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Conditions for asymptotic stability of first order
scalar differential-difference equation

with complex coefficients

Rafał KAPICAo and Radosław ZAWISKIo

We investigate a scalar characteristic exponential polynomial with complex coefficients as-
sociated with a first order scalar differential-difference equation. Our analysis provides necessary
and sufficient conditions for allocation of the roots in the complex open left half-plane what
guarantees asymptotic stability of the differential-difference equation. The conditions are ex-
pressed explicitly in terms of complex coefficients of the characteristic exponential polynomial,
what makes them easy to use in applications. We show examples including those for retarded
PDEs in an abstract formulation.

Key words: first order differential-difference equationwith complex coefficients, stability of
differential-difference equation, characteristic exponential polynomial of differential-difference
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1. Introduction

In this article we study the asymptotic stability of a scalar linear differential-
difference equation (DDE)

𝑥′(𝑡) = 𝜆𝑥(𝑡) + 𝛾𝑥(𝑡 − 𝜏), 𝑡 ­ 0, (1)
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where 𝜆, 𝛾 ∈ C and 0 < 𝜏, through the analysis of the corresponding character-
istic equation

𝑠 − 𝜆 − 𝛾 e−𝑠𝜏 = 0. (2)

This problem is frequently related to stability analysis of

𝑥′(𝑡) = 𝑓 (𝑥(𝑡), 𝑥(𝑡 − 𝜏)) , 𝑡 ­ 0, (3)

where 𝑓 : R𝑛 × R𝑛 → R𝑛 is a smooth (nonlinear) function about 𝑥0 ∈ R𝑛, via its
linearization given by

𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑥(𝑡 − 𝜏), (4)

where 𝐴 = 𝐽1 𝑓 (𝑥0, 𝑥0) and 𝐵 = 𝐽2 𝑓 (𝑥0, 𝑥0) are partial Jacobian matrices of 𝑓 at
(𝑥0, 𝑥0). To be more precise we use the following:

Definition 1 An equilibrium solution 𝑥∗(𝑡) ≡ 𝑥0 ∈ R𝑛 of (3) is exponentially
stable if there exist 𝑀,𝜔, 𝛿 > 0 such that ‖𝑥(𝑡) − 𝑥0‖ ¬ 𝑀 e−𝜔𝑡 (𝑡 ­ 0) holds for
every solution 𝑥 of (3) satisfying an initial condition ‖𝑥(𝑡)−𝑥0‖ < 𝛿 (𝑡 ∈ [−𝜏, 0])
with the Euclidean norm ‖ · ‖.

By the principle of linearized stability [5] for the case at hand we have [10]

Fact 1 Let the linearization of (3) about an equilibrium solution 𝑥∗(𝑡) ≡ 𝑥0 be
expressed by (4) and let the corresponding characteristic equation be given by

det [𝑠𝐼 − 𝐴 − 𝐵 e−𝑠𝜏] = 0. (5)

Then the following statements hold:

(i) 𝑥∗ is exponentially stable if Re 𝑠 < 0 for all characteristic roots 𝑠 of (5),

(ii) 𝑥∗ is unstable if Re 𝑠 > 0 for some characteristic root 𝑠 of (5).

Our motivation to investigate (1) with complex coefficients comes from the fol-
lowing infinite-dimensional setting. Consider (4) on a Hilbert space 𝑋 where
𝐴 is a diagonal generator of a strongly continuous semigroup and 𝐵 is a linear
diagonal operator on 𝑋 (see Example 5.4 below, [7] or [13]). Then (1) describes
dynamics of (4) about a single coordinate (sometimes referred to as a mode) that
corresponds to a given eigenvalue 𝜆 of 𝐴. As in infinite dimensions surprisingly
many dynamical systems are represented by diagonal generators [15], we thus
want to describe the behavior of the whole infinite-dimensional system based on
some form of “component-wise addition” of infinitely many modes. Such ap-
proach requires a readily usable condition for determining stability of each mode,
and it is this condition that we strive for in this article.
In a finite-dimensional setting and under appropriate, though restrictive con-

ditions, for example if 𝐴 and 𝐵 in (4) commute – see [9] or [14] – the problem of
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asymptotic stability of (3) is equivalent to finding conditions on the coefficients
of (1) which will guarantee that every root 𝑠 of (2) is such that Re(𝑠) < 0. Note
that in this setting coefficients 𝜆 and 𝛾 in (2) are again eigenvalues of 𝐴 and 𝐵,
respectively. It is, however, something rather special, even in finite-dimensions,
that linearization of (3) produces commuting 𝐴 and 𝐵.
In the remaining part whenever mentioning stability we refer to a situation

