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Necessary optimality conditions for quasi-singular
controls for systems with Caputo fractional derivatives

Shakir Sh. YUSUBOV and Elimhan N. MAHMUDOVo

In this paper, we consider an optimal control problem in which a dynamical system is
controlled by a nonlinear Caputo fractional state equation. First we get the linearized maximum
principle. Further, the concept of a quasi-singular control is introduced and, on this basis, an
analogue of the Legendre-Clebsch conditions is obtained. When the analogue of Legendre-
Clebsch condition degenerates, a necessary high-order optimality condition is derived. An
illustrative example is considered.
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1. Introduction

Fractional differential equations have been of great interest for the past three
decades [2, 4, 5, 9, 11, 34, 37, 47]. This is due to the intensive development of
the theory of fractional calculus itself as well as its applications. Note that opti-
mal control problems for systems with fractional Riemann-Liouville and Caputo
derivatives are currently being actively studied. Such problems arise in a wide
range of applications, including, e.g., biology, chemistry, economics, electrical
engineering, and medicine [3, 9, 28].
It is known that fractional optimal control problems described by ordinary

fractional differential equations can be regarded as a generalization of classic
optimal control problems. The Pontryagin maximum principle is a fundamental
result of the theory of necessary optimality conditions of the first order, which
initially was proved in [39] for optimal control problems described by ordinary
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differential equations. Further, various necessary conditions for optimality of the
first and higher order are obtained for various systems [15,24,30–33,35,44–46].
For an optimal control problem with fractional derivatives, various formula-

tions are considered, including linear-quadratic problems, problems of minimiz-
ing the integral quality index, problems of transferring the system to a given state
in the shortest time or with a minimum control norm [1, 19, 29, 36].
The article [7] describes fractal dynamic games as an analytical tool for mod-

eling and predicting human dynamics. Based on the description of the statistical
physics of interactions between agents and the observed statistical properties of
economic indicators, basic equations are constructed that characterize the dynam-
ics of cost functionals as stochastic variables, which are influenced by additive
and multiplicative noise forces. Using the concepts of optimal control theory,
a continuum formulation for optimizing the dynamics of car traffic is derived,
which leads to a nonlinear fractional partial differential equation. In [26], a frac-
tional order system is presented as a model in the adaptive internal model control
(IMC) structure to obtain a fractional adaptive IMC scheme. It is shown that this
adaptive control scheme always provides theoretical guarantees of stability when
a stable fractional transfer function is used as the IMC parameter.
The paper [42] presents some results for existence of global solutions

and attractivity for mulidimensional fractional differential equations involving
Riemann-Liouville derivative. First, by using a Bielecki type norm and Banach
fixed point theorem, it is proved a Picard type theoremon the existence and unique-
ness of solutions. Then, applying the properties of Mittag-Leffler functions, are
described the attractivity of solutions to some classes of Riemann-Liouville lin-
ear fractional differential systems. In [20], the conditions for the positivity and
stability of a class of fractional-nonlinear systems with continuous time are es-
tablished. It is assumed that the nonlinear vector function is continuous, satisfies
the Lipschitz condition, and the linear part is described by the Metzler matrix.
The stability conditions are established by generalizing the Lyapunov method to
positive fractional nonlinear systems. The article [38] considers a simple iden-
tification problem for a fractional differential equation of Caputo type. This is
the problem of estimating the parameters for which the quadratic criterion is
minimized. To solve this problem, a nonlinear programming method based on the
Marquardt algorithm was used. In the article [13], the study of the existence of a
homogeneous Lyapunov function for a class of homogeneous fractional systems
was started, then it was proved that the local and global behavior are the same. The
uniformMittag-Leffler stability of homogeneous fractional time-varying systems
is studied. The article [16] considers the problem of optimal control in a dynam-
ical system described by a linear differential equation with the Caputo fractional
derivative. The aim of the control is to minimize the Bolza-type cost functional.
To solve this problem, it is proposed to reduce it to some auxiliary optimal control
problem, whose reduction is based on the formula for representing solutions of
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linear-fractional differential equations. The work [10] presents the formulation of
the optimal control and the numerical algorithm for a singular system of fractional
order with discrete time for a fixed final state and a fixed final state of finite time.
The productivity index has a quadratic form, and the dynamics of the system – in
the sense of a fractional Riemann-Liouville derivative. To obtain the necessary
conditions, the Hamilton method is used. In [40] the stability analysis of linear-
fractional systems with discrete time and delays is presented. A state-space model
with a time difference shift is considered. Necessary and sufficient conditions for
practical stability and asymptotic stability are established. In addition, parametric
descriptions of the boundaries of the regions of practical stability and asymptotic
stability are presented. The work [27] presents a general approach to the explicit
selection of domains of fractional powers of matrix-valued operators. The advan-
tage of the present approach, which becomes apparent in this illustrative case, is
that it is more conceptual and less computationally demanding than the previous
approach. The article [23] considers an unconstrained local controlability prob-
lem of finite-dimensional fractional-discrete semi-linear systems with multiple
control delays and constant coefficients. Using general formula of solution of
difference state equation algebraic sufficient condition for local unconstrained
controllablity in a given number of steps is formulated and proved.
The article [17] considers partial stability in a finite time and uniform partial

stability in a finite time for nonlinear dynamical systems. In particular, Lyapunov
conditions are provided, including a Lyapunov function that is positive definite
and decreasing with respect to a part of the state of the system, and satisfies a
differential inequality involving fractional powers to ensure partial stability over
a finite time. The book [25] presents a wide and exhaustive range of questions and
problems related to fractional order dynamical systems. It is intended to provide
a full, comprehensive presentation of the many aspects associated with widely
accepted fractional-order dynamical systems,which are an extension of traditional
integer-order type descriptions.The article [12] solves the control problem for a
linear stochastic system controlled by a noise process, which is an arbitrary zero-
mean integrable stochastic process with continuous discrete paths and a cost
functional quadratic in the system state and control. The article [43] establishes
a sufficient condition to obtain the optimal control of discounted linear quadratic
regulator optimization problem subject to disturbanced singular system where
the disturbance is time varying. Combining control theory and modeling, the
textbook [8] introduces and develops methods for modeling and solving specific
problems in various applied sciences.
The authors of the paper study in [34] local and nonlocal boundary value prob-

lems for general hyperbolic equations with variable coefficients and a fractional
Caputo derivative. To study the stated problem, a certain fractional-order func-
tional space is introduced. The problem posed is reduced to an integral equation,
and the existence of its solution is proved using an a priori estimate.
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Pontryagin’s maximum principle for fractional optimal control problems
proved in [6, 14, 21, 48, 49]. In the paper [6] the Pontryagin maximum princi-
ple is proved for general Caputo fractional optimal problems with Bolza costs
and terminal constraints. A linearized maximum principle is also obtained. Note
that in this paper the adjoint function may have a singularity. The paper [14]
proves Pontryagin’s type necessary optimality conditions for a class of fuzzy
fractional optimal control problems with a fuzzy fractional derivative described
in the Caputo sense.
An admissible control is called a Pontryagin extremal if it satisfies the Pontrya-

gin maximum condition. It follows from the maximum principle that any optimal
control is a Pontryagin extremal. Thus, the optimal control problem is reduced to
choosing the best control among the Pontryagin extremals. If an optimal control
exists in the optimization problem and Pontryagin’s extremal is unique, then this
is the optimal control. Note that even in the simplest situations, the Pontryagin
maximum principle is satisfied by the nonoptimal controls. In such cases, the
maximum principle can no longer weed out all nonoptimal controls.
Choosing among the Pontryagin extremals a narrower subset that claims to

be optimal is an important and difficult problem. Its complexity is explained by
the fact that the maximum principle itself is a very strong necessary condition for
optimality.
Therefore, the study of situations in which the Pontryagin maximum principle

does not allow one to uniquely determine the optimal control is today one of the
main directions in the development of the theory of optimal systems. Thus, the
problem arises of constructing new necessary optimality conditions that sparse
the set of controls that have passed the Pontryagin maximum principle. Therefore,
by high-order necessary optimality conditions we mean conditions imposed on
controls that satisfy the Pontryagin maximum principle and allow, generally
speaking, to distinguish among such controls nonoptimal.
In the paper [48], a necessary first-order optimality condition is obtained in the

form of the Pontryagin maximum principle, and in the case of degeneracy of the
maximum principle, a necessary optimality condition for singular controls in the
sense of the Pontryaginmaximumprinciple. Note that if the Pontryaginmaximum
principle holds along the control but does not degenerate, then the results of [6,48]
leave this control among the contenders for optimality. Therefore, it is natural to
have new necessary optimality conditions that would sift out this control from
among the candidates for optimality.
In the present paper we consider an optimal control problem for a dynamical

system whose motion is described by a nonlinear differential equation with the
Caputo fractional derivative of order 𝛼 ∈ (0, 1). The time interval of the control
process is fixed and finite. The goal of control is to minimize a given Bolza-
type cost functional, which consists of two terms. One of them evaluates the state
vector of the system realized at a fixed terminal time𝑇 , and the other is an integral
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evaluation of a control on the whole time interval [0, 𝑇]. The set of values of
control functions is nonemty and convex.
The posed problem of optimal control is investigated using a new version

of the increment method, in which the concept of a conjugate equation of an
integral form is essentially used. First we get the linearized maximum principle.
Further, the concept of a quasi-singular control is introduced and, on its basis,
an analogue of the Legendre-Clebsch conditions is obtained. When the analogue
of Legendre-Clebsch condition degenerates, a necessary high-order optimality
condition is obtained.
Note that the singular control in the sense of the Pontryagin maximum prin-

ciple is also quasi-singular. The converse is generally not true. In other words,
quasi-singular control may not be singular in the sense of the Pontryagin max-
imum principle. The obtained results in a number of cases make it possible to
establish the nonoptimality of those controls that satisfy the Pontryagin max-
imum condition and are not singular in the sense of the maximum principle.
An illustrative example is considered.
Thus, the main novelty of this paper is one of the possible approaches to

proving high-order optimality criteria in the general case, using a new version of
the increment method.
The rest of the paper is organized as follows.
In Section 2, the definitions and basic properties of fractional order integrals

and derivatives are recalled, and also some preliminary results are proved.
In Section 3 is given the formulation of the optimal control problem described

by the equation with the Caputo fractional derivative.
In Section 4, to obtain the necessary condition for the optimality of the control

function, the increment of the functional is calculated.
Section 5 is devoted to proving the existence and uniqueness of a continuous

solution to the adjoint problem.
In Section 6, first of all, for the optimality of the control function, a lin-

earized maximum principle is derived, and then, in the degenerate case of the
linearized maximum principle, a necessary condition of the Legendre-Clebsch
type is obtained. Finally, a necessary condition of a higher-order is derived.

