
viously, [1, 2], has highlighted the importance of employing an
MPPT control scheme to determine the ideal operating point
for WECS.
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The utilization of wind power through WECS has experi-
enced a significant rise due to the escalating demand for sustain-
able and clean energy sources around the globe. As a renewable
energy technology, WECS have gained popularity among coun-
tries and organizations as they harness the power of wind to pro-
duce electricity, thus offering a viable solution to meet energy
needs while minimizing environmental impact. They are highly
versatile and can be used in a range of applications, from small-
scale residential installations to large-scale wind farms that can
power entire communities.

WTs in WECS may have a fixed or variable speed, depend-
ing on the particular system design. In the case of fixed-speed
WTs (FSWTs), the generated electricity is directly supplied to
the utility grid and is thus referred to as “direct drive” WECS.
The generator output of variable speed wind turbines (VSWTs)
is sent to the utility grid after being synchronized with the grid
frequency and other parameters, as in contrast to other types of
generators. Due to the variable shaft speeds of VSWTs, they
can harvest the maximum amount of power from any wind
speed [3, 4]. In general, a VSWT offers 10–15% increase in
energy output over an FSWT, as well as less power fluctuation
and mechanical stress [5].

In WECS, the mechanical/kinetic energy, captured by WTs,
is utilized by an AC generator to produce electricity for domes-
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tic and commercial purposes. There are three common types
of these generators, a doubly-fed induction generator (DFIG),
a field-excited synchronous generator (FESG) and a permanent
magnet synchronous generators (PMSG). Each of these genera-
tor types has its own unique characteristics and benefits, making
them suitable for different applications depending on factors
such as power output requirements, environmental conditions
and cost considerations. While all three generator types can be
utilized in medium and large-scale WECS. The PMSGs, in par-
ticular, due to its relatively simple structure, high power density,
gear-less transmission capability, less maintenance, reliability,
and ease of control, are considered to be cost-effective solution
for small-scale WECS [5–8].

Four main MPPT control strategies are commonly discussed
in the literature on WECS: optimal torque control (OTC), tip-
speed ratio (TSR) control, power signal feedback (PSF) and
hill-climbing search (HCS), which is also referred to as the per-
turbation and observation (P&O) control method. These four
methods are widely studied and utilized in research, as reported
by various studies [1, 5]. In order to maximize the power gen-
erated by a WT, an optimal TSR can be calculated for each
individual turbine. The WT rotor speed can then be controlled
using the TSR control approach to maintain this optimal TSR.
However, the implementation of a TSR control technique can
present two significant challenges. The first step in accurately
measuring the wind speed in a system is to use an anemome-
ter, which can increase the overall cost of the system. Secondly,
since the optimal TSR value varies among different systems, it
must be determined for each specific system, as highlighted by
various studies [5, 9, 10].

In general, the OTC is not only easy to use but also quick and
effective. The inability to directly measure wind speed, how-
ever, causes its efficiency to be lower than that of the TSR tech-
nique [1]. The difference between TSR and OTC approaches is
minimal, according to [2]. On the other hand, prior knowledge
of the WT maximum power curve is required for PSF control,
which is typically obtained through either simulations or exper-
imental tests. This dependency on the maximum power curve
presents a challenge for implementing a PSF technique, as it
can be costly and complex, as noted in various studies [10].
The HCS control technique, unlike the TSR approach, does not
require prior knowledge of the maximum power curve. How-
ever, under rapid wind speed variations, HCS may not achieve
MPPT, and determining an appropriate step-size can also be
challenging. A larger step-size results in faster convergence but
also increased oscillations around the MPP, causing a compro-
mised efficiency. Conversely, a smaller step-size improved effi-
ciency but led to slower convergence [1].

The use of hybrid control approaches and artificial intelli-
gence (AI)-based methodologies, has eradicated majority of the
aforementioned demerits/challenges. Insensitivity and faster
convergence to parameter fluctuation, and acceptance of noisy
and imperfect signals are only a few benefits of the fuzzy logic
control (FLC) [11]. By employing an inverse-turbine model,
neural network (NN)-based schemes can also be employed to
alleviate the issues related to speed of wind measurement or es-
timate. This model can be used as a virtual anemometer by es-

timating the wind speed from the actual torque and speed [12].
The hybrid control approaches, combining the benefits of

multiple techniques, have been widely researched in order cope
with multiple limitations at a time. For instance, [2] combined
the OTC with HCS to address the problems associated with con-
ventional HCS under rapid wind speed variation, and to avoid
the speed-efficiency trade-off. Another study combined a PSF
control with HCS to develop a flexible, sensor-less technique
that can be applied to different types of WTs [1].