when all the roots of (2) have negative real parts. The literature contains two
intertwined approaches to stability problem – one based on analysis of some form
of (4) in time domain and one based on analysis of (5). In the latter approach
the case with 𝜆, 𝛾 ∈ R is well understood – see [6], where the author obtained
necessary and sufficient conditions for stability of 𝑠− 𝑎− 𝑐 e−𝑠 = 0 with 𝑎, 𝑐 ∈ R.
In a more general form 𝐴(𝑠)+𝐵(𝑠) e−𝑠𝜏 = 0, with 𝐴(𝑠) and 𝐵(𝑠) real polynomials
see [12] and references therein. For a thorough exposition of other methods of
analysis of the real 𝜆 and 𝛾 case see [18] and references therein.
The case 𝜆, 𝛾 ∈ C is less analyzed. In particular, some sufficiency results

can be found in [1], where the author presents a numerical analysis of (1) and
stipulates asymptotic stability for every 𝜏 > 0 if −Re𝜆 > |𝛾 |. The authors
of [3] present, based on algorithmic criteria, some sufficiency result for specific
values of complex 𝜆 and 𝛾, proving also the result in [1] for some cases. Au-
thors of [17] built on [3] and provide additional sufficient conditions for stability.
In [8] the author uses a continuous dependence of the roots of (1) on 𝜏 and
manages to obtain stability conditions for some values of 𝜆 ∈ R and 𝛾 ∈ C.
Recently in [10] the author provides necessary and sufficient conditions for the
zeros of (2) to be in the left complex half-plane. The argument there is based
on analysis of the Lambert 𝑊 function, what complicates applications of ob-
tained conditions to an infinite set of equations of type (2). In particular, the
condition from [10, Theorem 1.2] uses a nested trigonometric functions of Im𝜆

and Arg 𝛾, what makes it hard to visualize a coefficients-plane region that en-
sures stability of a single equation, and is even more difficult for a series of such
equations.
To the best of authors’ knowledge [11] is the first work providing necessary

and sufficient conditions for stability of (2) for 𝜆, 𝛾 ∈ C and 𝜏 = 1. Results of [11]
are, however, based on specific analysis of roots of (2) which is uneasy to trace
for different values of 𝜏, even after change of parameters 𝑎 ↦→ 𝑎𝜏 and 𝜂 ↦→ 𝜂𝜏

(see (12) below). This may explain why, although it precedes many of the works
mentioned above, [11] did not receive much recognition.
Our approach here combines analysis of roots placement depending on 𝜏,

as shown in [12, Proposition 6.2.3], with arguments of algebraic nature in the
complex plane. This allowed us to obtain necessary and sufficient conditions
for stability of (2) based explicitly on a relation between 𝜆, 𝛾 ∈ C and 𝜏 > 0.
The conditions do not require to calculate any specific roots of a transcendental
equation and allow to visualize how the “stability” region changeswith parameters
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in the coefficients-plane. Thus, we not only provide a different formulation of
stability conditions, but our results are based on a new, different proof.

2. Preliminaries

The following observation, which can be found e.g. in [3] or [11], is crucial
to simplify the problem of analysis of (1).

Lemma 1 Let 𝑎, 𝑏, 𝑐, 𝑑, 𝜏 ∈ R and let {𝑠0} be the set of roots of

𝑠 − (𝑎 + 𝑖𝑏) − (𝑐 + 𝑖𝑑) e−𝑠𝜏 = 0 (6)

and {𝑧0} be the set of roots of

𝑧 − 𝑎 − e−𝑖𝑏𝜏 (𝑐 + 𝑖𝑑) e−𝑧𝜏 = 0. (7)

Then Re(𝑠0) < 0 for all 𝑠0 if and only if Re(𝑧0) < 0 for all 𝑧0.

Proof. Let 𝑧0 be a root of (7). Then 𝑠0 = 𝑧0 + 𝑖𝑏 is a root of (6). Conversely, let
𝑠0 be a root of (6). Then 𝑧0 = 𝑠0 − 𝑖𝑏 is a root of (7). As Re(𝑠0) = Re(𝑧0) the
result follows. 2

Remark 1 It is worth to mention that a similar, yet different simplification is
possible. In [2] the author’s approach is based on a version of Lemma 1 where
the non-delayed coefficient in (7) is complex and the one corresponding to the
delay is real. In our approach, however, the current version of Lemma 1 is more
convenient.