2. Notations, definitions, and preliminary results

In this section, we give some definitions and basic concepts of fractional
integrals and derivatives (for details, see [22, 41]).
Let R𝑛and R𝑛×𝑛 be the spaces of 𝑛-dimensional vectors and (𝑛 × 𝑛)-matrices,

and let 𝐼 ∈ R𝑛×𝑛 stand for identity matrix. By ‖ · ‖, we denote a norm in R𝑛 and
the corresponding norm in R𝑛×𝑛. Let numbers 𝑎, 𝑏 ∈ R, 𝑎 < 𝑏 be fixed, and let
𝑋 be one of the spaces R𝑛 or R𝑛×𝑛.
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Let 𝐿1( [𝑎, 𝑏], 𝑋) be the Lebesgue space of summable functions 𝜑(·) defined

on [𝑎, 𝑏] with values in 𝑋 , endowd with its usual norm ‖𝜑(·)‖𝐿1 =
𝑏∫

𝑎

‖𝜑(𝑡)‖d𝑡

and 𝐿∞( [𝑎, 𝑏], 𝑋) is the Lebesgue space of essentially bounded functions 𝜑(·)
defined on [𝑎, 𝑏] with values in 𝑋 , endowed with its usual norm ‖𝜑(·)‖𝐿∞ =

‖𝜑(·)‖ [𝑎,𝑏] = ess sup
𝑡∈[𝑎,𝑏]

‖𝜑(𝑡)‖. 𝐶 ( [𝑎, 𝑏], 𝑋) the space of continuous functions

on [𝑎, 𝑏] with values in 𝑋 . We denote by 𝐶𝑎 ( [𝑎, 𝑏], 𝑋) the set of functions
𝜑(·) ∈ 𝐶 ( [𝑎, 𝑏], 𝑋) such that 𝜑(𝑎) = 0.
The Euler gamma function Γ(·) is defined by the so called Euler integral of

the second kind

Γ(𝛼) =
∞∫
0

𝑒−𝑡𝑡𝛼−1d𝑡, 𝛼 > 0.

The beta function is defined by the Euler integral of the first kind:

𝐵(𝛼, 𝛽) =
1∫
0

𝑡𝛼−1(1 − 𝑡)𝛽−1d𝑡, 𝛼, 𝛽 > 0.

This function is connected with the gamma functions by the relation

𝐵(𝛼, 𝛽) = Γ(𝛼) Γ(𝛽)
Γ(𝛼 + 𝛽) .

Definition 1 Let 𝛼 ∈ (0, 1). For a function 𝜑 : [𝑎, 𝑏] → 𝑋 , the left-sided and
right-sided Riemann-Liouville fractional integrals of the order 𝛼 are defined for
𝑡 ∈ [𝑎, 𝑏] by

(
𝐼𝛼𝑎+𝜑

)
(𝑡)= 1

Γ(𝛼)

𝑡∫
𝑎

(𝑡−𝜏)𝛼−1𝜑(𝜏)d𝜏, and
(
𝐼𝛼𝑏−𝜑

)
(𝑡)= 1

Γ(𝛼)

𝑏∫
𝑡

(𝜏−𝑡)𝛼−1𝜑(𝜏)d𝜏,

respectively.
If 𝜑(·) ∈ 𝐿∞( [𝑎, 𝑏], 𝑋), then the above functions are defined and finite

everywhere on [𝑎, 𝑏].

Proposition 1 If 𝛼 > 0 and 𝜑(·) ∈ 𝐿1( [𝑎, 𝑏], 𝑋), then (𝐼𝛼𝑎+𝜑) (·) and
(𝐼𝛼
𝑏−𝜑) (·) ∈ 𝐿

1( [𝑎, 𝑏], 𝑋).
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Proposition 2 If 𝛼1 > 0, 𝛼2 > 0 and 𝜑(·) ∈ 𝐿1( [𝑎, 𝑏], 𝑋), then(
𝐼
𝛼1
𝑎+

(
𝐼
𝛼2
𝑎+𝜑

) )
(𝑡) =

(
𝐼
𝛼1+𝛼2
𝑎+ 𝜑

)
(𝑡) =

(
𝐼
𝛼2+𝛼1
𝑎+ 𝜑

)
(𝑡) =

(
𝐼
𝛼2
𝑎+

(
𝐼
𝛼1
𝑎+𝜑

) )
(𝑡),(

𝐼
𝛼1
𝑏−

(
𝐼
𝛼2
𝑏−𝜑

))
(𝑡) =

(
𝐼
𝛼1+𝛼2
𝑏− 𝜑

)
(𝑡) =

(
𝐼
𝛼2+𝛼1
𝑏− 𝜑

)
(𝑡) =

(
𝐼
𝛼2
𝑏−

(
𝐼
𝛼1
𝑏−𝜑

))
(𝑡)

almost everywhere on [𝑎, 𝑏]. If moreover 𝜑(·) ∈ 𝐿∞( [𝑎, 𝑏], 𝑋) and 𝛼1+𝛼2 > 0,
the above equality is satisfied everywhere on [𝑎, 𝑏].

Proposition 3 If𝛼 > 0 and 𝜑(·) ∈ 𝐿∞( [𝑎, 𝑏], 𝑋), then (𝐼𝛼𝑎+𝜑) (·) ∈𝐶𝑎 ( [𝑎, 𝑏], 𝑋).

Definition 2 Let 𝛼 ∈ (0, 1), 𝜑(·) ∈ 𝐿1( [𝑎, 𝑏], 𝑋). For a function 𝜑(·) the left-
sided and right-sided Riemann-Liouville fractional derivatives of the order 𝛼 are
defined for 𝑡 ∈ [𝑎, 𝑏] by

(
𝐷𝛼
𝑎+𝜑

)
(𝑡) = 𝑑

𝑑𝑡

(
𝐼1−𝛼𝑎+ 𝜑

)
(𝑡) = 1

Γ(1 − 𝛼)
𝑑

𝑑𝑡

𝑡∫
𝑎

(𝑡 − 𝜏)−𝛼𝜑(𝜏)d𝜏

and (
𝐷𝛼
𝑏−𝜑

)
(𝑡) = − 𝑑

𝑑𝑡

(
𝐼1−𝛼𝑏− 𝜑

)
(𝑡) = − 1

Γ(1 − 𝛼)
𝑑

𝑑𝑡

𝑏∫
𝑡

(𝜏 − 𝑡)−𝛼𝜑(𝜏)d𝜏,

if
(
𝐼1−𝛼𝑎+ 𝜑

)
(·) and

(
𝐼1−𝛼
𝑏− 𝜑

)
(·) has an absolutely continuous representant on

[𝑎, 𝑏].

Definition 3 Let 𝛼 ∈ (0, 1), and 𝜑(·) ∈ 𝐶 ( [𝑎, 𝑏], 𝑋). For a function 𝜑(·) the
left-sided and right-sided Caputo fractional derivatives of the order 𝛼 are defined
for 𝑡 ∈ [𝑎, 𝑏] by(

𝑐𝐷𝛼
𝑎+𝜑

)
(𝑡) =

(
𝐷𝛼
𝑎+(𝜑(·) − 𝜑(𝑎))

)
(𝑡) = 𝑑

𝑑𝑡

(
𝐼1−𝛼𝑎+ (𝜑(·) − 𝜑(𝑎))

)
(𝑡)

=
1

Γ(1 − 𝛼)
𝑑

𝑑𝑡

𝑡∫
𝑎

(𝑡 − 𝜏)−𝛼 (𝜑(𝜏) − 𝜑(𝑎))d𝜏,

and (
𝑐𝐷𝛼

𝑏−𝜑
)
(𝑡) =

(
𝐷𝛼
𝑏−(𝜑(·) − 𝜑(𝑏))

)
(𝑡) = − 𝑑

𝑑𝑡

(
𝐼1−𝛼𝑏− (𝜑(·) − 𝜑(𝑏))

)
(𝑡)

= − 1
Γ(1 − 𝛼)

𝑑

𝑑𝑡

𝑏∫
𝑡

(𝜏 − 𝑡)−𝛼 (𝜑(𝜏) − 𝜑(𝑏))d𝜏,
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if
(
𝐼1−𝛼𝑎+ (𝜑(·) − 𝜑(𝑎))

)
(·) and

(
𝐼1−𝛼
𝑏− (𝜑(·) − 𝜑(𝑏))

)
(·) has an absolutely contin-

uous representant on [𝑎, 𝑏].
By 𝐴𝐶𝛼∞( [𝑎, 𝑏], 𝑋) we denote the set of all functions 𝜑 : [𝑎, 𝑏] → 𝑋 , such

that
𝜑(𝑡) = 𝜑(𝑎) +

(
𝐼𝛼𝑎+𝜓

)
(𝑡), 𝑡 ∈ [𝑎, 𝑏],

with 𝜓(·) ∈ 𝐿∞( [𝑎, 𝑏], 𝑋).
Proposition 4 For any 𝜑(·) ∈ 𝐴𝐶𝛼∞( [𝑎, 𝑏], 𝑋), the value

(
𝑐𝐷𝛼

𝑎+𝜑
)
(𝑡) is cor-

rectly defined for almost every 𝑡 ∈ [𝑎, 𝑏]. Moreover, the inclusion
(
𝑐𝐷𝛼

𝑎+𝜑
)
(·)

∈ 𝐿∞( [𝑎, 𝑏], 𝑋) holds (i.e., there exists 𝜓(·) ∈ 𝐿∞( [𝑎, 𝑏], 𝑋) such that
𝜓(𝑡) =

(
𝑐𝐷𝛼

𝑎+𝜑
)
(𝑡) for almost every 𝑡 ∈ [𝑎, 𝑏]) and(
𝐼𝛼𝑎+

(
𝑐𝐷𝛼

𝑎+𝜑
) )
(𝑡) = 𝜑(𝑡) − 𝜑(𝑎), 𝑡 ∈ [𝑎, 𝑏] .

Proposition 5 Let 𝛼 > 0 and let 𝜑(·) ∈ 𝐿∞( [𝑎, 𝑏], 𝑋), then
(
𝑐𝐷𝛼

𝑎+(𝐼𝛼𝑎+𝜑)
)
(𝑡) =

𝜑(𝑡) and
(
𝑐𝐷𝛼

𝑏−(𝐼
𝛼
𝑏−𝜑)

)
(𝑡) = 𝜑(𝑡), a.e. 𝑡 ∈ [𝑎, 𝑏].

Lemma 1 [18, 48] Suppose 𝛼 > 0, 𝑎(·) is a nonnegative function locally inte-
grable on [𝑎, 𝑏) and 𝑏(·) is a nonnegative, nondecreasing continuous function
defined on 𝑡 ∈ [𝑎, 𝑏] and suppose 𝑢(·) is nonnegative and locally integrable on
[𝑎, 𝑏) with

𝑢(𝑡) ¬ 𝑎(𝑡) + 𝑏(𝑡)
Γ(𝛼)

𝑡∫
𝑎

(𝑡 − 𝑠)𝛼−1𝑢(𝑠)d𝑠, 𝑡 ∈ [𝑎, 𝑏).

Then

𝑢(𝑡) ¬ 𝑎(𝑡) + 𝑏(𝑡)𝐸𝛼,𝛼 (𝑏(𝑡) (𝑡 − 𝑎)𝛼)
𝑡∫

𝑎

(𝑡 − 𝑠)𝛼−1𝑎(𝑠)d𝑠, 𝑎 ¬ 𝑡 < 𝑏,

where 𝐸𝛼,𝛽 (𝑡) =
∞∑︁
𝑘=0

𝑡𝑘

Γ(𝛼𝑘 + 𝛽) is Mittag-Leffler function with two parameters.

Lemma 2 [48] For an arbitrary function 𝑎(·) ∈ 𝐿∞(0, 𝑇), any of its Lebesgue
points 𝜃 ∈ (0, 𝑇), and any numbers 𝛼, 𝜀, 0 < 𝛼 < 1, 0 < 𝜀 < 𝑇 − 𝜃, the equality

𝜃+𝜀∫
𝜃

(𝑇 − 𝑡)𝛼−1(𝑡 − 𝜃)𝛼𝑎(𝑡)d𝑡 = (𝑇 − 𝜃)𝛼−1𝑎(𝜃)
𝛼 + 1 𝜀𝛼+1 + 𝑜(𝜀𝛼+1),

holds, where lim
𝜀→0

𝑜(𝜀𝛼+1)
𝜀𝛼+1

= 0.
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Lemma 3 For an arbitrary function 𝑎(·) ∈ 𝐿∞(0, 𝑇) and any Lebesgue point
𝜃 ∈ (0, 𝑇) of this function, the equality

lim
𝑡→𝜃+

1
(𝑡 − 𝜃)𝛼

𝑡∫
𝜃

(𝑡 − 𝜏)𝛼−1 |𝑎(𝜏) − 𝑎(𝜃) |d𝜏 = 0, 0 < 𝛼 ¬ 1, (1)

holds.

