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On the control of the final speed for a class
of finite-dimensional linear systems:
controllability and regulation

Mostafa RACHIKo , Issam KHALOUFIo , Youssef BENFATAHo ,
Hamza BOUTAYEBo and Hassan LAARABIo

In this article, we extended the concept of controllability, traditionally used to control the
final state of a system, to the exact control of its final speed. Inspired by Kalman’s theory, we
have established some conditions to characterize the control that allows the system to reach a
desired final speed exactly. When the assumptions ensuring speed-controllability are not met,
we adopt a regulation strategy that involves determining the control law to make the system’s
final speed approach as closely as possible to the predefined final speed, and this at a lower cost.
The theoretical results obtained are illustrated through three examples.

Key words: speed-controllability, controllability, continuous systems, regulation, Kalman’s
condition.

1. Introduction

It is known that one of the most important themes in the analysis of a sys-
tem is controllability. Since Kalman’s results in 1963 on the controllability of
linear systems with localized parameters [1], scientists have worked on various
types of controllability to address increasingly complex questions arising from
technological developments. These types include controllability of nonlinear sys-
tems [2–4], systems with time delays [5–7], discrete systems [8–10], fractional
systems [11–13], and distributed systems [14–16].
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To contribute to this theme, we started with the standard linear system{
¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡),
𝑥(0) = 𝑥0 ∈ R𝑛,

where 𝐴 ∈ L(R𝑛), 𝐵 ∈ L(R𝑚,R𝑛), and 𝑢 ∈ 𝐿2 (0, 𝑇,R𝑚).
Instead of seeking control 𝑢 ∈ 𝐿2 (0, 𝑇,R𝑚) to reach a predefined desired state

𝑥𝑑 , which was the primary objective of early works on controllability, we aimed
to determine the control 𝑢 (under certain conditions) that achieves the objective
¤𝑥(𝑇) = 𝑣𝑑 , where 𝑣𝑑 is the desired final speed. This led us to the search for
control 𝑢 such that 𝐵𝑢(𝑇) = 𝑣𝑑 − 𝐴𝑥(𝑇), which turned out to be ill-structured and
difficult to solve. To overcome this difficulty and instead of focusing on standard
linear systems, this paper addresses a class of linear systems defined by

¤𝑥(𝑡) = 𝐴𝑥(𝑡) +
𝑡∫
0

𝐵(\)𝑢(\)d\, 0 ¬ 𝑡 ¬ 𝑇,

𝑥(0) = 𝑥0 ∈ R𝑛,

where 𝐴 ∈ L(R𝑛) is the matrix of the state, 𝐵 ∈ 𝐿2 (0, 𝑇,L(R𝑚,R𝑛)), 𝑢 ∈
𝐿2 (0, 𝑇,R𝑚) is the control, 𝑥(𝑡) the state of system at instance 𝑡 and 𝑥0 is the
initial state. Similar to Kalman’s theory, we established conditions to characterize
the control that allows the system to exactly reach the desired final speed. In
the absence of conditions ensuring the speed-controllability of our system, we
consider a weaker version of the problem, a regulation problem, where we aimed
to find the control that allows the final velocity of the system ¤𝑥(𝑇) to approximate
as closely as possible a predefined desired speed 𝑣𝑑 .
The rest of the paper is organized as follows. In Section 2, we give some

preliminary results. In Section 3, taking advantage of the results of analysis
and integration, we characterized the speed-controllability and we give the exact
expression of the control allowing the transfer from the initial state to a desired
speed. In Section 4, we study an important special case of the operator 𝐵(.),
and then we provide an algebraic characterization of the speed-controllability.
In Section 5, we are concerned with the case when the system cannot be speed
controlled. In Section 6, we provide a numerical example. Section 7 is devoted
to a short conclusion.
Notation In the sequel, 𝐿2(0, 𝑇,R𝑚) will denote the spaces of integrable square
functions defined on [0, 𝑇] and with values in R𝑚, 𝜒[𝑎,𝑏] (𝑡) is the indicator
function that takes value 1when 𝑡 ∈ [𝑎, 𝑏] and value 0when 𝑡 ∉ [𝑎, 𝑏]. Transpose
of a matrix 𝐴 is denoted by 𝐴>. rank(.) represents the rank of a matrix. Also,
range(.) and ker(.) designated image and kernel of an operator, respectively.
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2. Preliminary results

Consider the controlled system
¤𝑥(𝑡) = 𝐴𝑥(𝑡) +

𝑡∫
0

𝐵(\)𝑢(\)d\, 𝑡  0,

𝑥(0) = 𝑥0 ∈ R𝑛,

(1)

where 𝐴 ∈ L(R𝑛) is the matrix of the state, 𝐵 ∈ 𝐿2 (0, 𝑇,L(R𝑚,R𝑛)), and
𝑢 ∈ 𝐿2 (0, 𝑇,R𝑚) is the matrix of the input.
Definition 1 The system (1) is said to be speed-controllable on [0;𝑇] if

∀𝑥0, 𝑣𝑑 ∈ R𝑛, ∃ 𝑢 ∈ 𝐿2 (0, 𝑇,R𝑚) : ¤𝑥𝑥0𝑢 (𝑇) = 𝑣𝑑 .
Theorem 1 The speed in time 𝑇 is written as

¤𝑥(𝑇) = 𝐴𝑒𝑇𝐴𝑥0 + H𝑢, (2)
where

H : 𝐿2 (0, 𝑇,R𝑚) −→ R𝑛,
𝑢 ↦−→ H1𝑢 + H2𝑢

(3)

with

H1𝑢 =

𝑇∫
0

𝐵(\)𝑢(\)d\ (4)

and

H2𝑢 = 𝐴

𝑇∫
0

𝑒(𝑇−𝑠)𝐴
©«

𝑠∫
0

𝐵(\)𝑢(\)d\ª®¬ d𝑠. (5)

Proof. We have

𝑥(𝑡) = 𝑒𝑡𝐴𝑥0 +
𝑡∫
0

𝑒(𝑡−𝑠)𝐴
©«

𝑠∫
0

𝐵(\)𝑢(\)d\ª®¬ d𝑠 (6)

since

¤𝑥(𝑡) = 𝐴𝑒𝑡𝐴𝑥0 + 𝐴
𝑡∫
0

𝑒(𝑡−𝑠)𝐴
©«

𝑠∫
0

𝐵(\)𝑢(\)d\ª®¬ d𝑠 +
𝑡∫
0

𝐵(\)𝑢(\)d\

then

2
¤𝑥(𝑇) = 𝐴𝑒𝑇𝐴𝑥0 + H𝑢.
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Theorem 2 The system (1) is speed-controllable on [0;𝑇] if and only if
𝑟𝑎𝑛𝑔𝑒H = R𝑛.

Proof.
⇒) Let us show thatR𝑛 ⊂ 𝑟𝑎𝑛𝑔𝑒H , let 𝑥 ∈ R𝑛. The system 1 is speed-controllable
on [0;𝑇], then for 𝑥0 = 0 and 𝑣𝑑 = 𝑥, there exists a control 𝑢 ∈ 𝐿2 (0, 𝑇,R𝑚)
such that ¤𝑥𝑢 = 𝑣𝑑 ⇒ 𝐴𝑒𝑇𝐴𝑥0 + H𝑢 ⇒ 𝑥 = H𝑢.

⇐) Since H is surjective, therefore for 𝑣𝑑 − 𝐴𝑒𝑇𝐴𝑥0 ∈ R𝑛, there exists 𝑢 ∈
𝐿2 (0, 𝑇,R𝑚) such that

H𝑢 = 𝑣𝑑 − 𝐴𝑒𝑇𝐴𝑥0
then

𝐴𝑒𝑇𝐴𝑥0 + H𝑢 = 𝑣𝑑

thus

2¤𝑥𝑥0𝑢 (𝑇) = 𝑣𝑑

Theorem 3 The following properties are equivalent

(i) The system (1) is speed-controllable on [0;𝑇],

(ii) 𝑟𝑎𝑛𝑔𝑒H = R𝑛,

(iii) kerH ∗ = {0}.