We will also use the following result concerning parameter 𝛽 ∈ R and real
functions:

𝐿, 𝑅 : [0,∞) → R, 𝐿(𝑟) := 𝑟

𝑟2 + 1
, 𝑅(𝑟) := arctan(𝑟) + 𝛽. (8)

Lemma 2 Let 𝛽 ∈ R and put:

𝐴 = {𝑟 ∈ [0,∞) : 𝐿 (𝑟) ¬ 𝑅(𝑟)},

where real functions 𝐿 and 𝑅 are given by (8). Then:

(i) 𝐴 = [0,∞) if and only if 𝛽 ­ 0,

(ii) 𝐴 = [𝑟0,∞) with 𝑟0 > 0 if and only if 𝛽 ∈
(
− 𝜋
2 , 0

)
, wherein the correspon-

dence (0,∞) 3 𝑟0 ←→ 𝛽 ∈
(
− 𝜋
2 , 0

)
is one-to-one,

(iii) set 𝐴 is empty if and only if 𝛽 ¬ − 𝜋
2 .



CONDITIONS FOR ASYMPTOTIC STABILITY OF FIRST ORDER SCALAR
DIFFERENTIAL-DIFFERENCE EQUATION WITH COMPLEX COEFFICIENTS 611

Proof. Let us consider function 𝜑 : [0,∞) → R given by 𝜑 = 𝑅 − 𝐿. Clearly, we
have

𝜑′(𝑟) = 2𝑟2

(𝑟2 + 1)2
> 0, 𝜑(0) = 𝛽, 𝜑(𝑟) −→ 𝛽 + 𝜋

2
as r→∞.

In particular 𝜑 is increasing and 𝜑( [0,∞)) =
[
𝛽, 𝛽 + 𝜋

2
)
.

If 𝛽 ­ 0, then 𝜑(𝑟) ­ 0 for 𝑟 ∈ [0,∞), i.e. 𝐴 = [0,∞). On the other hand if
𝐿 (0) ¬ 𝑅(0), then 𝛽 ­ 0. This gives assertion (i).
Suppose 𝛽 ∈

(
− 𝜋
2 , 0

)
. Hence 𝜑(0) < 0 and 𝜑(𝑟) > 0 for large enough

𝑟 > 0. Then there exists a unique 𝑟0 > 0 such that 𝜑(𝑟0) = 0. This shows that
𝐴 = [𝑟0,∞). If now 𝐴 = [𝑟0,∞) for some 𝑟0 > 0, then 𝛽 < 0 by (i). To finish the
proof, it is enough to notice that for 𝛽 ¬

𝜋

2
we have 𝜑(𝑟) < 0 for 𝑟 ∈ [0,∞), i.e.

𝐴 = Ø. 2

Corollary 1 Equation 𝐿 (𝑟) = 𝑅(𝑟) has exactly one solution if and only if 𝛽 ∈(
− 𝜋
2 , 0

]
.

We also make use of the following half-planes:

C+ :={𝑠 ∈ C : Re(𝑠) > 0}, C− := {𝑠 ∈ C : Re(𝑠) < 0},
Π+ :={𝑠 ∈ C : Im(𝑠) > 0}, Π− := {𝑠 ∈ C : Im(𝑠) < 0}.

3. Main results

By Lemma 1 we restrict our attention to (7). Taking 𝜂 = 𝑢 + 𝑖𝑣 = e−𝑖𝑏𝜏 (𝑐 + 𝑖𝑑)
the conditions for stability of (2) are given on an (𝑢, 𝑖𝑣)-complex plane in terms
of regions that depend on 𝑎 and 𝜏.

Remark 2 We take the principal argument of 𝜆 to be Arg𝜆 ∈ (−𝜋, 𝜋].

Let D𝑟 ⊂ C be an open disc centered at 0 with radius 𝑟 > 0. We shall require the
following subset of the complex plane, depending on 𝜏 > 0 and 𝑎 ∈

(
−∞, 1

𝜏

]
,

namely: Λ𝜏,𝑎

• for 𝑎 < 0:

Λ𝜏,𝑎 :=
{
𝜂 ∈ C \ D|𝑎 | : Re 𝜂 + 𝑎 < 0, |𝜂 | < |𝜂𝜋 |,

|Arg 𝜂 | > 𝜏

√︃
|𝜂 |2 − 𝑎2 + arctan

(
−1
𝑎

√︃
|𝜂 |2 − 𝑎2

) }
∪ D|𝑎 |, (9)
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where 𝜂𝜋 is such that√︃
|𝜂𝜋 |2 − 𝑎2𝜏 + arctan