Proof. Under the condition 𝑝 > 1
𝛼
,
1
𝑝
+ 1
𝑞
= 1, by Holder’s inequality we have

𝑡∫
𝜃

(𝑡 − 𝜏)𝛼−1 |𝑎(𝜏) − 𝑎(𝜃) |d𝜏 ¬ ©­«
𝑡∫

𝜃

(𝑡 − 𝜏)𝑞(𝛼−1)d𝜏ª®¬
1
𝑞 ©­«

𝑡∫
𝜃

|𝑎(𝜏) − 𝑎(𝜃) |𝑝d𝜏ª®¬
1
𝑝

=

(
− (𝑡 − 𝜏)𝑞(𝛼−1)+1
𝑞(𝛼 − 1) + 1

��𝑡
𝜃

) 1
𝑞 ©­«

𝑡∫
𝜃

|𝑎(𝜏) − 𝑎(𝜃) |𝑝d𝜏ª®¬
1
𝑝

=
((𝑡 − 𝜃)𝑞(𝛼−1)+1)

1
𝑞

(𝑞(𝛼 − 1) + 1)
1
𝑞

(𝑡 − 𝜃)
1
𝑝

(𝑡 − 𝜃)
1
𝑝

©­«
𝑡∫

𝜃

|𝑎(𝜏) − 𝑎(𝜃) |𝑝d𝜏ª®¬
1
𝑝

=
(𝑡 − 𝜃)𝛼

(𝑞(𝛼 − 1) + 1)
1
𝑞

©­« 1𝑡 − 𝜃
𝑡∫

𝜃

|𝑎(𝜏) − 𝑎(𝜃) |𝑝d𝜏ª®¬
1
𝑝

.

Denoting 𝑑 = (𝑞(𝛼 − 1) + 1)
1
𝑞 , from this we have

1
(𝑡 − 𝜃)𝛼

𝑡∫
𝜃

(𝑡 − 𝜏)𝛼−1 |𝑎(𝜏) − 𝑎(𝜃) |d𝜏 ¬ 1
𝑑

©­« 1𝑡 − 𝜃
𝑡∫

𝜃

|𝑎(𝜏) − 𝑎(𝜃) |𝑝d𝜏ª®¬
1
𝑝

. (2)

Note that, if there exists a measurable set 𝐸 ⊂ [𝜃, 𝑡] such that

lim
𝑡→𝜃+

meas
{
[𝜃, 𝑡] ∩ 𝐸

}
𝑡 − 𝜃 = 1 and lim

𝑡→𝜃+
𝑎(𝑡) = 𝑎(𝜃), 𝑡 ∈ 𝐸, (3)

then 𝜃 is said to be the point of approximate continuity of 𝑎(·). Points of ap-
proximate continuity of a measurable functions comprise a set of full measure.
Also recall that Lebesgue points of a measurable function are necessarily points
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of its approximate continuity. The converse is true if the function is essentially
bounded.
It follows from (3) that for any 𝜀 > 0 there is 𝛿1 = 𝛿1(𝜀) > 0 such that

|𝑎(𝜏) − 𝑎(𝜃) | < 𝜀𝑑

2
1
𝑝

for |𝑡 − 𝜃 | ¬ 𝛿1, 𝜏 ∈ [𝜃, 𝑡] ∩ 𝐸 and lim
𝑡→𝜃

meas
{
[𝜃, 𝑡] |𝐸

}
𝑡 − 𝜃 = 0.

Denoting𝑀 = ess sup{|𝑎(𝜏) | : 𝜏 ∈ [𝜃, 𝑡]}, we find from
(

𝜀

21+
1
𝑝𝑀

) 𝑝
such 𝛿2 > 0,

such that for |𝑡 − 𝜃 | ¬ 𝛿2 we have

meas
{
[𝜃, 𝑡] ∩ 𝐸

}
𝑡 − 𝜃 ¬

(
𝜀𝑑

21+
1
𝑝𝑀

) 𝑝
.

Putting 𝛿 = min{𝛿1, 𝛿2} and taking into account the relations obtained, we
arrive at |𝑡 − 𝜃 | ¬ 𝛿 to the inequalities

1
𝑡 − 𝜃

𝑡∫
𝜃

|𝑎(𝜏) − 𝑎(𝜃) |𝑝d𝜏 = 1
𝑡 − 𝜃

∫
[𝜃,𝑡]∩𝐸

|𝑎(𝜏) − 𝑎(𝜃) |𝑝d𝜏

+ 1
𝑡 − 𝜃

∫
[𝜃,𝑡]\𝐸

|𝑎(𝜏) − 𝑎(𝜃) |𝑝𝑑𝜏 ¬ 1
𝑡 − 𝜃

𝜀𝑝𝑑𝑝

2
(𝑡 − 𝜃)

+ 1
𝑡 − 𝜃 (2𝑀)𝑝 𝑑

𝑝𝜀𝑝 (𝑡 − 𝜃)
2 · (2𝑀)𝑝 = (𝜀𝑑)𝑝 .

Using this estimate, from (2) we see that

1
(𝑡 − 𝜃)𝛼

𝑡∫
𝜃

(𝑡 − 𝜏)𝛼−1 |𝑎(𝜏) − 𝑎(𝜃) |d𝜏 < 𝜀.

Hence equality (1) follows. The proof is completed. 2

Lemma 4 For an arbitrary function 𝑎(·) ∈ 𝐿∞(0, 𝑇) and any Lebesgue point
𝜃 ∈ (0, 𝑇) of this function, the equality

lim
𝜀→0+

1
𝜀

𝜃+𝜀∫
𝜃

(𝑡 − 𝜏)𝛼−1 |𝑎(𝜏) − 𝑎(𝜃) |d𝜏 = 0, 0 < 𝛼 ¬ 1, 𝑡 ∈ (𝜃 + 𝜀, 𝑇], (4)

holds.
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Proof. Since 𝜃 is the Lebesgue point for the function 𝑎(·), we have

lim
𝜀→0+

1
𝜀

𝜃+𝜀∫
𝜃

|𝑎(𝜏) − 𝑎(𝜃) |d𝜏 = 0.

From here, by changing variables, we have

lim
𝜀→0+

1
𝜀

𝜃+𝜀∫
𝜃

|𝑎(𝜏) − 𝑎(𝜃) |d𝜏 = lim
𝜀→0+

1
𝜀

1∫
0

|𝑎(𝜃 + 𝜀𝑧) − 𝑎(𝜃) |𝜀d𝑧

= lim
𝜀→0+

1∫
0

|𝑎(𝜃 + 𝜀𝑧) − 𝑎(𝜃) |d𝑧 = 0.

Now we change the variables on the left-hand side of equality (4) and estimate
the resulting integral, we have

0 ¬ lim
𝜀→0+

1
𝜀

𝜃+𝜀∫
𝜃

(𝑡 − 𝜏)𝛼−1 |𝑎(𝜏) − 𝑎(𝜃) |d𝜏

= lim
𝜀→0+

1
𝜀

1∫
0

(𝑡 − 𝜃 − 𝜀𝑧)𝛼−1 |𝑎(𝜃 + 𝜀𝑧) − 𝑎(𝜃) |𝜀d𝑧

¬ lim
𝜀→0+

(𝑡 − 𝜃 − 𝜀)𝛼−1 lim
𝜀→0+

1∫
0

|𝑎(𝜃 + 𝜀𝑧) − 𝑎(𝜃) |d𝑧 = 0, 𝑡 ∈ (𝜃 + 𝜀, 𝑇] .

Hence equality (4) follows. The proof is completed. �

3. Problem statement

Consider a dynamical system whose motion is described by a differential
equation with a fractional Caputo derivative of order 𝛼 ∈ (0, 1):(

𝑐𝐷𝛼
0+𝑥

)
(𝑡) = 𝑓 (𝑡, 𝑥(𝑡), 𝑢(𝑡)), 𝑎.𝑒. 𝑡 ∈ [0, 𝑇], (5)

with the initial condition
𝑥(0) = 𝑥0 . (6)
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Here 𝑥(𝑡) is 𝑛-dimensional vector of phase variables, 𝑢(𝑡) is 𝑟-dimensional
measurable and bounded vector of controlling effects on the seqment [0, 𝑇],
0 < 𝑇 ∈ R and 𝑥0 ∈ R𝑛 are fixed, function 𝑓 (𝑡, 𝑥, 𝑢) is continuous on totality of
arguments on [0, 𝑇] × R𝑛 × R𝑟 together with partial derivatives with respect to
𝑥, 𝑢 up to second order, inclusively.
As the set of admissible controls, we take the set of measurable bounded 𝑟-

dimensional vector functions 𝑢(·), taking values from a given nonempty convex
closed set 𝑉 ⊂ R𝑟 :

𝑢(𝑡) ∈ 𝑉, 𝑡 ∈ [0, 𝑇] . (7)
As a solution of the problem (5), (6) corresponding to the fixed control func-

tion 𝑢(·), we consider the function 𝑥(·) ∈ 𝐴𝐶𝛼∞( [0, 𝑇], R𝑛) satisfies differential
equation (5) for almost every 𝑡 ∈ [0, 𝑇] and the initial condition (6).
The goal of the optimal control problem is the minimization of the functional

𝐽 (𝑢) = 𝜑(𝑥(𝑇)) + 1
Γ(𝛽)

𝑇∫
0

(𝑇 − 𝑡)𝛽−1 𝑓0(𝑡, 𝑥(𝑡), 𝑢(𝑡))d𝑡 (8)

determined in the solutions of problem (5), (6) for admissible control satisfying
the condition (7). Here it is supposed that, 𝜑(·)-a given twice continuously differ-
entiable scalar function defined inR𝑛 and scalar function 𝑓0(𝑡, 𝑥, 𝑢) is continuous
on totality of arguments on [0, 𝑇] ×R𝑛×R𝑟 together with partial derivatives with
respect to 𝑥, 𝑢 up to second order, inclusively. Let 0 < 𝛼 < 1 and 𝛽 ­ 𝛼 be fixed.
Let 𝑥(·) be a solution to problem (5), (6) corresponding to 𝑢(·), then the pair

(𝑥(·), 𝑢(·)) will be called an admissible process. We will assume that problem
(5), (6) has a unique solution 𝑥(·) for each admissible control 𝑢(·). In this case, we
call an admissible control 𝑢(·) that is the solution of problem (5)–(8) an optimal
control, and its corresponding trajectory 𝑥(·), an optimal trajectory. Then the pair
(𝑥(·), 𝑢(·)) is said to be an optimal process.