The MPPT algorithms utilize control algorithms with a pri-
mary requirement of robustness. Sliding mode control (SMC)
is one such algorithm, characterized as a generalized and ro-
bust nonlinear technique [13]. The inherent invariance in slid-
ing phase makes them even more appealing when performance
and robustness are concerned [14]. The inherent discontinuous
nature of the controller however caused high-frequency oscil-
lations about the switching manifold, phenomenon known as
chattering, which is coped with the higher-order variants, super-
twisting algorithm (STA) and real-twisting algorithm (RTA), of
the SMC [15]. The SMC has been widely utilized as MPPT al-
gorithms in recent literature citea18,zaheer,mppt1

This study proposes ANN based SMC variants, observer-
based SMC, IBSMC, and reaching law-based STA, to attain
MPPT in PMSG-WECS. These designs offer fast and accurate
asymptotic convergence to the equilibrium with notable robust-
ness against uncertainties and ambient variations. Furthermore,
the simple structure of STA and its promulgated nature of di-
minishing chattering are portraying it superior in terms of dy-
namic performance.

The manuscript is structured in the following order. Table 1
summarizes all the critical abbreviations used in the manuscript.
A brief introduction to WECS is established in Section 2 fol-
lowed by a detailed process of transforming the system from
input-output form in Section 3. Derivative of the shaft velocity,

Table 1
List of abbreviations

Entity Description

ANN Artificial function-fitting neural network
FOSMC First order SMC
HGO High gain observer
HSS High shaft speed
IBSMC Integral back-stepping SMC
MPP Maximum power point
MPPT Maximum power point tracking
MSE Mean squared error
PMSG Permanent magnet synchronous generator
RTA Real-twisting algorithm
SMC Sliding mode control
STA Super-twisting algorithm
TSR Tip-speed ratio
VSWT Variable speed wind turbine
WECS Wind energy conversion system
WT Wind turbine
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using a HGO, is outlined in Section 4 and Section 5 discusses
the estimation of nonlinear drifts using ANN. Controllers de-
sign is covered in Section 6. A discussion on the robustness and
performance of the proposed algorithms, based on simulation
results, is presented in Section 7 while the concluding remarks
are included in Section 8.

2. SYSTEM DESCRIPTION
A wind energy conversion system (WECS) is characterized as
a technology that take kinetic energy from wind and transforms
it into precious electrical energy for domestic as well as com-
mercial purposes. WECS, as depicted in Fig. 1, consists of a
wind turbine (WTs), which is a large device with blades that
rotate when wind blows on them. The WTs are coupled, me-
chanically via a shaft and gearbox, with a generator (PMSG in
this case) which takes the wind kinetic energy, accumulated by
WTs, as input to generate electricity.

2.1. Wind turbine (WT) modeling
Mathematical model of a WT, portraying its behavior and per-
formance under various operating conditions, is an important
aspect of the design process. It is used to predict the power
output, aerodynamic loads, and response to environmental con-
ditions, thereby enabling engineers to optimize its design and
control strategies. Moreover, simulation of mechanical behav-
ior of a turnine components (shaft and gearbox) is an other pro-

nounced aspect of WT modeling. This is necessary to ensure
that the turbine can withstand the mechanical stresses induced
by the wind and operate reliably over its lifespan. Regulation of
turbine speed and power output is synthesized with ease using
WT models. A typical WT behavior to various wind speeds is
depicted in Fig. 2.

The power at the WT shaft, generated by aerodynamics (ki-
netic energy carried by wind), depending upon various WT pa-
rameters, is expressed mathematically as follows [18]:

Pmec =
1
2

ρπR2
tbv3

wdCpr(λ ,B), (1)

where, Rtb is the radius of the WT blade, ρ is the density of
incoming air with speed vwd and Cpr is the coefficient of power,
which is a nonlinear function of pitch angle (B, which is con-
sidered to have constant values at different wind speeds) and
TSR and is an indication of WT efficiency. An optimum value
of TSR (λopt) results in maximum value of Cpr represented as
Cprmx . In general, extraction of maximum power (up to nominal
speed) and attainment of λopt is subjected to shaft-speed adjust-
ment by a VSWT. Typical values of the transmission ratio (itr)
and turbine high speed shaft (HSS) angular speed (Ωhss) are
listed in Table 2.

The information for Cpr(λ ) can be mathematically described
by considering (λ = B) as follows:

Cpr(λ ) = λ (0.0061−0.0013λ +0.0081λ
2−0.0009λ

3) (2)
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Fig. 1. Variable speed PMSG-WECS
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Fig. 2. The relationship between turbine power and turbine speed
at various wind speeds

Table 2
Wind turbine and PSMG parameters

Name Quantity Value

Wind
turbine

Density of air mass, ρ 1.250 kg/m3

Radius of turbine blade, Rtb 2.50 m
TSR, λopt 7.0
Transmission or gear ratio, itr 7.0
Power coefficient, Cpmax 0.4760
Wind speed average value, vwd 7.0

PMSG

Generator stator resistance, Rse 3.3 Ω

Load inductance, Lch 0.008 H
PM flux constant, φcon 438.2 mWb
Pole pairs number, pp 3.0
Stator d = q-axis inductance, Ld = Lq 41.560 mH
Shaft inertia, Jhs 0.0552 kgm2

while the TSR has the following mathematical representation:

λ =
ΩhssRtb

vwd itr
. (3)

The transmission ratio, represented as itr and Ωhss (in rad/s) are
used to describe the available aerodynamic mechanical power at
the WT shaft, as per the relation given in [18]. Table 2 provides
typical values for these parameters.