(
− 1
𝑎

√︃
|𝜂𝜋 |2 − 𝑎2

)
= 𝜋;

• for 𝑎 = 0:

Λ𝜏,𝑎 :=
{
𝜂 ∈ C \ {0} : Re 𝜂 < 0, |𝜂 | < 𝜋

2𝜏
, |Arg 𝜂 | > 𝜏 |𝜂 | + 𝜋

2

}
; (10)

• for 0 < 𝑎 ¬ 1
𝜏

Λ𝜏,𝑎 :=
{
𝜂 ∈ C : Re 𝜂 + 𝑎 < 0, |𝜂 | < |𝜂𝜋 |,

|Arg 𝜂 | > 𝜏

√︃
|𝜂 |2 − 𝑎2 + arctan

(
− 1
𝑎

√︃
|𝜂 |2 − 𝑎2

)
+ 𝜋

}
, (11)

where 𝜂𝜋 is such that |𝜂𝜋 | > 𝑎 and√︃
|𝜂𝜋 |2 − 𝑎2𝜏 + arctan

(
− 1
𝑎

√︃
|𝜂𝜋 |2 − 𝑎2

)
= 0.

Figures 1, 2 and 3 show Λ𝜏,𝑎 for fixed values of 𝑎 and varying 𝜏, while Figure 4
shows Λ𝜏,𝑎 for fixed 𝜏 and varying 𝑎.
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Figure 1: Outer boundaries of the Λ𝜏,𝑎,
defined in (9) with 𝜂 = 𝑢 + 𝑖𝑣, for 𝑎 =

−1.5 and different values of 𝜏: dotted for
𝜏 = 0.5, dash-dotted for 𝜏 = 1, dashed for
𝜏 = 2. The solid line shows a circle with
radius |𝑎 | = 1.5
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Figure 2: Outer boundaries of the Λ𝜏,𝑎,
defined in (10) with 𝜂 = 𝑢 + 𝑖𝑣, for 𝑎 = 0
and different values of 𝜏: dotted for 𝜏 =

0.5, dash-dotted for 𝜏 = 1, dashed for
𝜏 = 2
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Figure 3: Outer boundaries of the Λ𝜏,𝑎,
defined in (11) with 𝜂 = 𝑢 + 𝑖𝑣, for 𝑎 =

0.25 and different values of 𝜏: dotted for
𝜏 = 0.5, dash-dotted for 𝜏 = 1, dashed for
𝜏 = 2
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Figure 4: Outer boundaries of Λ𝜏,𝑎, de-
fined in (9)–(11) with 𝜂 = 𝑢 + 𝑖𝑣, for
𝜏 = 1 and different values of 𝑎: solid
for 𝑎 = −1.5, dashed for 𝑎 = 0 and dotted
for 𝑎 = 0.25

The zeros of (2) are in the left half plane C−, according to Lemma 1, if and
only if the roots of (7) belong toC−. Thus for 𝜆 = 𝑎+𝑖𝑏, 𝛾 = 𝑐+𝑖𝑑 and 𝜂 := e−𝑖𝑏𝜏 𝛾
we have the following

Theorem 1 Let 𝜏 > 0, 𝑎 ∈ R and 𝜂 ∈ C. Then every solution of the equation

𝑠 − 𝑎 − 𝜂 e−𝑠𝜏 = 0 (12)

belongs to C \ C+ if and only if 𝑎 ¬ 1
𝜏

and 𝜂 belongs to the closure of Λ𝜏,𝑎 given
by (9), (10) or (11).

As above stated, Theorem 1 gives a necessary and sufficient condition for zeros of
(12) to not be inC+. Although this is aweaker result than (asymptotic) stability, we
formulated Theorem 1 in this way as it reflexes our approach to the problem and
makes its (already long) proof more approachable. The immediately following
Corollary 2 gives the necessary and sufficient condition of the zeros of (12) to be
in C− i.e. asymptotic stability of (2).
The proof of Theorem 1 is composed of three parts. Part I contains points

2–5 and describes how infinitely many zeros of (2) move in the complex plane
with changing the delay 𝜏, until for some 𝜏0 they reach the imaginary axis i.e. a
boundary line in stability analysis. Part II contains points 6–15 and shows how
the relations between parameters of (2) for the boundary case can be used to
determine stability regions in the parameter-plane. This is done with: 𝜏 = 𝜏0,
particular values of 𝑎 and varying 𝜂. Part III is composed of point 16 and shows
the sufficiency of necessity results established in the previous parts.
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Proof. [Proof of Theorem 1]