4. The functional increment formula

Let {𝑢(·), 𝑥(·)} and {𝑢̃(·) = 𝑢(·) + Δ𝑢(·), 𝑥̃(·) = 𝑥(·) + Δ𝑥(·)} be two ad-
missible processes. Then applying (5), (6), we obtain that the increment Δ𝑥(·)
satisfies the problem

(𝑐𝐷𝛼
0+Δ𝑥) (𝑡) = Δ 𝑓 (𝑡, 𝑥(𝑡), 𝑢(𝑡)), 𝑎.𝑒. 𝑡 ∈ [0, 𝑇],

Δ𝑥(0) = 0, (9)

where Δ 𝑓 (𝑡, 𝑥, 𝑢) = 𝑓 (𝑡, 𝑥̃, 𝑢̃) − 𝑓 (𝑡, 𝑥, 𝑢) denotes the total increment of the
function 𝑓 (𝑡, 𝑥, 𝑢). Then we can represent the increment of the functional in the
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form

Δ𝐽 (𝑢) = 𝐽 (𝑢̃) − 𝐽 (𝑢) = Δ𝜑(𝑥(𝑇)) + 1
Γ(𝛽)

𝑇∫
0

(𝑇 − 𝑡)𝛽−1Δ 𝑓0(𝑡, 𝑥(𝑡), 𝑢(𝑡))d𝑡,

where Δ𝜑(𝑥) = 𝜑(𝑥̃) − 𝜑(𝑥), and Δ 𝑓0(𝑡, 𝑥, 𝑢) = 𝑓0(𝑡, 𝑥̃, 𝑢̃) − 𝑓0(𝑡, 𝑥, 𝑢).
Let us introduce some nontrivial 𝑛-dimensional vector-function 𝜓(𝑡),

𝑡 ∈ [0, 𝑇]. Then using the formula Teylora, increment of functional may be
represented as

Δ𝐽 (𝑢) = Δ𝜑(𝑥(𝑇)) + 1
Γ(𝛽)

𝑇∫
0

(𝑇 − 𝑡)𝛽−1Δ 𝑓0(𝑡, 𝑥(𝑡), 𝑢(𝑡))d𝑡

+ 1
Γ(𝛼)

𝑇∫
0

(𝑇 − 𝑡)𝛼−1𝜓′(𝑡)
(
(𝑐𝐷𝛼

0+Δ𝑥) (𝑡) − Δ 𝑓 (𝑡, 𝑥(𝑡), 𝑢(𝑡))
)
d𝑡

= 𝜑′𝑥 (𝑥(𝑇))Δ𝑥(𝑇) +
1
2
Δ𝑥′(𝑇)𝜑𝑥𝑥 (𝑥(𝑇))Δ𝑥(𝑇)

+ 1
Γ(𝛼)

𝑇∫
0

(𝑇 − 𝑡)𝛼−1𝜓′(𝑡) (𝑐𝐷𝛼
0+Δ𝑥) (𝑡)d𝑡

− 1
Γ(𝛼)

𝑇∫
0

(𝑇 − 𝑡)𝛼−1
[
𝐻′
𝑥 (𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))Δ𝑥(𝑡)

+ 𝐻′
𝑢 (𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))Δ𝑢(𝑡) +

1
2

(
Δ𝑥′(𝑡)𝐻𝑥𝑥 (𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))Δ𝑥(𝑡)

+ 2Δ𝑥′(𝑡)𝐻𝑥𝑢 (𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))Δ𝑢(𝑡)+Δ𝑢′(𝑡)𝐻𝑢𝑢 (𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))Δ𝑢(𝑡)
)

+ 𝑜𝐻 (‖Δ𝑥(𝑡)‖2 + ‖Δ𝑥(𝑡)‖ · ‖Δ𝑢(𝑡)‖ + ‖Δ𝑢(𝑡)‖2)
]
d𝑡 + 𝑜𝜑 (‖Δ𝑥(𝑇)‖2),

where 𝐻 (𝑡, 𝑥, 𝑢, 𝜓) = 𝜓′ 𝑓 (𝑡, 𝑥, 𝑢) − Γ(𝛼)
Γ(𝛽) (𝑇 − 𝑡)𝛽−𝛼 𝑓0(𝑡, 𝑥, 𝑢).

Using relation

Δ𝑥(𝑡) = 1
Γ(𝛼)

𝑡∫
0

(𝑡 − 𝜏)𝛼−1(𝑐𝐷𝛼
0+Δ𝑥) (𝜏)d𝜏,
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we get

Δ𝐽 (𝑢) = 1
Γ(𝛼)

𝑇∫
0

(𝑇 − 𝑡)𝛼−1
[
𝜑′𝑥 (𝑥(𝑇)) + 𝜓′(𝑡)

− (𝑇 − 𝑡)1−𝛼
Γ(𝛼)

𝑇∫
𝑡

(𝑇 − 𝜏)𝛼−1(𝜏 − 𝑡)𝛼−1𝐻′
𝑥 (𝜏)d𝜏

]
(𝑐𝐷𝛼

0+Δ𝑥) (𝑡)d𝑡

− 1
Γ(𝛼)

𝑇∫
0

(𝑇 − 𝑡)𝛼−1
[
𝐻′
𝑢 (𝑡)Δ𝑢(𝑡) +

1
2
Δ𝑥′(𝑡)𝐻𝑥𝑥 (𝑡)Δ𝑥(𝑡)

+ Δ𝑥′(𝑡)𝐻𝑥𝑢 (𝑡)Δ𝑢(𝑡) +
1
2
Δ𝑢′(𝑡)𝐻𝑢𝑢 (𝑡)Δ𝑢(𝑡)

+ 𝑜𝐻
(
‖Δ𝑥(𝑡)‖2 + ‖Δ𝑥(𝑡)‖‖Δ𝑢(𝑡)‖ + ‖Δ𝑢(𝑡)‖2

) ]
d𝑡

+ 1
2
Δ𝑥′(𝑇)𝜑𝑥𝑥 (𝑥(𝑇))Δ𝑥(𝑇) + 𝑜𝜑 (‖Δ𝑥(𝑇)‖2). (10)

Further, we require that the vector function 𝜓(·) is a solution to the following
integral equation

𝜓(𝑡) = −𝜑𝑥 (𝑥(𝑇))+
(𝑇−𝑡)1−𝛼
Γ(𝛼)

𝑇∫
𝑡

(𝑇−𝜏)𝛼−1(𝜏−𝑡)𝛼−1𝐻𝑥 (𝜏)d𝜏, 𝑡 ∈ [0, 𝑇] . (11)

Then, increment formula (10) takes the form

Δ𝐽 (𝑢) = − 1
Γ(𝛼)

𝑇∫
0

(𝑇 − 𝑡)𝛼−1
(
𝐻′
𝑢 (𝑡)Δ𝑢(𝑡) +

1
2
Δ𝑥′(𝑡)𝐻𝑥𝑥 (𝑡)Δ𝑥(𝑡)

+ Δ𝑥′(𝑡)𝐻𝑥𝑢 (𝑡)Δ𝑢(𝑡) +
1
2
Δ𝑢′(𝑡)𝐻𝑢𝑢 (𝑡)Δ𝑢(𝑡)

+ 𝑜𝐻
(
‖Δ𝑥(𝑡)‖2 + ‖Δ𝑥(𝑡)‖ · ‖Δ𝑢(𝑡)‖ + ‖Δ𝑢(𝑡)‖2

) )
d𝑡

+ 1
2
Δ𝑥′(𝑇)𝜑𝑥𝑥 (𝑥(𝑇))Δ𝑥(𝑇) + 𝑜𝜑 (‖Δ𝑥(𝑇)‖2). (12)
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5. Adjoint function

The problem (11) is said to be a conjugated problem. We will show that the
function 𝜓(·) defined as a solution to the adjoint equation (11) is continuous. For
this, we first prove the following auxiliary lemma.
Lemma 5 For any Φ(·) ∈ 𝐿∞( [0, 𝑇], R𝑛) the function

𝜓(𝑡) = −𝜑𝑥 (𝑥(𝑇)) +
(𝑇 − 𝑡)1−𝛼

Γ(𝛼)

𝑇∫
𝑡

(𝑇 − 𝜏)𝛼−1(𝜏 − 𝑡)𝛼−1Φ(𝜏)d𝜏 (13)

is continuous on [0, 𝑇].
Proof. ased on Lemma 3.2 from [41] equality (13) can be written in the form

𝜓(𝑡) = −𝜑𝑥 (𝑥(𝑇)) +
1

Γ(𝛼)

𝑇∫
𝑡

(𝜏 − 𝑡)𝛼−1(Φ(𝜏) + (𝑅𝛼𝑇−Φ(·)) (𝜏))d𝜏,

where

(𝑅𝛼𝑇−Φ(·)) (𝑡) = (1 − 𝛼) sin𝛼𝜋
𝜋

𝑇∫
𝑡

𝐾 (𝑇 − 𝑡, 𝑇 − 𝜏)Φ(𝜏)d𝜏,

𝐾 (𝜉, 𝜂) = 𝜂𝛼−1
1∫
0

𝑧𝛼

(1 − 𝑧)𝛼 (𝜂 + 𝑧(𝜉 − 𝜂))𝛼 d𝑧, 𝜉 > 𝜂 > 0.

The following estimate holds for (𝑅𝛼
𝑇−Φ(·)) (𝑡):

‖(𝑅𝛼𝑇−Φ(·)) (𝑡)‖ =







 (1−𝛼) sin𝛼𝜋𝜋

𝑇∫
𝑡

(𝑇 − 𝜏)𝛼−1

×
1∫
0

𝑧𝛼

(1 − 𝑧)𝛼 (𝑇 − 𝜏 + 𝑧(𝑇 − 𝑡 − (𝑇 − 𝜏)))𝛼 d𝑧Φ(𝜏)d𝜏








¬

(1 − 𝛼) sin𝛼𝜋
𝜋(𝑇 − 𝑡)𝛼

𝑇∫
𝑡

(𝑇 − 𝜏)𝛼−1‖Φ(𝜏)‖d𝜏
1∫
0

(1 − 𝑧)−𝛼d𝑧

¬
sin𝛼𝜋
𝛼𝜋

‖Φ(·)‖ [𝑡, 𝑇] , (14)

where ‖Φ(·)‖ [𝑡,𝑇] = ess sup
𝜏∈[𝑡, 𝑇]

‖Φ(𝜏)‖.
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Let 𝑡1, 𝑡2 ∈ [0, 𝑇] and 𝑡1 < 𝑡2. Then



𝜓(𝑡1) − 𝜓(𝑡2)

 = 1
Γ(𝛼)








𝑇∫

𝑡1

(𝜏 − 𝑡1)𝛼−1
(
Φ(𝜏) + (𝑅𝛼𝑇−Φ(·)) (𝜏)

)
d𝜏

−
𝑇∫

𝑡2

(𝜏 − 𝑡2)𝛼−1
(
Φ(𝜏) + (𝑅𝛼𝑇−Φ(·)) (𝜏)

)
d𝜏








¬
1

Γ(𝛼)








𝑇∫

𝑡2

(
(𝜏 − 𝑡1)𝛼−1 − (𝜏 − 𝑡2)𝛼−1

) (
Φ(𝜏) + (𝑅𝛼𝑇−Φ(·)) (𝜏)

)
d𝜏








+ 1
Γ(𝛼)








𝑡2∫

𝑡1

(𝜏 − 𝑡1)𝛼−1(Φ(𝜏) + (𝑅𝛼𝑇−Φ(·)) (𝜏)
)
d𝜏








¬

1
Γ(𝛼+1)

(��(𝑡2 − 𝑡1)𝛼− ((𝑇 − 𝑡1)𝛼− (𝑇 − 𝑡2)𝛼)
�� + (𝑡2 − 𝑡1)𝛼

)
𝑀𝛼‖Φ(·)‖ [0, 𝑇]

¬
2

Γ(𝛼+1)𝑀𝛼‖Φ(·)‖ [0, 𝑇] (𝑡2 − 𝑡1)𝛼,

where 𝑀𝛼 = 1 + sin𝛼𝜋
𝛼𝜋

.
Hence the inclusion 𝜓(·) ∈ 𝐶 ( [0, 𝑇], R𝑛) hold.
This completes the proof. �

Lemma 6 The integral equation (11) has a unique solution in the space
𝐶𝑒 ( [0, 𝑇], R𝑛).