Theorem 4 The adjoint of the operator H is given by

H ∗ : R𝑛 −→ 𝐿2 (0, 𝑇,R𝑚)
𝑥 ↦−→ H ∗𝑥

(7)

with
(H ∗𝑥) (\) = 𝐵>(\)𝑒(𝑇−\)𝐴>𝑥. (8)

Proof. Let 𝑢 ∈ 𝐿2(0, 𝑇,R𝑚) and 𝑥 ∈ R𝑛, then

〈H1𝑢, 𝑥〉R𝑛 =
𝑇∫
0

〈𝐵(\)𝑢(\), 𝑥〉 d\

=

𝑇∫
0

〈
𝑢(\), 𝐵>(\)𝑥

〉
d\

=
〈
𝑢(.), 𝐵>(.)𝑥

〉
𝐿2 (0,𝑇,R𝑚) ,
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this leads to
H ∗
1 𝑥 = 𝐵

>(.)𝑥. (9)
On the other hand

〈H2𝑢, 𝑥〉 =
〈
𝐴

𝑇∫
0

𝑒(𝑇−𝑠)𝐴


𝑠∫
0

𝐵(\)𝑢(\)d\
 d𝑠, 𝑥

〉

=

〈 𝑇∫
0

𝑒(𝑇−𝑠)𝐴


𝑠∫
0

𝐵(\)𝑢(\)d\
 d𝑠, 𝐴>𝑥

〉

=

𝑇∫
0

〈
𝑒(𝑇−𝑠)𝐴


𝑠∫
0

𝐵(\)𝑢(\)d\
 , 𝐴>𝑥

〉
d𝑠

=

𝑇∫
0

〈 𝑠∫
0

𝐵(\)𝑢(\)d\, 𝑒(𝑇−𝑠)𝐴>𝐴>𝑥
〉
d𝑠.

By using Fubini’s theorem, we find

〈H2𝑢, 𝑥〉 =
𝑇∫
0

©«
〈 𝑇∫
\

𝐵(\)𝑢(\), 𝑒(𝑇−𝑠)𝐴>𝐴>𝑥
〉
d𝑠ª®¬ d\

=

𝑇∫
0

〈
𝑢(\),

𝑇∫
\

𝐵>(\)𝑒(𝑇−𝑠)𝐴>𝐴>𝑥d𝑠
〉
d\,

thus (
H ∗
2 𝑥

)
(\) =

𝑇∫
\

𝐵>(\)𝑒(𝑇−𝑠)𝐴>𝐴>𝑥d𝑠 (10)

= 𝐵>(\)
𝑇∫

\

[
𝑒(𝑇−𝑠)𝐴

>
𝑥

]′
d𝑠 (11)

= 𝐵>(\)
[
𝑒(𝑇−\)𝐴

>
𝑥 − 𝑥

]
, (12)

according to the two relations (9) and (12) we obtain that

2(H ∗𝑥) (\) = 𝐵>(\)𝑒(𝑇−\)𝐴𝑇 𝑥.
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Remark 1 By a simple use of Cayley-Hamelton theorem, we establish that

kerR ⊂ kerH ∗ (13)

with
R : R𝑛 −→

(
𝐿2 (0, 𝑇,R𝑚)

)𝑛
,

𝑥 ↦−→


𝐵>(.)𝑥
𝐵>(.)𝐴>𝑥
...

𝐵>(.) (𝐴>)𝑛−1 𝑥

 .
(14)

3. Exact determination of the control

Let Λ be the matrix of order 𝑛 defined by

Λ = HH ∗. (15)

Remark 2 The matrix Λ is symmetric positive.

Indeed, let 𝑥 ∈ R𝑛, then

〈Λ𝑥, 𝑥〉 = ‖H ∗𝑥‖2  0.

Proposition 1 If The system (1) is speed-controllable on [0;𝑇], then there ex-
ists a control 𝑢∗ permitting the transfer from 𝑥0 to 𝑣𝑑 with minimum energy.
Furthermore, the control 𝑢∗ is given by

𝑢∗ = H ∗𝑧, (16)

where 𝑧 ∈ R𝑛 such that
Λ𝑧 = 𝑣𝑑 − 𝐴𝑒𝑇𝐴𝑥0.

Proof. Let 𝑥 ∈ R𝑛 and assume that system (1) is speed-controllable on [0;𝑇],
i.e., kerH ∗ = {0}, then we have

〈Λ𝑥, 𝑥〉 = 0 =⇒ 𝐻∗𝑥 = 0 =⇒ 𝑥 = 0 (17)

now, according to (17) and remark 2, we conclude that the matrix Λ is invertible.
𝑣𝑑 − 𝐴𝑒𝑇𝐴𝑥0 ∈ R𝑛 =⇒ ∃!𝑧 ∈ R𝑛 such that

Λ𝑧 = 𝑣𝑑 − 𝐴𝑒𝑇𝐴𝑥0
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we take 𝑢∗ = H ∗𝑧, then
𝐴𝑒𝑇𝐴𝑥0 + H𝑢∗ = 𝑣𝑑 (18)

this leads to
¤𝑥𝑥0
𝑢∗ (𝑇) = 𝑣𝑑 . (19)

Let’s show that the control 𝑢∗ has a minimum energy. If there exists another
control 𝜔 solves the same problem, i.e., ¤𝑥𝑥0𝜔 (𝑇) = 𝑣𝑑 .

¤𝑥𝑥0𝜔 (𝑇) = 𝑣𝑑 =⇒ H𝜔 = H𝑢∗

=⇒ H (𝜔 − 𝑢∗) = 0
=⇒ 〈H (𝜔 − 𝑢∗) , 𝑧〉 = 0
=⇒ 〈𝜔 − 𝑢∗,H ∗𝑧〉 = 0
=⇒ 〈𝜔 − 𝑢∗, 𝑢∗〉 = 0
=⇒ 〈𝜔, 𝑢∗〉 = ‖𝑢∗‖2

=⇒ ‖𝑢∗‖2 ¬ ‖𝑢∗‖‖𝜔‖
=⇒ ‖𝑢∗‖ ¬ ‖𝜔‖.

This achieves the demonstration. 2

4. An important special case

In this section we discretize the interval [0;𝑇] as , [0;𝑇] = ∪𝑁−1𝑖=0 [𝑡𝑖; 𝑡𝑖+1 [,
with 𝑡𝑖+1 − 𝑡𝑖 = ℎ, and we take

𝐵(\) =


𝐵0 in [𝑡0; 𝑡1 [,
𝐵1 in [𝑡1; 𝑡2 [,
...

𝐵𝑁−1 in [𝑡𝑁−1; 𝑡𝑁 [

=

𝑁−1∑︁
𝑖=0

𝜒[𝑡𝑖 ;𝑡𝑖+1 [ (\)𝐵𝑖 (20)

with 𝐵1, 𝐵2, ..., 𝐵𝑁 are 𝑛 × 𝑚-order matrices. We obtain that

Proposition 2 The adjoint of the operator H is given by

(H ∗𝑥) (\) =


𝐵>
0 𝑒

(𝑇−\)𝐴>𝑥 in [𝑡0; 𝑡1 [,
𝐵>
1 𝑒

(𝑇−\)𝐴>𝑥 in [𝑡1; 𝑡2 [,
...

𝐵>
𝑁−1𝑒

(𝑇−\)𝐴>𝑥 in [𝑡𝑁−1; 𝑡𝑁 [.

(21)
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4.1. Characterization of the speed-controllability

In order to characterize speed-controllability, we cite the following result.

Proposition 3 The kernel of the operator H ∗ is given by

kerH ∗ = ker 𝐿 (22)

with 𝐿 the matrix defined by

𝐿 =



𝐵>
0
𝐵>
0 𝐴

>

...

𝐵>
0 (𝐴

>)𝑛−1

𝐵>
1
𝐵>
1 𝐴

>

...

𝐵>
1 (𝐴

>)𝑛−1
...

𝐵>
𝑁−1
𝐵>
𝑁−1 (𝐴

>)𝑛−1



. (23)

Proof.
⇐) We use the Cayley Hamilton theorem, we find that

𝑥 ∈ ker 𝐿 =⇒


𝐵>
𝑖
𝑥 = 0

𝐵>
𝑖
𝐴>𝑥 = 0

...

𝐵>
𝑖
(𝐴>)𝑛−1 𝑥 = 0

∀𝑖 ∈ {0, 1, ..., 𝑁 − 1}.

=⇒ 𝐵>
𝑖 𝑒

𝑠𝐴>𝑥 = 0; ∀𝑖 ∈ {0, 1, ..., 𝑁 − 1},∀𝑠 ∈ R.
=⇒ 𝑥 ∈ kerH ∗.

⇒) By also using the Cayley-Hamilton theorem, we obtain that

𝑥 ∈ kerH ∗ =⇒ 𝐵>
𝑖 𝑒

(𝑇−\)𝐴>𝑥 = 0; ∀\ ∈ [𝑡𝑖; 𝑡𝑖+1 [, ∀𝑖 ∈ {0, 1, ..., 𝑁 − 1}

=⇒ 𝐵>
𝑖 𝑒

(𝑇−\)𝐴> (
𝐴>

) 𝑘
𝑥 = 0; ∀\ ∈ [𝑡𝑖; 𝑡𝑖+1 [, ∀𝑖 ∈ {0, 1, ..., 𝑁 − 1},

∀𝑘 ∈ N
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=⇒ 𝐵>
𝑖 𝑒

(𝑇−\)𝐴>𝑒𝑟𝐴
>
𝑥 = 0; ∀\ ∈ [𝑡𝑖; 𝑡𝑖+1 [, ∀𝑖 ∈ {0, 1, ..., 𝑁 − 1},

∀𝑟 ∈ N

=⇒ 𝐵>
𝑖 𝑒

𝑠𝐴>𝑥 = 0; ∀𝑖 ∈ {0, 1, ..., 𝑁 − 1}, ∀𝑠 ∈ R.