Power (Pmec) at the blades causes an introduction of torque
at the turbine shaft, denoted as Γmec, The Γmec, as a function of
the torque coefficient (Cτ(λ )) has the following mathematical
representation:

Γmec =
1
2

ρπR3
tbv2

wdCτ(λ ), (4)

where
Cτ(λ ) =

Cpr(λ )

λ
. (5)

Having outlined all relevant information, it is now appropri-
ate to present mathematically the model for PMSG.

2.2. PMSG modeling
The mathematical model for PMSG is given in the dq-axes form
is adopted from [18]. The equations are as follows:

i̇d =
−Rseid + pp(Lq−Lchop)Ωhssiq−Rchopid

(Ld +Lchop)
,

i̇q =
−Rseiq− pp(Lq +Lchop)Ωhssid−Rchopiq

(Lq +Lchop)

+ ppΩhssφcon ,

Ω̇hss =
1

(Jhs)

[
−ppφconiq +

d1v2
wd

itr
+

d2vwdΩhss

i2tr

+
d3Ω2

hss

i3tr

]
.

(6)

In these equations: dot (.) represents the time derivative, i.e.,
d
dt

.
The stator resistance, inductance and current along d-axis and
inductance and current along q-axis are represented by Rse, Ld ,
id , Lq and iq respectively. Usually, Ld = Lq for a non-salient pole
PMSG. The high speed shaft (HSS) angular speed and inertia
are represented by Ωhss and Jhs respectively. Constant flux due
to a permanent magnet (PM) is denoted with Φcon while trans-
mission ratio and number of pole pairs are represented with itr
and pp respectively. Finally, Rchop and Lchop represent the chop-
per equivalent resistance and inductance respectively.

A common rule of thumb is utilized to simplify the notation
with a simplified/generalized nomenclature for the state vari-

ables resulting in
[
id iq Ωhss

]T
=
[
x1 x2 x3

]T
. A com-

pact representation of the system, using the parameters men-
tioned, can be expressed through its simplified state-space equa-
tion as:


ẋ1

ẋ2

ẋ3

=


−(`1 + `3Rchop)− (`2x3)+0

−(`5x3)− (`4 + `7Rchop)+ `6

−
`8v2

wd
x1
− `11

Jhs
− (`9vwd + `10x3)


T 

x1

x2

x3

 , (7)

where `1 to `11 are constants, specified in Table 3 and are
outlined here as: `1 = `4 = Rse/(Ld + Lchop), `2 = pp(Lq −
Lchop/(Ld + Lchop), `3 = `6 = 1/(Ld + Lchop), `5 = pp, `6 =
`11 = pp φcon, `8 = −d1/(itr Jhs), `9 = −d2/(i2tr Jhs), and `10 =

−d3/(i3tr Jhs).

Table 3
Constant terms of PMSG-WECS

Entity Value Entity Value Entity Value

`1 27.147 `4 27.147 `8 9.945

`2 0.94866 `5 3 `9 0.1332

`3 8.2264 `6 1.3146 `10 0.00506

0 0 `7 8.2264 `11 23.806

4 Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 5, p. e147063, 2023



Robust estimation based nonlinear HOSMC strategies for PMSG-WECS

3. THE INPUT-OUTPUT COORDINATES
TRANSFORMATION

WECS representative model, equation (7), has the following
standard representation.

ẋ(t) = F (x(t))+G (x(t))u(t)+∆(x(t), t), (8)

y(t) = h(x(t)) = x3 , (9)

where x(t) : ℜ×ℜn → ℜn defines the state vector, u(t) ∈ ℜ,
represents the control input, ∆(x(t), t) : ℜ×ℜn → ℜn, is the
matched uncertainty, and the two smooth vector fields F (x(t))
and G (x(t)), which are non-linear in nature, can be mathemati-
cally represented as follows:

F (x) =

 f1

f2

f3

=

 −`1x1− `2x2x3

−`4x2− `5x1x3 + `6x3

−`8v2
wd− `9vwdx3− `10x2

3− `11x2


T

,

B(x) =

−`3x1

−`7x2

0

 ,
u(t) = Rchop . (10)

The primary goal is to control the output, i.e., y(t) = x3 =
Ωhss. So, the subsequent equations (7) can easily convert into
input-output form [18] as follows:

z1 = y = Ωhss = x3 ,

z2 = L f h(x) =
∂h(x)

∂x
f (x) =−n1−n2x3−n3x2

3−n4x2 ,

z3 = L2
f h(x) =

x1

x2
,

(11)

where

n1 = `8 vwd
2, n2 = `9 vwd , n3 = `10 and n4 = `11 .

It may be noted that relative degree (r) of the system is less
than system order (n = 3) causing output to depend upon the
input and its derivatives. As a result, the input-output form can
be expressed as in equation (12).