Proof. Denote by 𝐶𝑒 ( [0, 𝑇], R𝑛) the space of continuous functions 𝜓, defined
on the segment [0, 𝑇] with the Bielecki norm

‖𝜓(·)‖𝑒 = max
𝑡∈[0, 𝑇]

(‖𝜓(𝑡)‖𝑒−(𝑇−𝑡)𝑘 ).

Obvious the space 𝐶𝑒 ( [0, 𝑇], R𝑛) is Banach. Consider the mapping Ψ = 𝐴𝜓

defined by the formula

Ψ(𝑡) = (𝐴𝜓) (𝑡) ≡ −𝜑𝑥 (𝑥(𝑇)) +
(𝑇 − 𝑡)1−𝛼

Γ(𝛼)

𝑇∫
𝑡

(𝑇 − 𝜏)𝛼−1(𝜏 − 𝑡)𝛼−1𝐻𝑥 (𝜏)d𝜏,

where 𝑡 ∈ [0, 𝑇].
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We will prove that this mapping takes the complete space 𝐶𝑒 ( [0, 𝑇], R𝑛)
into itself and is a contraction in it. Let 𝜓(·) ∈ 𝐶𝑒 ( [0, 𝑇], R𝑛). Since 𝑓𝑥 (·) ∈
𝐿∞( [0, 𝑇], R𝑛×𝑛), it follows that 𝑓 ′𝑥 (·)𝜓(·) ∈ 𝐿∞( [0, 𝑇], R𝑛). Then it follows
from the Lemma 5 that Ψ(·) ∈ 𝐶𝑒 ( [0, 𝑇], R𝑛). So this mapping takes the total
space 𝐶𝑒 ( [0, 𝑇], R𝑛) into itself. Now we will prove that this operator is a con-
traction. Let us denote 𝑀 𝑓𝑥 = ‖ 𝑓𝑥 (·)‖ [0, 𝑇] , and let 𝜓1(·), 𝜓2(·) ∈ 𝐶𝑒 ( [0, 𝑇], R𝑛)
are fixed. Then for any 𝑡 ∈ [0, 𝑇] we have

‖Ψ1(𝑡) −Ψ2(𝑡)‖ ¬
(𝑇 − 𝑡)1−𝛼𝑀 𝑓𝑥

Γ(𝛼)

𝑇∫
𝑡

(𝑇 − 𝜏)𝛼−1(𝜏 − 𝑡)𝛼−1‖𝜓1(𝜏) − 𝜓2(𝜏)‖d𝜏

=
𝑀 𝑓𝑥

Γ(𝛼)

𝑇∫
𝑡

(𝜏 − 𝑡)𝛼−1
(
‖𝜓1(𝜏) − 𝜓2(𝜏)‖ + (𝑅𝛼𝑇−‖𝜓1(·) − 𝜓2(·)‖)(𝜏)

)
d𝜏.

Using estimates (14) we have

‖Ψ1(𝑡) −Ψ2(𝑡)‖ ¬
𝑀𝛼𝑀 𝑓𝑥

Γ(𝛼)

𝑇∫
𝑡

(𝜏 − 𝑡)𝛼−1‖𝜓1(·) − 𝜓2(·)‖ [𝜏, 𝑇]𝑑𝜏

¬
𝑀𝛼𝑀 𝑓𝑥

Γ(𝛼) ‖𝜓1(·) − 𝜓2(·)‖𝑒
𝑇∫
𝑡

(𝜏 − 𝑡)𝛼−1𝑒(𝑇−𝜏)𝑘 d𝜏

=
𝑀𝛼𝑀 𝑓𝑥

Γ(𝛼) ‖𝜓1(·) − 𝜓2(·)‖𝑒
𝑇−𝑡∫
0

𝑧𝛼−1𝑒(𝑇−𝑡−𝑧)𝑘 d𝑧

¬
𝑀𝛼𝑀 𝑓𝑥

Γ(𝛼) ‖𝜓1(·) − 𝜓2(·)‖𝑒𝑒(𝑇−𝑡)𝑘
∞∫
0

𝑒−𝑧𝑘 𝑧𝛼−1d𝑧

=
𝑀𝛼𝑀 𝑓𝑥

Γ(𝛼) ‖𝜓1(·) − 𝜓2(·)‖𝑒
𝑒(𝑇−𝑡)𝑘

𝑘𝛼

∞∫
0

𝑒−𝑢𝑢𝛼−1d𝑢

=
𝑀𝛼𝑀 𝑓𝑥

𝑘𝛼
𝑒(𝑇−𝑡)𝑘 ‖𝜓1(·) − 𝜓2(·)‖𝑒,

where 𝑀𝛼 = 1 + sin𝛼𝜋
𝛼𝜋

.

Hence we have

‖Ψ1(·) −Ψ2(·)‖𝑒 ¬
𝑀𝛼𝑀 𝑓𝑥

𝑘𝛼
‖𝜓1(·) − 𝜓2(·)‖𝑒 .



480 SH. SH. YUSUBOV, E.N. MAHMUDOV

Thus, due to the choice of the number 𝑘 , the operator 𝐴 is a contraction. From this
it follows that, according to the Banach principle, the equation 𝜓 = 𝐴𝜓 (i.e. equa-
tion (11)) has one and only one continuous solution in the space 𝐶𝑒 ( [0, 𝑇], R𝑛).
This completes the proof. �

6. Neccesary optimality conditions

In this section we prove the main result of the paper. From the smoothness
conditions imposed on the right hand side of system (5) it follows the solution of
(9) satisfies also the following problem

(𝑐𝐷𝛼
0+Δ𝑥) (𝑡) = 𝑓𝑥 (𝑡, 𝑥(𝑡), 𝑢(𝑡))Δ𝑥(𝑡) + 𝑓𝑢 (𝑡, 𝑥(𝑡), 𝑢(𝑡))Δ𝑢(𝑡)

+ 𝑜 (‖Δ𝑥(𝑡)‖ + ‖Δ𝑢(𝑡)‖) , 𝑎.𝑒. 𝑡 ∈ [0, 𝑇],
Δ𝑥(0) = 0.

(15)

Since the set𝑉 is convex, the special control increment 𝑢(·) can be determined
by the formula

Δ𝑢(𝑡, 𝜀̃) = 𝜀̃(𝜐(𝑡) − 𝑢(𝑡)), 𝑡 ∈ 0, 𝑇], (16)

where 0 < 𝜀̃ ¬ 1, and 𝜐(·) ∈ 𝐿∞( [0, 𝑇], 𝑉) is an arbitrary vector function.
Let Δ𝑥(·, 𝜀̃) denote the special trajectory increment corresponding to the

increment (16) of the control. Then Δ𝑥(·, 𝜀̃) is determined from the system

(𝑐𝐷𝛼
0+Δ𝑥) (𝑡, 𝜀̃) = 𝑓 (𝑡, 𝑥(𝑡, 𝜀̃), 𝑢(𝑡) + Δ𝑢(𝑡, 𝜀̃))

− 𝑓 (𝑡, 𝑥(𝑡), 𝑢(𝑡)), 𝑎.𝑒. 𝑡 ∈ (0, 𝑇], Δ𝑥(0) = 0. (17)

Therefore, in integral form, problem (17) has the form

Δ𝑥(𝑡, 𝜀̃) = 1
Γ(𝛼)

𝑡∫
0

(𝑡 − 𝜏)𝛼−1
[
𝑓 (𝜏, 𝑥(𝜏) + Δ𝑥(𝜏, 𝜀̃), 𝑢(𝜏)

+ Δ𝑢(𝜏, 𝜀̃)) − 𝑓 (𝜏, 𝑥(𝜏), 𝑢(𝜏))
]
d𝜏, 𝑡 ∈ [0, 𝑇] . (18)

Denoting by 𝐿 = 𝐿 (Δ) the Lipschitz constant of the function 𝑓 (𝑡, 𝑥, 𝑢) in
some Δ neighborhood of the trajectory 𝑥(·),

‖ 𝑓 (𝑡, 𝑥(𝑡) + Δ𝑥(𝑡, 𝜀̃), 𝑢(𝑡) + Δ𝑢(𝑡, 𝜀̃)) − 𝑓 (𝑡, 𝑥(𝑡), 𝑢(𝑡))‖
¬ 𝐿 (‖Δ𝑥(𝑡, 𝜀̃)‖ + ‖Δ𝑢(𝑡, 𝜀̃)‖), 𝑡 ∈ [0, 𝑇]
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from equation (18) we obtain

‖Δ𝑥(𝑡, 𝜀̃)‖ ¬ 𝐿

Γ(𝛼)

𝑡∫
0

(𝑡 − 𝜏)𝛼−1‖Δ𝑥(𝜏, 𝜀̃)‖d𝜏

+ 𝐿𝜀̃

Γ(𝛼)

𝑡∫
0

(𝑡 − 𝜏)𝛼−1‖𝜐(𝜏) − 𝑢(𝜏)‖d𝜏, 𝑡 ∈ [0, 𝑇] .

Hence, based on Lemma 1, and Beta function we have

‖Δ𝑥(𝑡, 𝜀̃)‖ ¬ 𝐿𝜀̃

Γ(𝛼)

𝑡∫
0

(𝑡 − 𝜏)𝛼−1‖𝜐(𝜏) − 𝑢(𝜏)‖d𝜏

+ 𝐿2𝜀̃

Γ(𝛼)𝐸𝛼,𝛼 (𝐿𝑡
𝛼)

𝑡∫
0

(𝑡 − 𝑠)𝛼−1
𝑠∫
0

(𝑠 − 𝜏)𝛼−1‖𝜐(𝜏) − 𝑢(𝜏)‖d𝜏d𝑠

=
𝐿𝜀̃

Γ(𝛼)

𝑡∫
0

(𝑡 − 𝜏)𝛼−1‖𝜐(𝜏) − 𝑢(𝜏)‖d𝜏

+ 𝐿2𝜀̃

Γ(𝛼)𝐸𝛼,𝛼 (𝐿𝑡
𝛼)

𝑡∫
0

‖𝜐(𝑠) − 𝑢(𝑠)‖
𝑡∫

𝑠

(𝑡 − 𝜏)𝛼−1(𝜏 − 𝑠)𝛼−1d𝜏d𝑠

=
𝐿𝜀̃

Γ(𝛼)

𝑡∫
0

(𝑡 − 𝜏)𝛼−1‖𝜐(𝜏) − 𝑢(𝜏)‖d𝜏

+ 𝐿2𝜀̃

Γ(𝛼)𝐸𝛼,𝛼 (𝐿𝑡
𝛼)

𝑡∫
0

(𝑡 − 𝑠)2𝛼−1‖𝜐(𝑠) − 𝑢(𝑠)‖
1∫
0

(1 − 𝑧)𝛼−1𝑧𝛼−1d𝑧d𝑠

=
𝐿𝜀̃

Γ(𝛼)

𝑡∫
0

(𝑡 − 𝜏)𝛼−1‖𝜐(𝜏) − 𝑢(𝜏)‖d𝜏

+ 𝐿
2𝜀̃Γ(𝛼)
Γ(2𝛼) 𝑡𝛼𝐸𝛼,𝛼 (𝐿𝑡𝛼)

𝑡∫
0

(𝑡 − 𝜏)𝛼−1‖𝜐(𝜏) − 𝑢(𝜏)‖d𝜏, 𝑡 ∈ [0, 𝑇] .