We derive this relation and we replace each times 𝑠 by 0, then

2𝐵>
𝑖

(
𝐴>

) 𝑝
𝑥 = 0; ∀𝑝 ∈ N =⇒ 𝑥 ∈ ker 𝐿.

Thus, we characterize the speed-controllability by the following result.

Proposition 4 The following properties are equivalent

(i) The system (1) is speed-controllable on [0;𝑇] .

(ii) 𝑟𝑎𝑛𝑘 (𝐿) = 𝑛, with L is the matrix defined by (23) .

4.2. Exact determination of the control

Proposition 5 In this case the control 𝑢∗ permitting the transfer from 𝑥0 to 𝑣𝑑
with minimum energy, is given by

𝑢∗ = H ∗𝑧 (24)

with 𝑧 is the solution of the equation

Λ𝑧 = 𝑣𝑑 − 𝐴𝑒𝑇𝐴𝑥0 (25)

and Λ is defined by

Λ𝑥 =

𝑁−1∑︁
𝑖=0

𝑡𝑖+1∫
𝑡𝑖

𝑒(𝑇−\)𝐴𝐵𝑖𝐵
>
𝑖 𝑒

(𝑇−\)𝐴>𝑥d\. (26)

Proof. We have
Λ = HH ∗

then

Λ𝑥 =

𝑇∫
0

𝐵(\) (H ∗𝑥) (\)d\ + 𝐴
𝑇∫
0

𝑒(𝑇−𝑠)𝐴


𝑠∫
0

𝐵(\) (H ∗𝑥) (\)d\
 d𝑠

=

𝑁−1∑︁
𝑖=0

𝑡𝑖+1∫
𝑡𝑖

𝐵𝑖𝐵
>
𝑖 𝑒

(𝑇−\)𝐴>𝑥d\ + 𝐴
𝑇∫
0

©«
𝑠∫
0

𝑒(𝑇−𝑠)𝐴𝐵(\) (H ∗𝑥) (\)d\ª®¬ d𝑠.
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We use the integration theorem of Fubini, we obtain that

Λ𝑥 =

𝑁−1∑︁
𝑖=0

𝑡𝑖+1∫
𝑡𝑖

𝐵𝑖𝐵
>
𝑖 𝑒

(𝑇−\)𝐴>𝑥d\ + 𝐴
𝑇∫
0

©«
𝑇∫

\

𝑒(𝑇−𝑠)𝐴𝐵(\) (H ∗𝑥) (\)d𝑠ª®¬ d\
=

𝑁−1∑︁
𝑖=0

𝑡𝑖+1∫
𝑡𝑖

𝐵𝑖𝐵
>
𝑖 𝑒

(𝑇−\)𝐴>𝑥d\ +
𝑇∫
0

©«
𝑇∫

\

(
𝐴𝑒(𝑇−𝑠)𝐴

)
d𝑠ª®¬ 𝐵(\) (H ∗𝑥) (\)d\.

We use the fact that (
𝑒(𝑇−𝑠)𝐴

)′
=

(
−𝐴𝑒(𝑇−𝑠)𝐴

)
we find that

Λ𝑥 =

𝑁−1∑︁
𝑖=0

𝑡𝑖+1∫
𝑡𝑖

𝐵𝑖𝐵
>
𝑖 𝑒

(𝑇−\)𝐴>𝑥d\ +
𝑁−1∑︁
𝑖=0

𝑡𝑖+1∫
𝑡𝑖

[
−𝑒(𝑇−𝑠)𝐴

]𝑇
\
𝐵𝑖𝐵

>
𝑖 𝑒

(𝑇−\)𝐴>𝑥d\

=

𝑁−1∑︁
𝑖=0

𝑡𝑖+1∫
𝑡𝑖

(
𝐼𝑛 +

(
𝑒(𝑇−\)𝐴 − 𝐼𝑛

))
𝐵𝑖𝐵

>
𝑖 𝑒

(𝑇−\)𝐴>𝑥d\

=

𝑁−1∑︁
𝑖=0

𝑡𝑖+1∫
𝑡𝑖

𝑒(𝑇−\)𝐴𝐵𝑖𝐵
>
𝑖 𝑒

(𝑇−\)𝐴>𝑥d\.

From the proposition 1 we can conclude the result. 2

Example 1 Let the matrix 𝐴, 𝐵0, 𝐵1, 𝐵2 and the parameters 𝑇 , ℎ, 𝑛, 𝑚, and 𝑁
defined as follows

𝐴 =

(
1 0
0 0

)
, 𝐵0 =

(
1
0

)
, 𝐵1 =

(
3
0

)
,

𝐵2 =

(
1
1

)
, 𝑣𝑑 =

(
100
100

)
, 𝑥0 =

(
1
1

)
,

𝑇 = 60, ℎ =
𝑇

3
, 𝑛 = 2, 𝑚 = 1, 𝑁 = 3.

In this case we have

𝐵(\) =


𝐵0, \ ∈ [0, 20[ ,
𝐵1, \ ∈ [20, 40[ ,
𝐵2, \ ∈ [40, 60[ .
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The matrix 𝐿 is given by

𝐿 =

©«

𝐵>
0

𝐵>
0 𝐴

𝐵>
1

𝐵>
1 𝐴

𝐵>
2

𝐵>
2 𝐴

ª®®®®®®®®¬
=

©«

1 0
1 0
3 0
1 0
1 1
1 0

ª®®®®®®®¬
since rank(𝐿) = 2, then the considered system is speed-controllable. In this
example the matrix Λ is given by

Λ𝑥 =

𝑁−1∑︁
𝑖=0

𝑡𝑖+1∫
𝑡𝑖

𝑒(𝑇−\)𝐴𝐵𝑖𝐵
>
𝑖 𝑒

(𝑇−\)𝐴>𝑥d\

=

ℎ∫
0

𝑒(𝑇−\)𝐴𝐵0𝐵
>
0 𝑒

(𝑇−\)𝐴>𝑥d\ + +
2ℎ∫
ℎ

𝑒(𝑇−\)𝐴𝐵1𝐵
>
1 𝑒

(𝑇−\)𝐴>𝑥d\

+
3ℎ∫
2ℎ

𝑒(𝑇−\)𝐴𝐵2𝐵
>
2 𝑒

(𝑇−\)𝐴>𝑥d\

or
𝐵0𝐵

>
0 =

(
1 0
0 0

)
, 𝑒(𝑇−\)𝐴 = 𝑒(𝑇−\)𝐴

>
=

(
𝑒𝑇−\ 0
0 1

)
this leads to

𝑒(𝑇−\)𝐴 𝐵0 𝐵
>
0 𝑒

(𝑇−\)𝐴>
(
𝑥1
𝑥2

)
=

(
𝑒𝑇−\ 0
0 1

) (
1 0
0 0

) (
𝑒𝑇−\ 0
0 1

) (
𝑥1
𝑥2

)
=

(
𝑒2(𝑇−\) 0
0 0

) (
𝑥1
𝑥2

)
.