ż1 = z2 ,

ż2 =−n4 f2(x)− (n2 +2n3x3) f3(x)︸ ︷︷ ︸
L2

f h(x)

+`3x1n4x2︸ ︷︷ ︸
LgL f h(x)

u ,

ż3 =−`1z3− `2z1− `3x1z3u

− z3

(
−`1− `5z1z3 +

`11z1n4

n1
− `3x1u

)
,

(12)

where z3 is the zero dynamic state. Hence, it can be disregarded
on the condition that it remains stable. If this state variable is
stable, meaning that its behavior over time is predictable and
does not result in instability, it can be safely ignored in the con-
trol system design. In other words, the control system can be
simplified by neglecting this state variable and its associated

dynamics, without significantly impacting the overall behavior
of the system.

3.1. Zero dynamic stability
During the conversion of input-output for a nonlinear system,
its dynamics can be divided into two components - an internal
part (state z3) and an external part (states z1 and z2). The exter-
nal part can be directly controlled by manipulating the input u,
while the stability of the internal part can be easily determined
by locating the system zeros, as discussed in [19].

The zero dynamics, obtained by letting z1 = z2 = u = 0 in
equation (12) resulting in:

ż3 =−z3(γ1−α1). (13)

The internal dynamics remain stable as long as γ1 is greater
than α1.

4. HIGH GAIN OBSERVER MODELING
Dependence of the controllers/algorithms on the derivatives of
the output and/or switching surface, due to the deficient rela-
tive degree as coined in the previous section, demands an ef-
ficient technique in practical realizations. The technique is re-
quired to estimate the derivatives without amplifying system
noise. One such technique is the high gain observer (HGO), ex-
hibiting rapid convergence towards the initial values. Therefore,
it has been assumed that the output z1 (i.e., z1 = x3) is twice dif-
ferentiable with bounded (by constant L > 0) second derivative.
Let ζ1 represent a mismatch between the z1 and its estimate ẑ1
in the absence of noise as follows:

ζ1 = (z1− ẑ1) . (14)

The first-order system, also known as the HGO (see equa-
tions (15)), can be used to compute the estimated output ẑ1 and
its derivative ẑ2 shown in Fig. 3.

ˆ̇z1 = ẑ2 +
α1

ψ2
(ζ1), (15)

ˆ̇z2 = Dnz1 +
α2

ψ2
2
(ζ1), (16)

where α1, α2 and ψ2 are positive gains given in Table 5. Equa-
tion (15) can also be written as [20]:

ẋ = Qnx+α(ψ)× (ζ1)+Dnz1 , (17)

where a(ψ) =

[
α1

ψ2
,

α2

ψ2
2
, . . . ,

αn

ψn
2

]
and 0 < ζ1 < ζ̄1. Besides,

Dn =

[
0(n−1)×1 I(n−1)×(n−1)

01×1 01×(n−1)

]
and Qn =

[
0(n−1)×1

I1×1

]
.

The overall closed loop stability of the closed loop system,
with HGO in the loop, is subjected to fast convergence of HGO
while maintaining boundedness [20].
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5. LEVENBERG-MARQUARDT ALGORITHM BASED
FUNCTION FITTING NEURAL NETWORK
FOR NONLINEAR FUNCTIONS ESTIMATION

This section describes the strategy for estimation of Lie-
derivatives via function-fitting neural-network (FN), a multipe-
input-single-output (MISO) system, with Levenberg-Marquardt
algorithm. The Levenberg-Marquardt algorithm adjusts the bi-
ases and weights of the NN for minimizing a difference be-
tween the predicted outputs and an actual target output/s (mean-
squared-error (MSE)), given a set of inputs.

Let us denote the input data set as X = [z1, z2, z3, vwd ] ∈
ℜn×d , where n and d represent number of data points and di-
mensionality of input respectively. Moreover, Y = LgL f h(x) ∈
ℜn×m is representative of target output/s with m representing
the output dimensionality.

A neural network can be represented as a function fθθθ : ℜd→
ℜm, where θθθ denotes the set of weights and biases of the net-
work. The function fθθθ (x) takes an input x ∈ ℜd and produces
an output y ∈ℜm.

The Levenberg-Marquardt algorithm minimizes the follow-
ing objective function,

min
θθθ

1
2

n

∑
i=1
‖ fθθθ (xi)−yi‖2 +

λa

2

p

∑
j=1

θ
2
j , (18)

where | · | denotes the Euclidean norm, λa is a regularization
parameter that controls a trade-off between fitting the data and
controlling over-fitting, and p represents number of weights
and biases in the network. The first term in the objective func-
tion (equation (18)) measures the MSE while the second term
adds a penalty for large values of the weights and biases. The
Levenberg-Marquardt algorithm iteratively updates the weights
and biases of the network to minimize this objective function.