Denoting

𝐾 = 2𝑀
𝑇𝛼

𝛼

(
𝐿

Γ(𝛼) +
𝐿2Γ(𝛼)
Γ(2𝛼) 𝑇

𝛼𝐸𝛼,𝛼 (𝐿𝑇𝛼)
)
, ‖𝜐(·)‖𝐿∞ ¬ 𝑀, ‖𝑢(·)‖𝐿∞ ¬ 𝑀,
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we have
‖Δ𝑥(𝑡, 𝜀̃)‖ ¬ 𝐾𝜀̃, 𝑡 ∈ [0, 𝑇] . (19)

Lemma 7 For a special increment Δ𝑥(·, 𝜀) of the trajectory 𝑥(·) of system (5),
the following expansion

Δ𝑥(𝑡, 𝜀̃) = 𝜀̃𝛿𝑥(𝑡) + 𝑜(𝜀̃, 𝑡), 𝑡 ∈ [0, 𝑇] (20)

takes place, where 𝛿𝑥(·) is a solution to problem
(𝑐𝐷𝛼𝛿𝑥) (𝑡) = 𝑓𝑥 (𝑡, 𝑥(𝑡), 𝑢(𝑡))𝛿𝑥(𝑡)

+ 𝑓𝑢 (𝑡, 𝑥(𝑡), 𝑢(𝑡)) (𝜐(𝑡) − 𝑢(𝑡)), 𝑎.𝑒. 𝑡 ∈ [0, 𝑇]
𝛿𝑥(0) = 0.

(21)

Proof. It follows from system (17) that Δ𝑥(·, 𝜀̃) satisfies the following linearized
system

(𝑐𝐷𝛼
0+Δ𝑥) (𝑡, 𝜀̃) = 𝑓𝑥 (𝑡)Δ𝑥(𝑡, 𝜀̃) + 𝑓𝑢 (𝑡)Δ𝑢(𝑡, 𝜀̃)

+ 𝑜(‖Δ𝑥(𝑡, 𝜀̃)‖ + ‖Δ𝑢(𝑡, 𝜀)‖), 𝑎.𝑒. 𝑡 ∈ [0, 𝑇],
Δ𝑥(0, 𝜀̃) = 0.

(22)

Interpreting equation (22) as a linear inhomogeneous fractional differential
equation with respect to Δ𝑥(·, 𝜀̃), taking into account the estimate (19) and the
increment (16), on the basic of an analogue of the Caychy formula about the
integral representation of solutions of such equations [48], we have

Δ𝑥(𝑡, 𝜀̃) = 𝜀̃

Γ(𝛼)

𝑡∫
0

(𝑡 − 𝜏)𝛼−1𝐹 (𝑡, 𝜏) 𝑓𝑢 (𝜏) (𝜐(𝜏) − 𝑢(𝜏))d𝜏

+ 𝑜(𝑡, 𝜀̃), 𝑡 ∈ [0, 𝑇], (23)

where the matrix-function 𝐹 (·, ·) is a solution of the following integral equa-
tion [48]:

𝐹 (𝑡, 𝜏) = 𝐼 + (𝑡 − 𝜏)1−𝛼
Γ(𝛼)

𝑡∫
𝜏

(𝑡 − 𝑠)𝛼−1(𝑠 − 𝜏)𝛼−1𝐹 (𝑡, 𝑠) 𝑓𝑥 (𝑠)d𝑠, 0 ¬ 𝜏 ¬ 𝑡 ¬ 𝑇.

Denoting

𝛿𝑥(𝑡) = 1
Γ(𝛼)

𝑡∫
0

(𝑡 − 𝜏)𝛼−1𝐹 (𝑡, 𝜏) 𝑓𝑢 (𝜏) (𝜐(𝜏) − 𝑢(𝜏))d𝜏, 𝑡 ∈ [0, 𝑇], (24)

of formula (23) we write in the form (20).
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Nowwe will show that the function 𝛿𝑥(·) defined by formula (24) is a solution
to problem (21). For this, we write problem (21) in the form of an equivalent
integral equation:

𝛿𝑥(𝑡) = 1
Γ(𝛼)

𝑡∫
0

(𝑡 − 𝜏)𝛼−1 [ 𝑓𝑥 (𝜏)𝛿𝑥(𝜏) + 𝑓𝑢 (𝜏)𝛿𝑢(𝜏)]d𝜏, 𝑡 ∈ [0, 𝑇] .

Here, taking into account formula (24), we have

1
Γ(𝛼)

𝑡∫
0

(𝑡 − 𝜏)𝛼−1𝐹 (𝑡, 𝜏) 𝑓𝑢 (𝜏)𝛿𝑢(𝜏)𝑑𝜏 =
1

Γ(𝛼)

𝑡∫
0

(𝑡 − 𝜏)𝛼−1 𝑓𝑥 (𝜏)
1

Γ(𝛼)

×
𝜏∫
0

(𝜏 − 𝑠)𝛼−1𝐹 (𝜏, 𝑠) 𝑓𝑢 (𝑠)𝛿𝑢(𝑠)d𝑠d𝜏

+ 1
Γ(𝛼)

𝑡∫
0

(𝑡 − 𝜏)𝛼−1 𝑓𝑢 (𝜏)𝛿𝑢(𝜏)d𝜏, 𝑡 ∈ [0, 𝑇] .

Using Dirichlet’s formulas, we write this equality in the form:

1
Γ(𝛼)

𝑡∫
0

(𝑡 − 𝜏)𝛼−1
[
𝐹 (𝑡, 𝜏)

− (𝑡 − 𝜏)1−𝛼
Γ(𝛼)

𝑡∫
𝜏

(𝑡 − 𝑠)𝛼−1(𝑠 − 𝜏)𝛼−1 𝑓𝑥 (𝑠)𝐹 (𝑠, 𝜏)d𝜏
]
𝑓𝑢 (𝜏)𝛿𝑢(𝜏)d𝜏

=
1

Γ(𝛼)

𝑡∫
0

(𝑡 − 𝜏)𝛼−1 𝑓𝑢 (𝜏)𝛿𝑢(𝜏)d𝜏, 𝑡 ∈ [0, 𝑇] . (25)

Since the matrix function 𝐹 (·, ·) with respect to the first argument satisfies
the equation [48]:

𝐹 (𝑡, 𝜏) = 𝐼 + (𝑡 − 𝜏)1−𝛼
Γ(𝛼)

𝑡∫
𝜏

(𝑡 − 𝑠)𝛼−1(𝑠 − 𝜏)𝛼−1 𝑓𝑥 (𝑠)𝐹 (𝑠, 𝜏)d𝑠, 𝑡 ∈ [𝜏, 𝑇],

then (25) implies the required result. With this the lemma is proved. �
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Taking into account Lemma 7 and estimate (19), from (12) we obtain that

Δ𝐽 (𝑢) = 𝐽 (𝑢(𝑡) + Δ𝑢(𝑡, 𝜀̃)) − 𝐽 (𝑢(𝑡)) = 𝜀̃𝛿𝐽 (𝑢) + 𝜀̃
2

2
𝛿2𝐽 (𝑢) + 𝑜(𝜀̃2), (26)

where

𝛿𝐽 (𝑢) = − 1
Γ(𝛼)

𝑇∫
0

(𝑇 − 𝑡)𝛼−1𝐻′
𝑢 (𝑡) (𝜐(𝑡) − 𝑢(𝑡))d𝑡,

𝛿2𝐽 (𝑢) = − 1
Γ(𝛼)

𝑇∫
0

(𝑇 − 𝑡)𝛼−1
[
(𝜐(𝑡) − 𝑢(𝑡))′𝐻𝑢𝑢 (𝑡) (𝜐(𝑡) − 𝑢(𝑡))

+ 2(𝜐(𝑡) − 𝑢(𝑡))′𝐻𝑢𝑥 (𝑡)𝛿𝑥(𝑡) + 𝛿𝑥′(𝑡)𝐻𝑥𝑥 (𝑡)𝛿𝑥(𝑡)
]
d𝑡

+ 𝛿𝑥′(𝑇)𝜑𝑥𝑥 (𝑥(𝑇))𝛿𝑥(𝑇).
In what follows we assume that 𝑢(·) is the optimal control. Then it follows

from (26) that
Δ𝐽 (𝑢) ­ 0 (27)

and
𝑇∫
0

(𝑇 − 𝑡)𝛼−1𝐻′
𝑢 (𝑡) (𝜐(𝑡) − 𝑢(𝑡))d𝑡 ¬ 0. (28)

Now we define 𝜐(·) by formula

𝜐(𝑡) =
{
𝜐, 𝑡 ∈ [𝜃, 𝜃 + 𝜀),
𝑢(𝑡), 𝑡 ∈ [0, 𝑇]\[𝜃, 𝜃 + 𝜀),

(29)

where 𝜐 ∈ 𝑉 , 𝜀 > 0 is a sufficiently small parameter, 𝜃 ∈ [0, 𝑇), 𝜃 + 𝜀 < 𝑇 , is the
Lebesgue point. Then inequality (28) takes the form

𝜃+𝜀∫
𝜃

(𝑇 − 𝑡)𝛼−1𝐻′
𝑢 (𝑡) (𝜐 − 𝑢(𝑡))d𝑡 ¬ 0.

This implies the following theorem.

Theorem 1 Let the admissible process {𝑢(·), 𝑥(·)} be optimal in problem (5)-
(8) and let 𝜓(·) be a solution of conjugated problem (11) calculated on optimal
process. Then for almost all 𝑡 ∈ [0, 𝑇] the following equality is fulfilled

max
𝜐∈𝑉

𝐻′
𝑢 (𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))𝜐 = 𝐻′

𝑢 (𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜓(𝑡))𝑢(𝑡). (30)
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Condition (30) is a necessary first order optimality condition. Condition (30)
is called the linearized maximum principle or differential maximum principle.
Following [15], we introduce the concept of quasi-singular control.
Definition 4 The control 𝑢(·) satisfying condition (30) is called quasi-singular
if equality

𝐻′
𝑢 (𝑡) (𝜐 − 𝑢(𝑡)) = 0 (31)

is satisfied for all 𝜐 ∈ 𝑉 and a.e. 𝑡 ∈ [0, 𝑇].
It is obvious that for a quasi-singular control 𝑢(·) the differential maximum
principle (30) becomes in effective. A control that is singular in the sense of
the Pontryagin maximum principle, is also quasi-singular and the converse is
generally not true. In other words, quasi-singular control may not be singular
in the sense of the Pontryagin maximum principle. Therefore, the necessary
conditions for the optimality of quasi-singular controls also make it possible, in
many cases, to reveal the nonoptimality of those admissible controls for which
the Pontryagin maximum principle holds without degeneration.
Now we proceed to the derivation of the necessary conditions for the opti-

mality of quasi-singular controls in the considered problem (5)–(8).
For quasi-singular optimal controls from (27) it follows that
𝑇∫
0

(𝑇 − 𝑡)𝛼−1
[
(𝜐(𝑡) − 𝑢(𝑡))′𝐻𝑢𝑢 (𝑡) (𝜐(𝑡) − 𝑢(𝑡)) + 2(𝜐(𝑡) − 𝑢(𝑡))′𝐻𝑢𝑥 (𝑡)𝛿𝑥(𝑡)