Thus
ℎ∫
0

𝑒(𝑇−\)𝐴𝐵0𝐵
>
0 𝑒

(𝑇−\)𝐴>𝑥d\ =
ℎ∫
0

(
𝑒2(𝑇−\) 0
0 0

)
d\𝑥

=

(1
2
𝑒2𝑇𝑒−2ℎ

(
𝑒2ℎ − 1

)
0

0 0

)
𝑥.
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On the other words

𝑒(𝑇−\)𝐴𝐵1𝐵
>
1 𝑒

(𝑇−\)𝐴> =

(
𝑒𝑇−\ 0
0 1

) (
9 0
0 0

) (
𝑒𝑇−\ 0
0 1

)
=

(
9𝑒2(𝑇−\) 0
0 0

)
this implies

2ℎ∫
ℎ

𝑒(𝑇−\)𝐴𝐵1𝐵
>
1 𝑒

(𝑇−\)𝐴>𝑥d\ =
2ℎ∫
ℎ

(
9𝑒2(𝑇−\) 0
0 0

)
d\𝑥

=
©«
9
2
𝑒2𝑇𝑒−4ℎ

(
𝑒2ℎ−1

)
0

0 0

ª®¬ 𝑥
and

3ℎ∫
2ℎ

𝑒(𝑇−\)𝐴𝐵2𝐵
>
2 𝑒

(𝑇−\)𝐴>𝑥d\ =
3ℎ∫
2ℎ

(
𝑒𝑇−\ 0
0 1

) (
1 1
1 1

) (
𝑒𝑇−\ 0
0 1

)
d\

(
𝑥1
𝑥2

)

=

©«
1
2
𝑒2𝑇𝑒−6ℎ

(
𝑒2ℎ−1

) 𝑒𝑇

𝑒3ℎ

(
𝑒ℎ−1

)
𝑒𝑇

𝑒3ℎ

(
𝑒ℎ−1

)
ℎ

ª®®®¬
(
𝑥1
𝑥2

)
therefore

Λ =
©«
1
2
𝑒2𝑇𝑒−2ℎ

(
𝑒2ℎ−1

)
0

0 0

ª®¬ +
(9
2
𝑒2𝑇𝑒−4ℎ

(
𝑒2ℎ−1

)
0

0 0

)

+
©«
1
2
𝑒2𝑇𝑒−6ℎ

(
𝑒2ℎ−1

) 𝑒𝑇

𝑒3ℎ

(
𝑒ℎ−1

)
𝑒𝑇

𝑒3ℎ

(
𝑒ℎ−1

)
ℎ

ª®®®¬ =

©«

1
2𝑒
2𝑇𝑒−2ℎ

(
𝑒2ℎ−1

)
+92𝑒

2𝑇𝑒−4ℎ
(
𝑒2ℎ−1

)
+12𝑒

2𝑇𝑒−6ℎ
(
𝑒2ℎ−1

) 𝑒𝑇

𝑒3ℎ

(
𝑒ℎ−1

)
𝑒𝑇

𝑒3ℎ

(
𝑒ℎ−1

)
ℎ

ª®®®®®®®¬
.

Now, we solve the following equation

Λ𝑧 = 𝑣𝑑 − 𝐴𝑒𝑇𝐴𝑥0 ,
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Λ =

(
𝑎 𝑏

𝑐 𝑑

)
,

where

𝑎 =
−2ℎ𝑒6ℎ
�̃�

, 𝑏 =
−2𝑒𝑇𝑒3ℎ + 2𝑒𝑇𝑒4ℎ

�̃�
,

𝑐 =
−2𝑒𝑇𝑒3ℎ + 2𝑒𝑇𝑒ℎ𝑒3ℎ

�̃�
, 𝑑 =

2𝑒𝑇𝑒3ℎ − 2𝑒𝑇𝑒ℎ𝑒3ℎ
2𝑒𝑇 − 2𝑒𝑇𝑒ℎ

× 𝑘

𝑑

with

�̃� = 2𝑒2𝑇𝑒2ℎ − 4𝑒2𝑇𝑒ℎ + 2𝑒2𝑇 + ℎ𝑒2𝑇𝑒−2ℎ𝑒2(3ℎ)

+ 9ℎ𝑒2𝑇𝑒2(3ℎ)𝑒−4ℎ + ℎ𝑒2𝑇𝑒2(3ℎ)𝑒−6ℎ

− ℎ𝑒2𝑇𝑒−2ℎ𝑒2ℎ𝑒2(3ℎ) − 9ℎ𝑒2𝑇𝑒2ℎ𝑒2(3ℎ)𝑒−4ℎ

− ℎ𝑒2𝑇𝑒2ℎ𝑒2(3ℎ)𝑒−6ℎ,

�̃� = 2𝑒2𝑇𝑒2ℎ − 4𝑒2𝑇𝑒ℎ + 2𝑒2𝑇

+ ℎ𝑒2𝑇𝑒−2ℎ𝑒2(3ℎ) + 9ℎ𝑒2𝑇𝑒2(3ℎ)𝑒−4ℎ

+ ℎ𝑒2𝑇𝑒2(3ℎ)𝑒−6ℎ − ℎ𝑒2𝑇𝑒−2ℎ𝑒2ℎ𝑒2(3ℎ)

− 9ℎ𝑒2𝑇𝑒2ℎ𝑒2(3ℎ)𝑒−4ℎ − ℎ𝑒2𝑇𝑒2ℎ𝑒2(3ℎ)𝑒−6ℎ,

�̃� = 2𝑒2𝑇𝑒2ℎ − 4𝑒2𝑇𝑒ℎ + 2𝑒2𝑇

+ ℎ𝑒2𝑇𝑒−2ℎ𝑒2(3ℎ) + 9ℎ𝑒2𝑇𝑒2(3ℎ)𝑒−4ℎ

+ ℎ𝑒2𝑇𝑒2(3ℎ)𝑒−6ℎ − ℎ𝑒2𝑇𝑒−2ℎ𝑒2ℎ𝑒2(3ℎ)

− 9ℎ𝑒2𝑇𝑒2ℎ𝑒2(3ℎ)𝑒−4ℎ − ℎ𝑒2𝑇𝑒2ℎ𝑒2(3ℎ)𝑒−6ℎ,

𝑑 = 2𝑒2𝑇𝑒2ℎ − 4𝑒2𝑇𝑒ℎ + 2𝑒2𝑇

+ ℎ𝑒2𝑇𝑒−2ℎ𝑒2(3ℎ) + 9ℎ𝑒2𝑇𝑒2(3ℎ)𝑒−4ℎ

+ ℎ𝑒2𝑇𝑒2(3ℎ)𝑒−6ℎ − ℎ𝑒2𝑇𝑒−2ℎ𝑒2ℎ𝑒2(3ℎ)

− 9ℎ𝑒2𝑇𝑒2ℎ𝑒2(3ℎ)𝑒−4ℎ − ℎ𝑒2𝑇𝑒2ℎ𝑒2(3ℎ)𝑒−6ℎ,

𝑘 = 𝑒2𝑇𝑒−2ℎ𝑒3ℎ + 9𝑒2𝑇𝑒3ℎ𝑒−4ℎ

+ 𝑒2𝑇𝑒3ℎ𝑒−6ℎ − 𝑒2𝑇𝑒−2ℎ𝑒2ℎ𝑒3ℎ

− 9𝑒2𝑇𝑒2ℎ𝑒3ℎ𝑒−4ℎ − 𝑒2𝑇𝑒2ℎ𝑒3ℎ𝑒−6ℎ.
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The control 𝑢 permitting the transfere from 𝑥0 =
(
1
1

)
to 𝑣𝑑 =

(
100
100

)
is given by

𝑢(𝑡) = (𝐻∗𝑧) (𝑡) =
𝑁∑︁
𝑖=0

𝐵>
𝑖 𝑒

(𝑇−𝑡)𝐴>𝑧𝜒[𝑡𝑖 ,𝑡𝑖+1 [ (𝑡).

Example 2 In this example we take 𝑛 = 2, 𝑚 = 2, 𝑁 = 2 and

𝐴 =

(
1 0
0 0

)
, 𝐵0 =

(
1
0

)
, 𝐵1 =

(
0
1

)
.

We obtain that

𝐿 =
©«
1 0
1 0
1 0
1 0

ª®®¬ ,
since rank𝐿 = 1, then the system is not speed-controllable .

5. The regulation problem

In this section, we deal with the case where the system is not speed-
controllable on [0, 𝑇].We are concernedwith determining the controlminimizing
the quadratic functional

J (𝑢) = 〈 ¤𝑥(𝑇) − 𝑣𝑑 , 𝑀 ( ¤𝑥(𝑇) − 𝑣𝑑)〉R𝑛

+
𝑇∫
0

〈 ¤𝑥(𝑟) − 𝜌(𝑟), 𝐺 ( ¤𝑥(𝑟) − 𝜌(𝑟))〉R𝑛 d𝑟

+
𝑇∫
0

〈𝑢(𝑟), 𝑅𝑢(𝑟)〉R𝑚 d𝑟. (27)

with 𝑀 and 𝐺 two positive symmetric matrices, and 𝑅 is a positive definite
symmetric matrix.
Proposition 6 The speed at time 𝑡 can be written as

¤𝑥(𝑡) = 𝐴𝑒𝑡𝐴𝑥0 + (K𝑢) (𝑡), (28)

where
K : 𝐿2 (0, 𝑇,R𝑚) −→𝐿2 (0, 𝑇,R𝑛) ,

𝑢 ↦−→K𝑢 = K1𝑢 + K2𝑢
(29)
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with

(K1𝑢) (𝑡) = 𝐴
𝑡∫
0

𝑒(𝑡−𝑠)𝐴
©«

𝑠∫
0

𝐵(\)𝑢(\)d\ª®¬ d𝑠 (30)

and

(K2𝑢) (𝑡) =
𝑡∫
0

𝐵(\)𝑢(\)d\. (31)

Proposition 7 The adjoint of the operator K is given by

K∗ : 𝐿2 (0, 𝑇,R𝑛) −→ 𝐿2 (0, 𝑇,R𝑚)
𝑦 ↦−→ K∗𝑦

(32)

with

(K∗𝑦) (\) = 𝐵>(\)
𝑇∫

\

𝑒(𝑡−\)𝐴
>
𝑦(𝑡)d𝑡. (33)

Proof. We have

〈K2𝑢, 𝑦〉𝐿2 (0,𝑇,R𝑛) =
𝑇∫
0

〈(K2𝑢) (𝑡), 𝑦(𝑡)〉 d𝑡

=

𝑇∫
0

〈 𝑡∫
0

𝐵(\)𝑢(\)𝑑\, 𝑦(𝑡)
〉
d𝑡 =

𝑇∫
0

©«
𝑡∫
0

〈𝐵(\)𝑢(\), 𝑦(𝑡)〉 d\ª®¬ d𝑡
=

𝑇∫
0

©«
𝑇∫

\

〈𝐵(\)𝑢(\), 𝑦(𝑡)〉 d𝑡ª®¬ d\ =
𝑇∫
0

〈
𝑢(\),

𝑇∫
\

𝐵>(\)𝑦(𝑡)𝑑𝑡
〉
d\.