A trained FN is ready to generate/estimate an output for
any arbitrary input. The estimated Lie-derivatives are compared

with the actual ones as shown in Fig. 4 and Fig. 5 while param-
eters are listed in Table 4.
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Table 4
Various training parameters for ANN based FN

S. No. Parameters Description

1 Number of inputs to ANN 4
2 Number of outputs of ANN 1
3 Training algorithm Levenberg-Marquardt
4 No. of hidden layers 2
5 No. of hidden neurons 2
6 No. of validation checks 0–6
7 No. of iterations 100
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6. PROPOSED CONTROL SCHEME FOR MPPT
The previous sections have covered the conversion of the sys-
tem into its normal form and the estimation of the output deriva-
tive. The grounds are now set to devise an MPPT to extract
maximum power out of the system by operating the PMSG-
WECS at its MPP (see Fig. 6). In contrast to this, SMC, IBSMC
and STA based SMC have been designed and will be discussed
in the next section.

6.1. Sliding mode control (SMC) design
SMC is an effective nonlinear technique used in a variety of
control applications. The primary goal of SMC is to force a slid-
ing manifold, a linear combination of states, to zero and hence
system states to an equilibrium along that manifold. Initially,
the system states are directed to the switching manifold by a
discontinuous control law (the phase known as reaching phase)
and then are confined there by the same controller. Moreover,
the Hurwitz nature of the switching manifold causes the con-
fined trajectories to move towards stable equilibrium (the phase
known as sliding phase). The primary advantage comes in slid-
ing phase, where the system dynamics are of reduced order and
are invariant to disturbances and system parametric variations,
making it suitable for controlling nonlinear and uncertain sys-
tems.

Overall, the design of chattering-free SMC involves defining
a switching surface, developing a control law that enforces slid-
ing mode motion, and ensuring that the system trajectory slides
along the sliding manifold without chattering. In a nutshell, re-

duction in system order and robustness to disturbances are some
of the key advantages of SMC.

In tracking applications, an error based sliding manifold is
usually preferred followed by a control law which is a com-
bination of an equilibrium/equivalent control input ueq(t) and
a disturbance/discontinuous control input udis(t). These, alto-
gether accomplish the reaching and sliding phase, guaranteeing
reference tracking.

Now, the error/mismatch can be defined as:

e(t) = z1−Ω1ref(t). (19)

In order to simplify the notation, the variable Ωref(t) will be
denoted as z1ref in all future discussions. This change in notation
will make it easier to refer to the reference value of the system
angular velocity.

The time derivative of equation (19) is computed as in equa-
tion (20).

ė(t) =
d
dt
(z1− z1ref) = ż1−

d
dt
(z1ref) = ż1− ż1ref . (20)

In the actual implementation, only the system angular velocity
z1 is directly measured, and its derivative is estimated using the
HGO technique discussed in the previous section. Therefore, in
the context of equation (20), we can replace ż1 with the esti-
mated derivative of z1, denoted as ẑ2:

ė(t) = ẑ2− ż1ref

ë(t) =
d
dt
(ẑ2− ż1ref) =

d
dt

ẑ2−
d
dt
(ż1ref) .

(21)
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Using the dynamics of the system in equation (12), we can

substitute for
d
dt

ẑ2 and
d
dt
(ż1ref) as follows:

ë(t) = L̂ f L̂gh(x)− L̂2
f h(x)− L̂gL f h(x)u

= L̂2
f h(x)+ L̂gL f h(x)u. (22)

The SMC design starts with definition of Hurwitz sliding
manifold over the state space of the system.

Remark 1. Hurwitz nature of the surface guarantee that the
trajectories slide towards stable equilibrium.

An integral-derivative type surface is defined in equation (23)
below where the integral term is providing a low pass filtering
effect and hence smoothness.

s(x) = µ1e(t)+ ė(t)+µ2

t∫
0

e(t)dt. (23)

The positive constants, µ1 and µ2 outlined in Table 5, are the
performance defining terms of the sliding mode (reduced order)
dynamics.

A controller is desired to force the trajectories to s(x), and
once reached, confine them thereafter. A result is the attainment
of s(x) = 0 and hence e(t)→ 0.

Taking the time derivative of equation (23) with respect to
equation (12).

ṡ(x) =
( ˙̂z2− z̈1ref

)
+α1 (ẑ2− ż1ref)+α2e(t). (24)

This approach involves considering a strong reachability condi-
tion (udis) and employ an equivalent controller of the form,

u = ueqv−

µ3s+µ4sign(s)︸ ︷︷ ︸
udis

 , (25)

where

ueqv =
1

L̂gL f h(x)

[
z̈1ref−µ1ẑ2−µ2z1 +µ1ż1ref + . . .

+µ2z1ref− L̂2
f h(x)

]
.

The choice of u in equation (25), with µ3 and µ4 being the pos-
itive gains which can be tuned for a desired response and are
outlined in Table 5, gives the following surface dynamics.

ṡ =−µ3s−µ4sign(s). (26)

Use of a positive definite and radially unbounded function

V (t) =
1
2

s2 in combination to equations (23), (25) and (26) dic-
tate an asymptotic stability of the overall closed loop system.