+ 𝛿𝑥′(𝑡)𝐻𝑥𝑥 (𝑡)𝛿𝑥(𝑡)
]
d𝑡 − Γ(𝛼)𝛿𝑥′(𝑇)𝜑𝑥𝑥 (𝑥(𝑇))𝛿𝑥(𝑇) ¬ 0. (32)

To obtain effectively verifiable necessary optimality conditions for quasi-
singular controls, we define 𝜐(·) in the form (29). First we find the expansion
of 𝛿𝑥(𝑡) in powers of 𝜀. For 𝑡 ∈ [0, 𝜃] from (24) it follows 𝛿𝑥(𝑡) ≡ 0. For
𝑡 ∈ [𝜃, 𝜃 + 𝜀] from formula (24) we obtain

𝛿𝑥(𝑡) = 1
Γ(𝛼)

𝑡∫
𝜃

(𝑡 − 𝜏)𝛼−1𝐹 (𝑡, 𝜃) 𝑓𝑢 (𝜃) (𝜐 − 𝑢(𝜃))d𝜏

+ 1
Γ(𝛼)

𝑡∫
𝜃

(𝑡 − 𝜏)𝛼−1
[
𝐹 (𝑡, 𝜏) 𝑓𝑢 (𝜏) (𝜐 − 𝑢(𝜏)) − 𝐹 (𝑡, 𝜃) 𝑓𝑢 (𝜃) (𝜐 − 𝑢(𝜃))]d𝜏

=
(𝑡 − 𝜃)𝛼
Γ(𝛼 + 1)𝐹 (𝑡, 𝜃) 𝑓𝑢 (𝜃) (𝜐 − 𝑢(𝜃))

+ 1
Γ(𝛼)

𝑡∫
𝜃

(𝑡 − 𝜏)𝛼−1
[
𝐹 (𝑡, 𝜏) 𝑓𝑢 (𝜏) (𝜐 − 𝑢(𝜏)) − 𝐹 (𝑡, 𝜃) 𝑓𝑢 (𝜃) (𝜐 − 𝑢(𝜃))]d𝜏.
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Show that

lim
𝑡→𝜃+

1
(𝑡 − 𝜃)𝛼

𝑡∫
𝜃

(𝑡 − 𝜏)𝛼−1
[
𝐹 (𝑡, 𝜏) 𝑓𝑢 (𝜏) (𝜐 − 𝑢(𝜏))

−𝐹 (𝑡, 𝜃) 𝑓𝑢 (𝜃) (𝜐 − 𝑢(𝜃))
]
d𝜏 = 0. (33)

Denoting by 𝑀𝐹 = max
(𝑡,𝜏)∈[0,𝑇]×[0,𝑇]

‖𝐹 (𝑡, 𝜏)‖, 𝑀 𝑓𝑢 = ess sup
0¬𝑡¬𝑇

‖ 𝑓𝑢 (𝑡)‖, then





 1
(𝑡 − 𝜃)𝛼

𝑡∫
𝜃

(𝑡 − 𝜏)𝛼−1
[
𝐹 (𝑡, 𝜏) 𝑓𝑢 (𝜏) (𝜐 − 𝑢(𝜏)) − 𝐹 (𝑡, 𝜃) 𝑓𝑢 (𝜃) (𝜐 − 𝑢(𝜃))

]
d𝜏








¬
𝑀𝐹 · 𝑀 𝑓𝑢

(𝑡 − 𝜃)𝛼

𝑡∫
𝜃

(𝑡 − 𝜏)𝛼−1‖𝑢(𝜃) − 𝑢(𝜏)‖d𝜏

+ 𝑀𝐹 ‖𝜐 − 𝑢(𝜃)‖
(𝑡 − 𝜃)𝛼

𝑡∫
𝜃

(𝑡 − 𝜏)𝛼−1‖ 𝑓𝑢 (𝜏) − 𝑓𝑢 (𝜃)‖d𝜏

+
𝑀 𝑓𝑢 ‖𝜐 − 𝑢(𝜃)‖

(𝑡 − 𝜃)𝛼

𝑡∫
𝜃

(𝑡 − 𝜏)𝛼−1‖𝐹 (𝑡, 𝜏) − 𝐹 (𝑡, 𝜃)‖d𝜏.

By Lemma 3, each term on the right-hand side of this inequality tends to zero
for 𝑡 → 𝜃+. Therefore, equality (33) is true.
Thus, for 𝑡 ∈ [𝜃, 𝜃+𝜀] we got the equality:

𝛿𝑥(𝑡) = (𝑡 − 𝜃)𝛼
Γ(𝛼 + 1)𝐹 (𝑡, 𝜃) 𝑓𝑢 (𝜃) (𝜐 − 𝑢(𝜃)) + 𝑜((𝑡 − 𝜃)

𝛼). (34)

For 𝑡 ∈ (𝜃+𝜀, 𝑇] from formula (24) we obtain:

𝛿𝑥(𝑡) = 1
Γ(𝛼)

𝜃+𝜀∫
𝜃

(𝑡 − 𝜏)𝛼−1𝐹 (𝑡, 𝜃) 𝑓𝑢 (𝜃) (𝜐 − 𝑢(𝜃))d𝜏

+ 1
Γ(𝛼)

𝜃+𝜀∫
𝜃

(𝑡 − 𝜏)𝛼−1
[
𝐹 (𝑡, 𝜏) 𝑓𝑢 (𝜏) (𝜐 − 𝑢(𝜏)) − 𝐹 (𝑡, 𝜃) 𝑓𝑢 (𝜃) (𝜐 − 𝑢(𝜃))

]
d𝜏.
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Show that

lim
𝜀→0+

1
𝜀

𝜃+𝜀∫
𝜃

(𝑡 − 𝜏)𝛼−1
[
𝐹 (𝑡, 𝜏) 𝑓𝑢 (𝜏) (𝜐 − 𝑢(𝜏))

− 𝐹 (𝑡, 𝜃) 𝑓𝑢 (𝜃) (𝜐 − 𝑢(𝜃))
]
𝑑𝜏 = 0, 𝑡 ∈ (𝜃 + 𝜀, 𝑇] . (35)

The following inequality is true





1𝜀
𝜃+𝜀∫
𝜃

(𝑡 − 𝜏)𝛼−1
[
𝐹 (𝑡, 𝜏) 𝑓𝑢 (𝜏) (𝜐 − 𝑢(𝜏)) − 𝐹 (𝑡, 𝜃) 𝑓𝑢 (𝜃) (𝜐 − 𝑢(𝜃))

]
d𝜏








¬
𝑀𝐹𝑀 𝑓𝑢

𝜀

𝜃+𝜀∫
𝜃

(𝑡 − 𝜏)𝛼−1‖𝑢(𝜃) − 𝑢(𝜏)‖d𝜏

+ 𝑀𝐹 ‖𝜐 − 𝑢(𝜃)‖
𝜀

𝜃+𝜀∫
𝜃

(𝑡 − 𝜏)𝛼−1‖ 𝑓𝑢 (𝜏) − 𝑓𝑢 (𝜃)‖d𝜏

+
𝑀 𝑓𝑢 ‖𝜐 − 𝑢(𝜃)‖

𝜀

𝜃+𝜀∫
𝜃

(𝑡 − 𝜏)𝛼−1‖𝐹 (𝑡, 𝜏) − 𝐹 (𝑡, 𝜃)‖d𝜏.

By Lemma 4, each term on the right-hand side of this inequality tends to zero
for 𝜀 → 0+. Therefore, equality (35) is true.
Thus, for 𝑡 ∈ (𝜃+𝜀, 𝑇] we got the equality:

𝛿𝑥(𝑡) = 1
Γ(𝛼 + 1)

(
(𝑡 − 𝜃)𝛼 − (𝑡 − (𝜃 + 𝜀))𝛼

)
𝐹 (𝑡, 𝜃) 𝑓𝑢 (𝜃) (𝜐 − 𝑢(𝜃)) + 𝑜(𝜀)

or
𝛿𝑥(𝑡) = 𝜀

Γ(𝛼) (𝑡 − 𝜃)
𝛼−1𝐹 (𝑡, 𝜃) 𝑓𝑢 (𝜃) (𝜐 − 𝑢(𝜃)) + 𝑜(𝜀). (36)

Taking into account this representation in (32), we obtain
𝜃+𝜀∫
𝜃

(𝑇 − 𝑡)𝛼−1(𝜐 − 𝑢(𝑡))′𝐻𝑢𝑢 (𝑡) (𝜐 − 𝑢(𝑡))d𝑡 +
2

Γ(𝛼 + 1)

𝜃+𝜀∫
𝜃

(𝑇 − 𝑡)𝛼−1

× (𝑡 − 𝜃)𝛼 (𝜐 − 𝑢(𝜃))′𝐻𝑢𝑥 (𝑡)𝐹 (𝑡, 𝜃) 𝑓𝑢 (𝜃) (𝜐 − 𝑢(𝜃))d𝑡 + 𝜂 ¬ 0, (37)

where 𝜂 =

4∑︁
𝑖=1

𝜂𝑖,
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𝜂1 =
1

𝛼2Γ2(𝛼)
(𝜐 − 𝑢(𝜃))′ 𝑓 ′𝑢 (𝜃)

𝜃+𝜀∫
𝜃

(𝑇 − 𝑡)𝛼−1(𝑡 − 𝜃)2𝛼𝐹′(𝑡, 𝜃)𝐻𝑥𝑥 (𝑡)𝐹 (𝑡, 𝜃)d𝑡

× 𝑓𝑢 (𝜃) (𝜐 − 𝑢(𝜃)),

𝜂2 =
𝜀2

Γ2(𝛼)
(𝜐 − 𝑢(𝜃))′ 𝑓 ′𝑢 (𝜃)

𝑇∫
𝜃+𝜀

(𝑇 − 𝑡)𝛼−1(𝑡 − 𝜃)2𝛼−2𝐹′(𝑡, 𝜃)𝐻𝑥𝑥 (𝑡)𝐹 (𝑡, 𝜃)d𝑡

× 𝑓𝑢 (𝜃) (𝜐 − 𝑢(𝜃)),

𝜂3 =
𝜀2

Γ(𝛼) (𝑇−𝜃)
2𝛼−2(𝜐−𝑢(𝜃))′ 𝑓 ′𝑢 (𝜃)𝐹′(𝑇, 𝜃)𝜑𝑥𝑥 (𝑥(𝑇))𝐹 (𝑇, 𝜃) 𝑓𝑢 (𝜃) (𝜐−𝑢(𝜃)),

𝜂4 = 𝑜(𝜀1+𝛼).
Denoted by

𝑀1(𝜃, 𝜐) = ess sup
𝑡∈[0, 𝑇]

���� 1
Γ2(𝛼)

(𝜐−𝑢(𝜃))′ 𝑓 ′𝑢 (𝜃)𝐹′(𝑡, 𝜃)𝐻𝑥𝑥 (𝑡)𝐹 (𝑡, 𝜃) 𝑓𝑢 (𝜃) (𝜐−𝑢(𝜃))
����,

𝑀2(𝜃, 𝜐) =
���� 1Γ(𝛼) (𝜐 − 𝑢(𝜃))′ 𝑓 ′𝑢 (𝜃)𝐹′(𝑇, 𝜃)𝜑𝑥𝑥 (𝑥(𝑇))𝐹 (𝑇, 𝜃) 𝑓𝑢 (𝜃) (𝜐 − 𝑢(𝜃))

����,
and estimate the remainder terms 𝜂𝑖, 𝑖 = 1, 2, 3.