Thus (
K∗
2 𝑦

)
(\) =

𝑇∫
\

𝐵>(\)𝑦(𝑡)d𝑡. (34)

Hence (
K∗
2 𝑦

)
(.) = 𝐵>(.)

𝑇∫
.

𝑦(𝑡)d𝑡. (35)
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On the other hand, we have

〈K1𝑢, 𝑦〉𝐿2 (0,𝑇,R𝑛) =
𝑇∫
0

〈
𝐴

𝑡∫
0

𝑒(𝑡−𝑠)𝐴


𝑠∫
0

𝐵(\)𝑢(\)d\
 d𝑠, 𝑦(𝑡)

〉
d𝑡

=

𝑇∫
0

〈 𝑡∫
0

𝐴𝑒(𝑡−𝑠)𝐴
©«

𝑠∫
0

𝐵(\)𝑢(\)d\ª®¬ d𝑠, 𝑦(𝑡)
〉
d𝑡.

According to Fubini’s integration theorem, we obtain the following

〈K1𝑢, 𝑦〉𝐿2 (0,𝑇,R𝑛) =
𝑇∫
0

〈 𝑡∫
0

©«
𝑡∫

\

𝐴𝑒(𝑡−𝑠)𝐴𝐵(\)𝑢(\)d𝑠ª®¬ d\, 𝑦(𝑡)
〉
d𝑡

=

𝑇∫
0

〈 𝑡∫
0

[
−𝑒(𝑡−𝑠)𝐴

] 𝑡
\
𝐵(\)𝑢(\)d\, 𝑦(𝑡)

〉
d𝑡

=

𝑇∫
0

〈 𝑡∫
0

(
𝑒(𝑡−\)𝐴 − 𝐼

)
𝐵(\)𝑢(\)d\, 𝑦(𝑡)

〉
d𝑡

=

𝑇∫
0

©«
𝑡∫
0

〈(
𝑒(𝑡−\)𝐴 − 𝐼

)
𝐵(\)𝑢(\), 𝑦(𝑡)

〉
d\ª®¬ d𝑡.

By a second use of the Fubini integration theorem, we have

〈K1𝑢, 𝑦〉 =
𝑇∫
0

©«
𝑇∫

\

〈(
𝑒(𝑡−\)𝐴 − 𝐼

)
𝐵(\)𝑢(\), 𝑦(𝑡)

〉
d𝑡ª®¬ d\

=

𝑇∫
0

©«
𝑇∫

\

〈(
𝑒(𝑡−\)𝐴 − 𝐼

)
𝐵(\)𝑢(\), 𝑦(𝑡)

〉
d𝑡ª®¬ d\

=

𝑇∫
0

©«
𝑇∫

\

〈
𝑢(\), 𝐵>(\)

(
𝑒(𝑡−\)𝐴

> − 𝐼
)
𝑦(𝑡)

〉
d𝑡ª®¬ d\

=

𝑇∫
0

〈
𝑢(\), 𝐵>(\)

𝑇∫
\

(
𝑒(𝑡−\)𝐴

> − 𝐼
)
𝑦(𝑡)d𝑡

〉
d\.
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Which results in

(
K∗
1 𝑦

)
(\) = 𝐵>(\)

𝑇∫
\

(
𝑒(𝑡−\)𝐴

> − 𝐼
)
𝑦(𝑡)d𝑡. (36)

If we use Eq. (35) and Eq. (36), we conclude

(K∗𝑦) (\) = 𝐵>(\)
𝑇∫

\

𝑒(𝑡−\)𝐴
>
𝑦(𝑡)𝑑𝑡. (37)

2

Proposition 8 The functional J could be rewritten as

J (𝑢) =
〈
𝐴𝑒𝑇𝐴𝑥0 − 𝑣𝑑 , 𝑀

(
𝐴𝑒𝑇𝐴𝑥0 − 𝑣𝑑

)〉
R𝑛

+
〈
𝐴𝑒.𝐴𝑥0 − 𝜌, 𝐺

(
𝐴𝑒.𝐴𝑥0 − 𝜌

)〉
𝐿2 (0,𝑇,R𝑛)

+ J̄ (𝑢), (38)

where

J̄ (𝑢) = 〈𝑢, (H ∗𝑀H +K∗𝐺H + 𝑅) 𝑢〉𝐿2 (0,𝑇,R𝑚)

+ 2
〈
𝑢,H ∗𝑀

(
𝐴𝑒𝑇𝐴𝑥0 − 𝑣𝑑

)
+ K∗𝐺

(
𝐴𝑒.𝐴𝑥0 − 𝜌

)〉
. (39)

Proof. We have〈
¤𝑥(𝑇) − 𝑣𝑑 , 𝑀 ( ¤𝑥(𝑇) − 𝑣𝑑)

〉
R𝑛

=

〈
𝐴𝑒𝑇𝐴𝑥0 + H𝑢 − 𝑣𝑑 , 𝑀

(
𝐴𝑒𝑇𝐴𝑥0 + H𝑢 − 𝑣𝑑

)〉
R𝑛

=

〈
𝐴𝑒𝑇𝐴𝑥0 − 𝑣𝑑 , 𝑀

(
𝐴𝑒𝑇𝐴𝑥0 − 𝑣𝑑

)〉
R𝑛

+ 2
〈
H𝑢, 𝑀

(
𝐴𝑒𝑇𝐴𝑥0 − 𝑣𝑑

)〉
R𝑛

+ 〈𝑢,H ∗𝑀H𝑢〉𝐿2 (0,𝑇,R𝑚)

=

〈
𝐴𝑒𝑇𝐴𝑥0 − 𝑣𝑑 , 𝑀

(
𝐴𝑒𝑇𝐴𝑥0 − 𝑣𝑑

)〉
R𝑛

+ 2
〈
𝑢,H ∗𝑀

(
𝐴𝑒𝑇𝐴𝑥0 − 𝑣𝑑

)〉
𝐿2 (0,𝑇,R𝑚)

+ 〈𝑢,H ∗𝑀H𝑢〉𝐿2 (0,𝑇,R𝑚) (40)
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and
𝑇∫
0

〈 ¤𝑥(𝑟) − 𝜌(𝑟), 𝐺 ( ¤𝑥(𝑟) − 𝜌(𝑟))〉 d𝑟 = 〈 ¤𝑥 − 𝜌, 𝐺 (𝑥 − 𝜌)〉𝐿2 (0,𝑇,R𝑛)

=

〈
𝐴𝑒.𝐴𝑥0 − 𝜌, 𝐺

(
𝐴𝑒.𝐴𝑥0 − 𝜌

)〉
𝐿2 (0,𝑇,R𝑛)

+ 2
〈
K𝑢, 𝐺

(
𝐴𝑒.𝐴𝑥0 − 𝜌

)〉
𝐿2 (0,𝑇,R𝑛)

+ 〈𝑢,K∗𝐺K𝑢〉𝐿2 (0,𝑇,R𝑚)
=

〈
𝐴𝑒.𝐴𝑥0 − 𝜌, 𝐺

(
𝐴𝑒.𝐴𝑥0 − 𝜌

)〉
𝐿2 (0,𝑇,R𝑛)

+ 2
〈
𝑢,K∗𝐺

(
𝐴𝑒.𝐴𝑥0 − 𝜌

)〉
𝐿2 (0,𝑇,R𝑚)

+ 〈𝑢,K∗𝐺K𝑢〉𝐿2 (0,𝑇,R𝑚) (41)

if we combine Eq. (40) and Eq. (41) we obtain the desired result. 2

Remark 3 It is clear that

minimizing the function J
m

minimizing the function J̄ .
(42)

According to this remark, we are interested in the problem of minimization of the
functional J̄ .