V̇ (t) = sṡ

=−µ3s2−µ4|s| ≤ 0. (27)

The negative definiteness of the derivative of energy like
function V (t), in equation (27), reveals the fact that sliding
modes are enforced.

It is worth noting that this is the traditional control law that
exhibits chattering. The upcoming algorithms based HOSM
(BISMC and STA) are designed to suppress the chattering.

6.2. IBSMC based MPPT control strategy design
In this section, an MPPT strategy based on IBSMC is presented.
The goal of this strategy is to address the limitations of the stan-
dard SMC, which were discussed in Section 6.1. The IBSMC-
based MPPT technique is designed with the aim of enhanc-
ing the WECS capacity to track the MPP, thereby enhancing
its overall performance. By using this strategy, the WECS can
operate at its optimal efficiency while also overcoming the neg-
ative impacts of varying wind speeds and other environmental
factors. The proposed approach is expected to lead to more ef-
fective power generation, which can be particularly beneficial
for remote or off-grid applications.

The subsequent steps delineate the process of designing the
IBSMC algorithm [21].

Step 1: Use the tracking error and its derivative of equa-
tions (19) and (20) with the following notations:

e1 = e,

e2 = ė.

Step 2: The suggested control law (IBSMC) can be defined
as follows using the standard ISMC [21]:

u = ui +ud , (28)

where the continuous control component ui can be created
through linear state feedback (see equation (29)) while the dis-
continuous control component ud can be established through
the utilization of a back-stepping design approach.

ui =−σ1(e1)−σ2(e2), (29)

where σ1 and σ2 represent the gains.
Step 3: Design ud using the back-stepping approach, which

requires selecting a Lyapunov function candidate V1(e1) that
satisfies three conditions: positive definiteness, radial unbound-
edness, and negative definiteness of its time derivative. A suit-
able V1(e1) is defined as:

V1(e1) =
1
2

e2
1 . (30)

Differentiating V1 with respect to time and simplifying equa-
tions (19) and (20) using the system equations yields:

V̇1 = e1ė1 = e1 (ż1− ż1ref) = e1 (ẑ2− ż1ref) . (31)

If one view z2 in equation (31) as a virtual controller that serves
to stabilize the system, it can be represented in the follow-
ing way:

z?2 =−k2e1 + ż1ref
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yields, V̇1 = −k2e2
1 < 0, which exhibits global asymptotic sta-

bility.
Step 4: Define an integral switching manifold with zi as in-

tegral term [21, 22].

s1 = z2 + k2e1− ż1ref + zi (32)

A derivative of equation (32) and its simplification using the
system equations given in equations (12) and (28) yields:

ṡ1 = L̂2
f h(x)+ L̂gL f h(x)(ui +ud)+ k2ė1 . (33)

Now, choosing,

żi =−L̂gL f h(x)ui + z̈1ref (34)

and by putting equation (34) in equation (32) along equa-
tion (33), one gets

ṡ1 = L̂2
f h(x)+ L̂gL f h(x)ud + k2ė1 . (35)

Step 5: A candidate for a composite Lyapunov function, de-
noted by V2(e1,s1), is defined by the following equation:

V2(e1,s1) =
1
2
(
e2

1 + s2
1
)
. (36)

Differentiating equation (36) and simplifying equation (31) one
gets

V̇2 = (e1ė1 + s1ṡ1) = V̇1 + s1ṡ1 . (37)

Here considering a strong reachability law of the following
form as in [23].

ṡ1 = (−kps1− kq sign(s1)) . (38)

When equation (38) is substituted for equation (37), it results in

V̇2 = V̇1 + s1 (−kps1− kq sign(s1)) . (39)

Negative definiteness of V̇2 is desired to ensure asymptotic sta-
bility of the overall closed loop system.

Comparing equation (35) and equation (38), one gets

ud =
−1

L̂gL f h(x)

[
L̂2

f h(x)+ k2ė1 + kps1 + kq sign(s1)
]
. (40)

The final step is to replace ui and ud from equations (29) and
(40), respectively, in equation (28), to produce the overall pro-
posed IBSMC law as shown below.

uIBSMC =
−1

L̂gL f h(x)

[
L̂2

f h(x)+ k2ė1 + kps1 + kq sign(s1)
]

︸ ︷︷ ︸
ud

−kb(e1)− ki(e2)︸ ︷︷ ︸
ui

. (41)

Table 5 lists the parameters of the IBSMC law, while its com-
putational flow chart for implementation can be seen in Fig. 7.