|𝜂1 | ¬
𝑀1(𝜃, 𝜐)
𝛼2

𝜃+𝜀∫
𝜃

(𝑇 − 𝑡)𝛼−1(𝑡 − 𝜃)2𝛼d𝑡 < 𝜀2𝛼𝑀1(𝜃, 𝜐)
𝛼2

𝜃+𝜀∫
𝜃

(𝑇 − 𝑡)𝛼−1d𝑡

= 𝜀1+2𝛼
𝑀1(𝜃, 𝜐)
𝛼2

(𝑇 − 𝜉)𝛼−1, (38)

|𝜂3 | ¬ 𝜀2𝑀2(𝜃, 𝜐) (𝑇 − 𝜃)2𝛼−2, (39)

|𝜂2 | ¬ 𝜀2𝑀1(𝜃, 𝜐)
𝑇∫

𝜃+𝜀

(𝑇 − 𝑡)𝛼−1(𝑡 − 𝜃)2𝛼−2d𝑡

= 𝜀2𝑀1(𝜃, 𝜐)
𝜉∫

𝜃+𝜀

(𝑇 − 𝑡)𝛼−1(𝑡 − 𝜃)2𝛼−2d𝑡

+ 𝜀2𝑀1(𝜃, 𝜐)
𝑇∫

𝜉

(𝑇 − 𝑡)𝛼−1(𝑡 − 𝜃)2𝛼−2d𝑡, (40)

where 𝜂 ∈ (𝜃+𝜀, 𝑇) is a fixed point and 𝜉 = 𝑇 + 𝜂
2
.
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First, we estimate the second term on the right-hand side of relation (40):

𝜀2𝑀1(𝜃, 𝜐)
𝑇∫

𝜉

(𝑇 − 𝑡)𝛼−1(𝑡 − 𝜃)2𝛼−2d𝑡 < 𝜀2𝑀1(𝜃, 𝜐) (𝜉 − 𝜃)2𝛼−2
𝑇∫

𝜉

(𝑇 − 𝑡)𝛼−1d𝑡

= 𝜀2
(𝑇 − 𝜉)𝛼

𝛼
(𝜉 − 𝜃)2𝛼−2𝑀1(𝜃, 𝜐). (41)

Now let us estimate the first term on the right-hand side of relation (40). To
do this, consider the following cases:

a) 0 < 𝛼 <
1
2
,

𝜀2𝑀1(𝜃, 𝜐)
𝜉∫

𝜃+𝜀

(𝑇 − 𝑡)𝛼−1(𝑡 − 𝜃)2𝛼−2d𝑡 < 𝜀2(𝑇 − 𝜉)𝛼−1𝑀1(𝜃, 𝜐)
𝜉∫

𝜃+𝜀

(𝑡 − 𝜃)2𝛼−2d𝑡

= 𝜀2(𝑇 − 𝜉)𝛼−1𝑀1(𝜃, 𝜐)
(
(𝜉 − 𝜃)2𝛼−1
2𝛼 − 1 − 𝜀2𝛼−1

2𝛼 − 1

)
<

(𝑇 − 𝜉)𝛼−1𝑀1(𝜃, 𝜐)
(1 − 2𝛼) 𝜀1+2𝛼 . (42)

b) 𝛼 =
1
2
,

𝜀2𝑀1(𝜃, 𝜐)
𝜉∫

𝜃+𝜀

(𝑇 − 𝑡)−0,5(𝑡 − 𝜃)−1d𝑡 < 𝜀2𝑀1(𝜃, 𝜐)√
𝑇 − 𝜉

ln
𝜉 − 𝜃
𝜀

. (43)

c)
1
2
< 𝛼 < 1,

𝜀2𝑀1(𝜃, 𝜐)
𝜉∫

𝜃+𝜀

(𝑇 − 𝑡)𝛼−1(𝑡 − 𝜃)2𝛼−2d𝑡 < 𝜀2𝑀1(𝜃, 𝜐)
(𝑇 − 𝜉)1−𝛼

𝜉∫
𝜃+𝜀

(𝑡 − 𝜃)2𝛼−2d𝑡

=
𝜀2𝑀1(𝜃, 𝜐)
(𝑇 − 𝜉)1−𝛼

(
(𝜉 − 𝜃)2𝛼−1
2𝛼 − 1 − 𝜀2𝛼−1

2𝛼 − 1

)
<
𝜀2(𝜉 − 𝜃)2𝛼−1𝑀1(𝜃, 𝜐)
(2𝛼 − 1) (𝑇 − 𝜉)1−𝛼

. (44)
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Using Lemma 2, we expand the second term in (37):

2
Γ(𝛼+1)

𝜃+𝜀∫
𝜃

(𝑡 − 𝜃)𝛼 (𝑇 − 𝑡)𝛼−1(𝜐 − 𝑢(𝜃))′𝐻𝑢𝑥 (𝑡)𝐹 (𝑡, 𝜃)d𝑡 𝑓𝑢 (𝜃) (𝜐 − 𝑢(𝜃))

=
2𝜀𝛼+1

Γ(𝛼+2) (𝑇 − 𝜃)𝛼−1(𝜐 − 𝑢(𝜃))′𝐻𝑢𝑥 (𝜃) 𝑓𝑢 (𝜃) (𝜐 − 𝑢(𝜃)) + 𝑜(𝜀1+𝛼). (45)

Taking into account estimates (38), (39), (41)–(44) and equality (45) in in-
equality (37), we have

𝜃+𝜀∫
𝜃

(𝑇 − 𝑡)𝛼−1(𝜐 − 𝑢(𝑡))′𝐻𝑢𝑢 (𝑡) (𝜐 − 𝑢(𝑡))d𝑡 +
2𝜀𝛼+1

Γ(𝛼+2)

· (𝑇 − 𝜃)𝛼−1(𝜐 − 𝑢(𝜃))𝐻𝑢𝑥 (𝜃) 𝑓𝑢 (𝜃) (𝜐 − 𝑢(𝜃)) + 𝑜(𝜀1+𝛼) ¬ 0. (46)

Inequality (46) immediately implies the following theorem.

Theorem 2 For the optimality of the quasi-singular control 𝑢(·) in problem
(5)–(8), it is necessary that inequality

(𝜐 − 𝑢(𝑡))′𝐻𝑢𝑢 (𝑡) (𝜐 − 𝑢(𝑡)) ¬ 0 (47)

be satisfied for all 𝜐 ∈ 𝑉 and a.e. 𝑡 ∈ [0, 𝑇].

Note that if condition (30) degenerates, the necessary optimality condition (47)
can reveal the nonoptimality of the quasi-singular control. However, examples can
be constructed in which condition (47) is also expressed, i.e. performed trivially.

Definition 5 An admissible control 𝑢(·) that is quasi-singular is called strongly
quasi-singular if the equality

(𝜐 − 𝑢(𝑡))′𝐻𝑢𝑢 (𝑡) (𝜐 − 𝑢(𝑡)) = 0 (48)

holds for all 𝜐 ∈ 𝑉 and for a.e. 𝑡 ∈ [0, 𝑇].

Further, from inequality (46), we easily obtain the necessary optimality condition
for strongly quasi-singular controls.

Theorem 3 For the optimality of the strongly quasi-singular control 𝑢(·) in
problem (5)–(8), it is necessary that inequality

(𝜐 − 𝑢(𝑡))′𝐻𝑢𝑥 (𝑡) 𝑓𝑢 (𝑡) (𝜐 − 𝑢(𝑡)) ¬ 0 (49)

be satisfied for all 𝜐 ∈ 𝑉 and a.e. 𝑡 ∈ [0, 𝑇].
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To illustrate the effectiveness of the necessary optimality condition (49), consider
the example.

Example. Consider the problem(
𝑐𝐷𝛼
0+𝑥1

)
(𝑡) = 𝑢(𝑡),(

𝑐𝐷𝛼
0+𝑥2

)
(𝑡) = −𝑢(𝑡)𝑥1(𝑡) + 𝑢4(𝑡), 𝑥𝑖 (0) = 0, 𝑖 = 1, 2, 𝑡 ∈ [0, 1],

−1 ¬ 𝑢 ¬ 0, 𝐽 (𝑢) = 𝑥2(1) → min .
(50)

We investigate the optimality of the control 𝑢(𝑡) = 0, 𝑡 ∈ [0, 1]. This control
corresponds to the solution 𝑥𝑖 = 0, 𝑖 = 1, 2, of system (50). Along the process
{0, 0} we have:

𝜓1(𝑡) = 0, 𝜓2(𝑡) = −1, 𝑡 ∈ [0, 1] .

Along the control 𝑢(𝑡) ≡ 0, 𝑡 ∈ [0, 1], the Pontyagin maximum principle
Δ𝜐𝐻 = −𝜐4 ¬ 0, ∀𝜐 ∈ [−1, 0] holds, and the result of work [6, 48] leaves this
control among the candidates for optimality. On the other hand 𝐻𝑢 = 0, 𝐻𝑢𝑢 = 0.
Hence, the control 𝑢(𝑡) = 0, 𝑡 ∈ [0, 1] is strongly quasi-singular. On this control
the condition (49) takes the form

𝐻′
𝑢𝑥 (𝑡) 𝑓𝑢 (𝑡)𝜐2 = 𝜐2 ¬ 0, 𝑡 ∈ [0, 1],

which is not satisfied for all 𝜐 ∈ [−1, 0). This shows that the control 𝑢(𝑡) = 0,
𝑡 ∈ [0, 1] cannot be optimal.
Obviously, when controlling 𝑢(𝑡) = 0, 𝑡 ∈ [0, 1], the quality criterion takes

on the value 𝐽 (𝑢) = 𝑥2(1) = 0. Let as see if there is another control function
along which the values of the objective functional are less than zero. Calculate
the value of 𝐽 for admissible control 𝑢(𝑡) = −12 , 𝑡 ∈ [0, 1]. For this function

𝑥1(𝑡) = − 𝑡𝛼

2Γ(𝛼 + 1) ,

𝑥2(𝑡) =
𝑡𝛼

16Γ(𝛼 + 1) −
𝑡2𝛼

4Γ(2𝛼 + 1) , 𝑡 ∈ [0, 1] .

Then we have

𝐽

(
−1
2

)
=
Γ(2𝛼 + 1) − 4Γ(𝛼 + 1)
16Γ(𝛼 + 1)Γ(2𝛼 + 1) < 0 = 𝐽 (0).

This shows that the control 𝑢(𝑡) = 0, 𝑡 ∈ [0, 1], is not optimal.
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7. Conclusion

In this paper, we consider a fractional optimal control problem, when the
state of the system is described by a nonlinear fractional order Caputo differential
equation. The posed problem of optimal control is investigated using a new
version of the increment method, in which the concept of a conjugate equation of
an integral form is essentially used. Applying the Banach fixed point principle, the
existence and uniqueness of a solution to the adjoint problem is proved for a fixed
admissible control. The necessary optimality condition is obtained in the form of
a linearized maximum principle. Further, the concept of a quasi-singular control
is introduced and, on its basis, an analogue of the Legendre-Clebsch conditions
is obtained. When expressing an analogue of the Legendre-Clebsch condition,
one necessary high-order optimality condition is obtained. Note that the result
obtained in some cases also excludes those controls that are not singular in the
sense of the Pontryagin maximum principle. The approach presented here can
be applied to the derivation of necessary optimality conditions in the form of a
linearized maximum principle, the Legendre-Clebsch condition and a high order
for an optimal control problem in which the system is controlled by a nonlinear
fractional Caputo partial differential equation.
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