Proposition 9 The functional J̄ can be written as

J̄ (𝑢) = B(𝑢, 𝑢) + 2ℓ(𝑢) (43)

with B the continuous, symmetric and coercive bilinear form defined by

B : 𝐿2 (0, 𝑇,R𝑚) × 𝐿2 (0, 𝑇,R𝑚) −→ R
(𝑢, 𝑣) ↦−→ 〈𝑢, (H ∗𝑀H +K∗𝐺K + 𝑅) 𝑣〉

(44)

and ℓ the continuous linear form, defined by

ℓ : 𝐿2 (0, 𝑇,R𝑚) −→ R
𝑢 ↦−→

〈
𝑢,H ∗𝑀

(
𝐴𝑒𝑇𝐴𝑥0 − 𝑣𝑑

)
+ K∗𝐺

(
𝐴𝑒.𝐴𝑥0 − 𝜌

)〉 (45)

Proposition 10 There exists a unique 𝑢∗ ∈ 𝐿2(0, 𝑇,R𝑚) minimizing the function
J̄ and moreover

𝑢∗(𝑡) = −𝐶−1𝐵>(𝑡)𝑝(𝑡). (46)
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With
𝐶 = (H ∗𝑀H +K∗𝐺K + 𝑅) (47)

and

𝑝(𝑡) = 𝑒(𝑇−𝑡)𝐴>𝑀
(
𝐴𝑒𝑇𝐴𝑥0 − 𝑣𝑑

)
+

𝑇∫
𝑡

𝑒(𝑠−𝑡)𝐴
>
𝐺

(
𝐴𝑒𝑠𝐴𝑥0 − 𝜌(𝑠)

)
d𝑠. (48)

Proof. We use Eq. (43) and the fact that B is continuous and coercive bilinear
form and ℓ is continuous linear form, so by the Lax-Milgram theorem [17] there
exists a unique 𝑢∗ ∈ 𝐿2(0, 𝑇,R𝑚) such that

B(𝑣, 𝑢∗) = −ℓ(𝑣), ∀𝑣 ∈ 𝐿2(0, 𝑇,R𝑚).

Which leads to〈
(H ∗𝑀H +K∗𝐺K + 𝑅) 𝑢∗, 𝑣

〉
= −

〈
H ∗𝑀

(
𝑒𝑇𝐴𝑥0 − 𝑣𝑑

)
+K∗𝐺

(
𝐴𝑒.𝐴𝑥0 − 𝜌

)
, 𝑣

〉
∀𝑣 ∈ 𝐿2 (0, 𝑇,R𝑚) .

Thus

(H ∗𝑀H +K∗𝐺K + 𝑅) 𝑢∗ = −
(
H ∗𝑀

(
𝑒𝑇𝐴𝑥0 − 𝑣𝑑

)
+ + K∗𝐺

(
𝐴𝑒.𝐴𝑥0 − 𝜌

))
therefore

𝑢∗(.) = −𝐶−1
[
H ∗𝑀

(
𝑒𝑇𝐴𝑥0 − 𝑣𝑑

)
+ K∗𝐺

(
𝐴𝑒.𝐴𝑥0 − 𝜌

)]
= −𝐶−1

𝐵>(.)𝑒(𝑇−.)𝐴>𝑀
(
𝐴𝑒𝑇𝑥0−𝑣𝑑

)
+𝐵>(.)

𝑇∫
.

𝑒(𝑠−.)𝐴
>
𝐺

(
𝐴𝑒𝑠𝐴𝑥0−𝜌(𝑠)

)
d𝑠


= −𝐶−1 [

𝐵>(.)𝑝(.)
]

with 𝑝(.) defined as follows

𝑝(𝑡) = 𝑒(𝑇−𝑡)𝐴>𝑀
(
𝐴𝑒𝑇𝐴𝑥0 − 𝑣𝑑

)
+

𝑇∫
𝑡

𝑒(𝑠−𝑡)𝐴
>
𝐺

(
𝐴𝑒𝑠𝐴𝑥0 − 𝜌(𝑠)

)
d𝑠

and the operator 𝐶 is given by

𝐶 = H ∗𝑀H +K∗𝐺K + 𝑅.

Moreover, since the bilinear form 𝐵 is symmetric, then 𝑢∗ is the minumum of the
function J̄ [17]. 2



516 M. RACHIK, I. KHALOUFI, Y. BENFATAH, H. BOUTAYEB, H. LAARABI

Proposition 11 The function 𝑝(.) is the solution to the following equation
− ¤𝑝(𝑡) = 𝐴>𝑝(𝑡) + 𝐺

(
𝐴𝑒𝑡𝐴𝑥0 − 𝜌(𝑡)

)
, 𝑡 ∈ [0, 𝑇 [,

𝑝(𝑇) = 𝑀
(
𝐴𝑒𝑇𝐴𝑥0 − 𝑣𝑑

)
.

(49)

Proof. We take
𝑑 (𝑡) = 𝑝(𝑇 − 𝑡), 𝑡 ∈ [0, 𝑇]

then
𝑑 (0) = 𝑝(𝑇) = 𝑀

(
𝐴𝑒𝑇𝐴𝑥0 − 𝑣𝑑

)
and

¤𝑑 (𝑡) = − ¤𝑝(𝑇 − 𝑡)

= 𝐴>𝑝(𝑇 − 𝑡) + 𝐺
(
𝐴𝑒(𝑇−𝑡)𝐴𝑥0 − 𝜌(𝑇 − 𝑡)

)
= 𝐴>𝑑 (𝑡) + 𝐺

(
𝐴𝑒(𝑇−𝑡)𝐴𝑥0 − 𝜌(𝑇 − 𝑡)

)
this leads to

𝑑 (𝑡) = 𝑒𝑡𝐴>𝑑 (0) +
𝑡∫
0

𝑒(𝑡−𝑠)𝐴
𝑇

𝐺

(
𝐴𝑒(𝑇−𝑠)𝐴𝑥0 − 𝜌(𝑇 − 𝑠)

)
d𝑠

thus

𝑝(𝑇 − 𝑡) = 𝑒𝑡𝐴>𝑀
(
𝐴𝑒>𝑥0 − 𝑣𝑑

)
+

𝑡∫
0

𝑒(𝑡−𝑠)𝐴
𝑇

𝐺

(
𝐴𝑒(𝑇−𝑠)𝐴𝑥0 − 𝜌(𝑇 − 𝑠)

)
d𝑠.

We put \ = 𝑇 − 𝑡, we obtain that

𝑝(\) = 𝑒(𝑇−\)𝐴>𝑀
(
𝐴𝑒𝑇𝐴𝑥0 − 𝑣𝑑

)
+
𝑇−\∫
0

𝑒(𝑇−\−𝑠)𝐴
𝑇

𝐺

(
𝐴𝑒(𝑇−𝑠)𝐴𝑥0 − 𝜌(𝑇 − 𝑠)

)
d𝑠

= 𝑒(𝑇−\)𝐴
>
𝑀

(
𝐴𝑒𝑇𝐴𝑥0 − 𝑣𝑑

)
+

\∫
𝑇

𝑒(𝑟−\)𝐴
𝑇

𝐺

(
𝐴𝑒𝑟𝐴𝑥0 − 𝜌(𝑟)

)
(−d𝑟)

= 𝑒(𝑇−\)𝐴
𝑇

𝑀

(
𝐴𝑒𝑇𝐴𝑥0 − 𝑣𝑑

)
+

𝑇∫
\

𝑒(𝑟−\)𝐴
𝑇

𝐺

(
𝐴𝑒𝑟𝐴𝑥0 − 𝜌(𝑟)

)
d𝑟
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and therefore

𝑝(𝑡) = 𝑒(𝑇−𝑡)𝐴>𝑀
(
𝐴𝑒𝑇𝐴𝑥0 − 𝑣𝑑

)
+

𝑇∫
𝑡

𝑒(𝑟−𝑡)𝐴
>
𝐺

(
𝐴𝑒𝑟𝐴𝑥0 − 𝜌(𝑟)

)
d𝑟.

2

Remark 4 The optimum of the function J is

𝑢∗(𝑡) = −𝐶−1𝐵>(𝑡)𝑑 (𝑇 − 𝑡), (50)

where 𝑑 (.) is the solution of the adjoint equation
¤𝑑 (𝑡) = 𝐴>𝑑 (𝑡) + 𝐺

(
𝐴𝑒(𝑇−𝑡)𝐴𝑥0 − 𝜌(𝑇 − 𝑡)

)
; 𝑡 ∈ [0, 𝑇 [,

𝑑 (0) = 𝑀
(
𝐴𝑒𝑇𝐴𝑥0 − 𝑣𝑑

)
.