Table 5
Overall controllers and HGO Constant parameters

Name Symbol Value

SMC

µ1 103
µ2 2000
µ3 0.01
µ4 50

k2 0.1
kp 100

IBSMC kq 0.001
ki 2
kb 700

STA

µ1 103
µ2 2000
φ1 2.3
φ2 2000

α1 3.6
HGO α2 9

ψ2 0.0004
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6.3. Super-twisting algorithm (STA) design
The STA is a type of SMC that is capable of controlling non-
linear systems even when uncertainties and disturbances are
present. The algorithm operates by forcing the system state to
follow a desired sliding surface in a finite time, which leads
to robust performance in the presence of disturbances and un-
certainties. In SMC and IBSMC the switching manifold may
exhibit high-frequency vibrations, which can be undesirable in
practice. To eliminate this problem, a modified reachability law
can be considered instead of the one reported in equation (26).

ṡ = ut =−φ1|s|0.5sign(s)−φ2

∫
sign(s)dt, (42)

where, φ1 and φ2 are positive scalars given in Table 5. The fol-
lowing sliding mode enforcement law (equation (43)) can be
obtained by comparing equation (24) with equation (42).

uSTA

=
1

L̂gL f h(x)

[
z̈1ref−µ1ẑ2−µ2z1 +µ1ż1ref +µ2z1ref− L̂2

f h(x)︸ ︷︷ ︸
ueqv

−φ1|s|0.5sign(s)−φ2

∫
sign(s)dt︸ ︷︷ ︸

ut

]
. (43)

In this scenario, ueqv represents the equivalent controller de-
fined in equation (25), while ut is expressed by equation (42).
The attractiveness of the reachability expressed in equation (42)
stems from its adaptive gain, which results in a reduction of
chattering magnitude as the value of s approaches zero. In ad-
dition, the second term undergoes a low-pass filter that removes
high-frequency vibrations. As a result, this approach effectively
reduces the chattering phenomenon to an acceptable level. Fig-
ure 7 depicts the computational flow chart utilized for its imple-
mentation.

7. DETAILED SIMULATION RESULTS AND DISCUSSION
To evaluate this work, Fig. 6 depicts the full WECS together
with the developed and proposed control schemes, whereas the
PMSG-based WECS shown in Fig. 1 has an optimal TSR of
λopt = 7 and a maximum power coefficient of Cpmax = 0.476.
The simulations are performed with an average wind speed
of 7 m/s. The simulation results are organised in three different
cases to assess the potency of the suggested control strategies:
1) variational wind speed profile for, (a) nominal case, (b) vary-
ing load varying inertia, 2) deterministic wind speed profile,
and 3) comparison of RTA with FL based controller.

In case 1(a), the proposed MPP tracking algorithm is tested
under a stochastic wind speed profile. This means that the wind
speed varies randomly over time, and the algorithms must be
able to track the changes in wind speed in order to maximize
the power output of the wind turbine. The simulations are run
for a period of 100 seconds, during which the wind speed profile
changes randomly. In case 1(b), the robustness of the proposed
control schemes is analyzed under a more complex scenario.

The wind speed profile is still stochastic, but in addition, the
load and inertia of the wind turbine also vary randomly over
time. These variations in load and inertia can have a significant
impact on the performance of the control system, and the anal-
ysis aims to evaluate how well the proposed control schemes
are able to handle these uncertainties. In case 2, the robustness
of the proposed control techniques is evaluated in the presence
of abrupt variations in the wind speed profile. This means that
the wind speed changes suddenly and rapidly, which can pose
a challenge for the control system. The goal of this analysis is
to determine how well the proposed control techniques can re-
spond to these sudden changes in order to maximize the power
output of the wind turbine. In both case 1 and case 2, the pro-
posed controllers (i.e., SMC, IBSMC and STA) are compared
with each other.

7.1. Case 1(a): Variational wind speed profile
The initial simulations aim to achieve the maximum power ex-
traction by testing three different control algorithms: SMC, IB-
SMC and STA. To achieve this objective, the wind turbine is
operated at its optimal TSR, denoted by λopt, which guarantees
the best value for the power coefficient Cpmax . To achieve this,
the rotational speed of the PMSG is controlled to ensure that it
operates at optimum values. Consequently, all three controllers
are capable of tracking the rotational speed of the HSS, while
maintaining the TSR at its optimal value and the coefficient of
power at its maximum value of Cpmax = 0.476.

In terms of reference tracking, the comparison in Fig. 8
shows that the control by SMC exhibits oscillatory behavior
with a significant steady-state error. In contrast to SMC, the
IBSMC algorithm exhibits oscillatory tracking around the ref-
erence with reduced amplitude, resulting in lower chattering.
On the other hand, the STA control algorithm has a bare mini-
mum steady-state error, superior to both SMC and IBSMC. The
convergence time is also much faster for STA, as demonstrated
in the zoomed portion of Fig. 8, with STA converging at 0 sec-
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onds, IBSMC converging at 0.01 seconds, and SMC converg-
ing at 0.1 seconds. Furthermore, the power coefficient Cp and
TSR (λ ) in Fig. 9 and Fig. 10 achieved by STA are more ap-
pealing compared to IBSMC and SMC, making MPPT more
effective with STA. Similarly, the mechanical power in Fig. 11
of the shaft around the optimal regime is superior for STA and
IBSMC compared to SMC, confirming the elimination of chat-
tering. This can be observed from the zoomed sections of the
reference tracking, TSR, Cp, and mechanical powers in the re-
spective figures. Overall, the results show that STA is the best
controller for achieving optimal performance in terms of power
extraction and chattering reduction.