(51)

6. Numerical approximation

We discretize the interval [0, 𝑇] at points 𝑡𝑖 = 𝑖Δ (𝑖 = 0, 1, ..., 𝑁), where Δ
is the time step such that 𝑡𝑁 = 𝑇 . Next, we denote 𝑑 (𝑡𝑖) = 𝑑𝑖, then according to
Euler’s schema

𝑑0 = 𝑀
(
𝐴𝑒𝑇𝐴𝑥0 − 𝑣𝑑

)
𝑑𝑖+1 = Δ

[
𝐴>𝑑𝑖 + 𝐺

(
𝐴𝑒(𝑇−𝑡𝑖)𝑥0 − 𝜌(𝑇 − 𝑡𝑖)

)]
+ 𝑑𝑖

𝑖 = 0, 1, . . . , 𝑁 − 1.

𝑢∗
𝑖
= −𝐶−1𝐵> (𝑡𝑖) 𝑑 (𝑇 − 𝑡𝑖)
= −𝐶−1𝐵>(𝑡𝑖)𝑑 ((𝑡0 + 𝑁Δ) − (𝑡0 + 𝑖Δ))
= −𝐶−1𝐵> (𝑡𝑖) 𝑑 ((𝑁 − 𝑖)Δ)
= −𝐶−1𝐵>

𝑖
𝑑 ((𝑁 − 𝑖)Δ)

= −𝐶−1𝐵>
𝑖
𝑑𝑁−𝑖 ,

𝑖 ∈ {0, 1, ..., 𝑁 − 1}.

Example 3 First of all, let us determine the inverse of the following operator

𝐶 = H ∗𝑀H +K∗𝐺K + 𝑅
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we have
𝐶 = 𝑅

(
𝐼 + 𝑅−1 (H ∗𝑀H +K∗𝐺K)

)
.

If we assume that
𝑅−1 (H ∗𝑀H + 𝐾∗𝐺𝐾)

 ¬ 1 then 𝐼 +𝑅−1 (H ∗𝑀H + 𝐾∗𝐺𝐾)
is invertible and the following result holds(

𝐼 + 𝑅−1 (H ∗𝑀H +K∗𝐺K)
)−1

=

+∞∑︁
𝑘=0

𝑃𝑘

with
𝑃 = 𝑅−1 (H ∗𝑀H +K∗𝐺K)

and 𝑃 is defined by

𝑃𝑦 = 𝑅−1 (H ∗𝑀H +K∗𝐺K) 𝑦, 𝑦 ∈ 𝐿2(0, 𝑇,R𝑚)

in this case we obtain

𝐶−1 = (𝐼 + 𝑃)−1𝑅−1 =
+∞∑︁
𝑘=0

𝑃𝑘𝑅−1.

We have
(H ∗𝑀H +K∗𝐺K) 𝑦 = H ∗ (𝑀H 𝑦) + 𝐾∗ (𝐺𝐾𝑦)

or

H ∗ (𝑀H 𝑦) =
𝑁−1∑︁
𝑘=0

𝐵>
𝑘 𝑒

(𝑇−.)𝐴>𝑀H 𝑦

on the other hand by using Fubini’s theorem we obtain

H𝑢 =

𝑇∫
0

𝑒(𝑇−𝑠)𝐴𝐵(𝑠)𝑢(𝑠)d𝑠 =
𝑁−1∑︁
𝑘=0

𝑡𝑘+1∫
𝑡𝑘

𝑒(𝑇−𝑠)𝐴𝐵𝑘𝑢(𝑠)d𝑠

this leads to

H ∗ (𝑀H 𝑦) (\) =
𝑁−1∑︁
𝑘=0

𝐵>
𝑘 𝑒

(𝑇−\)𝐴>𝑀 × ©«
𝑁−1∑︁
𝑘=0

𝑡𝑘+1∫
𝑡𝑘

𝑒(𝑇−𝑠)𝐴𝐵𝑘 𝑦(𝑠)d𝑠
ª®¬ and

K∗(𝐺𝐾𝑦) = 𝐵>(.)
𝑇∫
.

𝑒(𝑇−𝑠)𝐴
> (𝐺𝐾𝑦) (𝑠)d𝑠



ON THE CONTROL OF THE FINAL SPEED FOR A CLASS OF FINITE-DIMENSIONAL
LINEAR SYSTEMS: CONTROLLABILITY AND REGULATION 519

or

(K𝑦) (𝑡) =
𝑡∫
0

𝐴𝑒(𝑡−𝑠)𝐴
©«

𝑠∫
0

𝐵(\)𝑦(\)d\ª®¬ d𝑠 +
𝑡∫
0

𝐵(\)𝑦(\)d\

=

𝑡∫
0

𝐴𝑒(𝑡−𝑠)𝐴
©«
𝑁−1∑︁
𝑖=0

𝐵𝑖

𝑠∫
0

1[𝑡𝑖 ;𝑡𝑖+1 [ (\)𝑦(\)d\
ª®¬ d𝑠

+
𝑁−1∑︁
𝑖=0

𝐵𝑖

𝑡∫
0

1[𝑡𝑖 ;𝑡𝑖+1 [ (\)𝑦(\)d\.

Now, we take the same parameters and matrices as defined in example 2.
Then

(K𝑦) (𝑡) =
𝑡∫
0

𝐴𝑒(𝑡−𝑠)𝐴
©«
1∑︁
𝑖=0

𝐵𝑖

𝑠∫
0

1[𝑡𝑖 ;𝑡𝑖+1 [ (\)𝑦(\)d\
ª®¬ d𝑠

+
1∑︁
𝑖=0

𝐵𝑖

𝑡∫
0

1[𝑡𝑖 ;𝑡𝑖+1 [ (\)𝑦(\)d\

=

𝑡∫
0

©«
𝑠∫
0

(
𝑒𝑡−𝑠

0

)
1[𝑡0;𝑡1 [ (\)𝑦(\)d\

ª®¬ d𝑠
+

𝑡∫
0

©«
(
0
0

) 𝑠∫
0

1[𝑡1;𝑡2 [ (\)𝑦(\)d\)
ª®¬ d𝑠

+ 𝐵0
𝑡∫
0

1[𝑡0;𝑡1 [ (\)𝑦(\)d\ + 𝐵1
𝑡∫
0

1[𝑡1;𝑡2 [ (\)𝑦(\)d\

=

©«
𝑡∫
0

©«
𝑠∫
0

𝑒𝑡−𝑠1[𝑡0;𝑡1 [ (\)𝑦(\)d\
ª®¬ d𝑠

0

ª®®®¬ +
©«

𝑡∫
0

1[𝑡0;𝑡1 [ (\)𝑦(\)d\

𝑡∫
0

1[𝑡1;𝑡2 [ (\)𝑦(\)d\

ª®®®®®®®¬
.
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On the other hand we have

(K∗𝐺K𝑦) (𝑡) =
1∑︁
𝑖=0

𝐵>
𝑖 1[𝑡𝑖 ,𝑡𝑖+1 [ (𝑡)

𝑇∫
𝑡

𝑒(𝑇−𝑠)𝐴
>
𝐺 (𝐾𝑦) (𝑠)d𝑠

=
(
𝐵>
0 1[𝑡0,𝑡1 [ (𝑡) + 𝐵

>
1 1[𝑡1,𝑡2 [ (𝑡)

)
×

𝑇∫
𝑡

(
𝑒(𝑇−𝑠) 0
0 0

)
𝐺 (𝐾𝑦) (𝑠)d𝑠

=
(
1[𝑡0,𝑡1 [ (𝑡) 1[𝑡1,𝑡2 [ (𝑡)

)
×

𝑇∫
𝑡

(
𝑒(𝑇−𝑠) 0
0 0

)
𝐺 (𝐾𝑦) (𝑠)d𝑠

=

𝑇∫
𝑡

(
1[𝑡0,𝑡1 [𝑟 (𝑡)𝑒(𝑇−𝑠) 0

)
×

©«

𝑠∫
0

©«
𝑟∫
0

𝑒𝑠−𝑟1[𝑡0;𝑡1 [ (\)𝑦(\)d\
ª®¬ d𝑟

+
𝑠∫
0

1[𝑡0;𝑡1 [ (\)𝑦(\)d\

𝑠∫
0

1[𝑡1;𝑡2 [ (\)𝑦(\)d\

ª®®®®®®®®®®®®®¬
d𝑠

=

𝑇∫
𝑡

1[𝑡0,𝑡1 [ (𝑡)𝑒(𝑇−𝑠)