Fig. 9. Tip speed ratio versus time plot
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The results of the analysis are presented graphically in
Figs. 12, and 13 where electromagnetic torque (Γem), mechan-
ical power on the generator side (PmHSS ) are plotted against

Fig. 11. Turbine shaft speed versus aerodynamic power

Fig. 12. TSR versus electromagnetic torque

Fig. 13. Mechanical power versus TSR
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the TSR (λ ) respectively. Figure 14 shows the response of the
mechanical torque (Γmec) to the variations in the turbine shaft
speed. The variations of mechanical torque around ORC are
smoothly tracked in the case of IBSMC and STA, indicating a
reduction in chattering. The results demonstrate that STA out-
performs IBSMC, and both outperform the SMC in terms of
overall performance. Therefore, it is advisable for power engi-
neers to use model-based STA over the SMC.

Fig. 14. Turbine shaft speed versus mechanical torque

7.2. Case 1(b): Varying load varying inertia
After analyzing how well the proposed controller techniques
track the maximum power point (MPP), their ability to han-
dle challenging conditions is tested. The system’s performance
is evaluated under varying loads and inertia. Figure 15 shows
the changes in load inductance and inertia over a time period
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of 0–100 seconds. Model-based STA controller exhibits better
HSS side angular speed tracking, as seen in the zoomed sec-
tion of Fig. 16 at 37.4 seconds, compared to other techniques
that experience undershoots during sudden changes in track-
ing, potentially decreasing power extraction. Although SMC
and IBSMC show statistical errors and disturbances in their tip
speed ratios and power coefficients, the STA exhibits no such
disturbances, as shown in Figs. 17 and 18. SMC Cp drops to a
low value of about 40%, but the STA maintains Cp at an opti-
mum value, ensuring robustness against parametric variations
and providing MPP. Figures 19 and 20 show variations in TSR
with low and high speed shaft powers and with electromagnetic
torque, but the STA remains constant at its optimal TSR and
Cp, while SMC and IBSMC change their behavior. To max-
imize wind power capture and reduce chattering, the turbine
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Fig. 18. Coefficient of power versus time for case 1(b)

Fig. 19. TSR versus electromagnetic torque for case 1(b)

Fig. 20. Mechanical power versus TSR for case 1(b)

should operate around the optimal rotational speed for mechan-
ical torque. Parametric variations have no effect on the STA, as
demonstrated in Fig. 21.

Fig. 21. Turbine shaft speed versus mechanical torque for case 1(b)

7.3. Case 2: Deterministic wind speed profile
In Fig. 22, the system ability to withstand sharp variations in
wind speed is examined. This deterministic case involves sud-
den changes in wind speed. It is important for the system to op-
erate at Cpmax when sharp variations occur. Figure 22 shows that
the SMC and IBSMC experience spikes under sharp variations,
while the STA maintains a smooth tracking of the reference an-
gular speed profile of the HSS side. Although there are some
transient disturbances in the power coefficient, tip speed ratio,
and HSS angular speed when the wind speed is suddenly var-
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ied, they do not significantly affect the stability of the control
scheme or the system performance, as demonstrated in Figs. 23
and 24.
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8. CONCLUSIONS
This research article introduces a model for PMSG-WECS. The
three state model has been converted into a more simplified
two-state normal form, which is output-oriented. The simpli-
fied, two-state normal form, has been subjected to act under the
effect of MPPT algorithms: a conventional SMC based MPPT,
an IBSMC based MPPT and STA based MPPT. The design pro-
cess outlined a rigorous mathematical process for proving sta-
bility of the overall closed loop system. Moreover, all the three

MPPT algorithms have been exposed to realistic operating con-
ditions.
• Nominal Operating Condition: Considering constant load

and/or inertia etc.
• Perturbed Operating Condition: Here load and inertia have

been considered to be varying.
• Deterministic Operating Condition: The wind speed has

been considered to have a deterministic profile.
These operating tests has revealed a proof about the robust-
ness of designed algorithms. Moreover, accessing the aerody-
namic forces and especially the non-linear drift term has been
a well known control challenge. The issue has been addressed
by designing an off-line Function-Fitting Neural-Network (FN)
for estimation of the otherwise un-accessible terms especially,
L2

f h(x) and LgL f h(x). In addition, a High Gain Observer (HGO)
has been employed to estimate the missing of High Speed Shaft
(HSS) via the measurable speed of PMSG rotor. During simu-
lation, it was noted that the STA, amongst the proposed MPPT
strategies, has been proven to be more effective in terms of
fast dynamic response, minimal steady-state error, smooth con-
trol actions and hence negligible chattering, and superiority in
terms of robustness. The MATLAB/Simulink based tests, un-
der stochastic and deterministic wind speed profiles authenti-
cate the same about STA superiority.
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