𝑠∫
0

©«
𝑟∫
0

𝑒𝑠−𝑟1[𝑡0;𝑡1 [ (\)𝑦(\)d\
ª®¬ d𝑟

+
𝑠∫
0

1[𝑡0;𝑡1 [ (\)𝑦(\)d\


d𝑠

and

H ∗ (𝑀H 𝑦) (\) =
𝑁−1∑︁
𝑘=0

𝐵>
𝑘 𝑒

(𝑇−\)𝐴>𝑀
©«
𝑁−1∑︁
𝑘=0

𝑡𝑘+1∫
𝑡𝑘

𝑒(𝑇−𝑠)𝐴𝐵𝑘 𝑦(𝑠)d𝑠
ª®¬

= 𝐵>
0 𝑒

(𝑇−\)𝐴>𝑀
©«
𝑁−1∑︁
𝑘=0

𝑡𝑘+1∫
𝑡𝑘

𝑒(𝑇−𝑠)𝐴𝐵𝑘 𝑦(𝑠)d𝑠
ª®¬

+ 𝐵>
1 𝑒

(𝑇−\)𝐴>𝑀
©«
𝑁−1∑︁
𝑘=0

𝑡𝑘+1∫
𝑡𝑘

𝑒(𝑇−𝑠)𝐴𝐵𝑘 𝑦(𝑠)d𝑠
ª®¬
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[cont.]
=

(
𝑒(𝑇−\) 0

) 1∑︁
𝑘=0

𝑡𝑘+1∫
𝑡𝑘

𝑒(𝑇−𝑠)𝐴𝐵𝑘 𝑦(𝑠)d𝑠

+
(
0 𝑒(𝑇−\)

) ©«
1∑︁
𝑘=0

𝑡𝑘+1∫
𝑡𝑘

𝑒(𝑇−𝑠)𝐴𝑏𝐵𝑘 𝑦(𝑠)d𝑠
ª®¬

=

1∑︁
𝑘=0

𝑡𝑘+1∫
𝑡𝑘

(
𝑒(𝑇−𝑠)+(𝑇−\) 0

)
𝐵𝑘 𝑦(𝑠)d𝑠

=

𝑡1∫
𝑡0

𝑒(𝑇−𝑠)+(𝑇−\)𝑦(𝑠)d𝑠

=

𝑡1∫
𝑡0

𝑒(2𝑇−(𝑠+\)𝑦(𝑠)d𝑠

therefore(
H ∗𝑀H +K∗𝐺K

)
(𝑦) (𝑡)

= 1[𝑡0,𝑡1 [ (𝑡)
𝑇∫
𝑡

𝑒(𝑇−𝑠)


𝑠∫
0

(
𝑟∫
0
𝑒𝑠−𝑟1[𝑡0;𝑡1 [ (\)𝑦(\)d\

)
d𝑟

+
𝑠∫
0
1[𝑡0;𝑡1 [ (\)𝑦(\)d\


d𝑠

+
𝑡1∫

𝑡0

𝑒2𝑇−(𝑠+\)𝑦(𝑠)d𝑠

= 1[𝑡0,𝑡1 [ (𝑡)
𝑇∫
𝑡

𝑒𝑇−𝑠
©«

𝑠∫
0

(𝐹𝑦) (𝑟)d𝑟 + (𝐿𝑦) (𝑠)ª®¬ d𝑠
+

𝑡1∫
𝑡0

𝑒(2𝑇−(𝑠+\)𝑦(𝑠)d𝑠

where

(𝐹𝑦) (𝑟) =
𝑟∫
0

𝑒𝑠−𝑟1[𝑡0;𝑡1 [ (\)𝑦(\)d\, ∀𝑟 ∈ [0, 𝑠] (52)
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and

(𝐿𝑦) (𝑠) =
𝑠∫
0

1[𝑡0;𝑡1 [ (\)𝑦(\)d\, ∀𝑠 ∈ [𝑡, 𝑇] (53)

Let P = K∗𝐺K +H ∗𝑀H then

P𝑦(𝑡) = 1[𝑡0,𝑡1 [ (𝑡)
𝑇∫
𝑡

𝑒𝑇−𝑠
©«

𝑠∫
0

(𝐹𝑦) (𝑟)d𝑟 + (𝐿𝑦) (𝑠)ª®¬ d𝑠
+

𝑡1∫
𝑡0

𝑒2𝑇−(𝑠+\)𝑦(𝑠)d𝑠.

Remark 5 If 𝑡 ∉ [𝑡0, 𝑡1] then we have

P(𝑦) (𝑡) =
𝑡1∫

𝑡0

𝑒(2𝑇−(𝑠+\)𝑦(𝑠)d𝑠 (54)

In this example we select 𝑅 such that

‖𝑅−1‖ = 1
2‖P‖

then the operator 𝐶 is invertible.
Thus for 𝑦 ∈ 𝐿2(0, 𝑇,R𝑚) we have

𝐶−1(𝑦) = (𝐼 + 𝑃)−1 𝑅−1(𝑦)

=

+∞∑︁
𝑘=0

𝑃𝑘𝑅−1(𝑦)

=

+∞∑︁
𝑘=0

(
𝑅−1P

) 𝑘
𝑅−1(𝑦)

=

+∞∑︁
𝑘=0

𝑅−𝑘−1P𝑘 (𝑦)

since 𝑅 ∈ R∗+. 𝐶−1(𝑦) is defined by

𝐶−1(𝑦) (𝑡) =
+∞∑︁
𝑘=0

𝑅−𝑘−1P𝑘 (𝑦) (𝑡).
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Thus

𝑢∗(𝑡) = −𝐶−1 (
𝐵>(𝑡)𝑝(𝑡)

)
=

+∞∑︁
𝑘=0

𝑅−𝑘−1P𝑘
(
𝐵>(𝑡)𝑝(𝑡)

)
.

It is easy to see that

P(𝐵>𝑝) (𝑡) = 1[𝑡0,𝑡1 [ (𝑡)
𝑇∫
𝑡

𝑒𝑇−𝑠
©«

𝑠∫
0
𝐹 (𝐵>𝑝) (𝑟)d𝑟

+𝐿 (𝐵>𝑝) (𝑠)

ª®¬ d𝑠
+ 𝑒2𝑇−\

𝑡1∫
𝑡0

𝑒−𝑠𝐵>(𝑠)𝑝(𝑠)d𝑠

where
𝐵>(𝑡)𝑝(𝑡) =

(
1 − 101𝑒𝑇−𝑡

)
1[𝑡0,𝑡1 [ (𝑡) (55)

then

𝐹
(
𝐵>𝑝

)
(𝑟) =


1
𝑒2𝑟

(
101𝑒𝑇𝑒𝑠 + 𝑟𝑒𝑟𝑒𝑠 − 101𝑒𝑇𝑒𝑟𝑒𝑠

)
, if 𝑟 ¬ 𝑡1 ,

𝑒𝑠

𝑒𝑡1
𝑒−𝑟

(
101𝑒𝑇 − 101𝑒𝑇𝑒𝑡1 + 𝑡1𝑒𝑡1

)
, if 𝑟 > 𝑡1

and

𝐿
(
𝐵>𝑝

)
(𝑠) =

{
𝑠 + 101𝑒𝑇−𝑠 − 101𝑒𝑇 , 𝑠 ¬ 𝑡1 ,
𝑡1 − 101𝑒𝑇 + 101𝑒𝑇−𝑡1 , 𝑡1 ¬ 𝑠

and
𝑡1∫

𝑡0

𝑒−𝑠𝐵>(𝑠)𝑝(𝑠)d𝑠 = 1
2𝑒2𝑡0𝑒2𝑡1

(
𝑒𝑡0 − 𝑒𝑡1

) (
101𝑒𝑇𝑒𝑡0 + 101𝑒𝑇𝑒𝑡1 − 2𝑒𝑡0𝑒𝑡1

)
.

Now, we are in a position to present our conclusion.

7. Conclusion

In this article, we focus on the exact controllability of the speed of a linear
system with localized parameters. Due to topological reasons, it turns out that the
classical Kalman theory cannot be applied to systems governed by the standard
equation: {

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡),
𝑥(0) = 𝑥0 ∈ R𝑛.
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To overcome this difficulty, we devote this paper to the controllability of the
“speed” variable for a class of systems described by

¤𝑥(𝑡) = 𝐴𝑥(𝑡) +
𝑡∫
0

𝐵(\)𝑢(\)d\, 0 ¬ 𝑡 ¬ 𝑇,

𝑥(0) = 𝑥0 ∈ R𝑛.
We have established conditions to ensure the existence of the optimal control
for transferring the speed to a desired value. In the event that these conditions
are not satisfied, we have considered a relatively weak version of the problem,
namely the optimization of a quadratic function whose objective is to minimize
the separation between the final velocity of the system and the desired velocity at
least cost.
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