1. Denote the closure of Λ𝜏,𝑎 by Λ𝜏,𝑎. For any 𝜏 > 0 and 𝑎 ¬ 0 there is 0 ∈ Λ𝜏,𝑎

and taking 𝜂 = 0 the statement of the proposition obviously holds true, while
for 0 < 𝑎 ¬ 1

𝜏
we have 0 ∉ Λ𝜏,𝑎. Thus, for the remainder of the proof assume

that 𝜂 ≠ 0.
Part I

2. It is known that for 𝜏 > 0 equation (12) has infinitely many solutions.
By the Rouché’s theorem (see e.g. [18, Prop.1.14]) solutions of (12) vary
continuously with 𝜏, except at 𝜏 = 0 where only one remains. Let 𝜂 = 𝑢 + 𝑖𝑣
and let 𝑠 = 𝑥 + 𝑖𝑦. In the limit as 𝜏 → 0 in (12) we obtain

𝑥 = 𝑎 + 𝑢, 𝑦 = 𝑣,

and the solutions start in C \ C+ i.e. with 𝑥 ¬ 0 if and only if 𝑎 + 𝑢 ¬ 0.
Let us establish when at least one of the solutions crosses the imaginary axis
for the first time as 𝜏 increases from zero upwards. At the crossing of the
imaginary axis there is 𝑠 = 𝑖𝜔 for some 𝜔 ∈ R. In view of (12) we can treat 𝑠
as an implicit function of 𝜏 and check the direction in which zeros of it cross
the imaginary axis by analyzing the sgnRe 𝑑𝑠

𝑑𝜏
if 𝑠 = 𝑖𝜔. By calculating the

implicit function derivative we have:

𝑑𝑠

𝑑𝜏
= − 𝑠2 − 𝑎𝑠
1 − 𝑎𝜏 + 𝑠𝜏 .

As sgnRe 𝑧 = sgnRe 𝑧−1 we have if 𝑠 = 𝑖𝜔 that

sgnRe
𝑑𝑠

𝑑𝜏
= sgn

1
𝜔2 + 𝑎2

> 0

and the zeros cross from the left to the right half-plane. As the sign of the
above does not depend on 𝜏, the direction of the crossing remains the same
for every value of 𝜏. Thus with 𝜂 = 𝑢 + 𝑖𝑣 a necessary condition for the
solutions of (12) to be in C \ C+ is

𝑎 + 𝑢 ¬ 0. (13)

3. Consider again (12) with fixed 𝜏 > 0 and 𝑎 ∈ R and take such 𝜂 ∈ C that
(13) holds. Let us focus on the crossing point i.e. let 𝑠 = 𝑖𝜔 for some 𝜔 ∈ R.
Taking the complex conjugate of (12) at the crossing we obtain

− 𝑖𝜔 − 𝑎 − 𝜂 e𝑖𝜔𝜏 = 0. (14)
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Using now (12) for 𝑠 = 𝑖𝜔 and (14) to eliminate the exponential part we have
𝜔2 = |𝜂 |2 − 𝑎2. From here we see that for a given 𝑎 ∈ R and every 𝜂 = 𝑢 + 𝑖𝑣
satisfying both, (13) and |𝜂 | < |𝑎 |, the crossing does not exist, regardless of
𝜏, and all the solutions of (12) are in C−. Note, that all the solutions of (12)
are in C− also when the inequality in (13) is sharp and |𝜂 | ¬ |𝑎 |.

4. Let us focus on the case when the first crossing happens. To that end consider
(12), fix 𝑎 ∈ R and take 𝜂 such that (13) and

|𝜂 | ­ |𝑎 | (15)

hold. By point 2 as 𝜏 increases the roots of (12) move continuously to
the right. Denote by 𝜏0 the smallest 𝜏 for which the crossing happens. By
assumptions we know that such 𝜏0 exists. By point 3 the crossing takes place
at 𝑠 = ±𝑖

√︁
|𝜂 |2 − 𝑎2. Putting 𝑠 = 𝑖

√︁
|𝜂 |2 − 𝑎2 into (12) with 𝜏 = 𝜏0 gives

𝜂 = −𝑎 e𝑖
√
|𝜂 |2−𝑎2𝜏0 +

√︃
|𝜂 |2 − 𝑎2 e𝑖( 𝜋2 +

√
|𝜂 |2−𝑎2𝜏0)

= e𝑖
√
|𝜂 |2−𝑎2𝜏0

(
−𝑎 + 𝑖

√︃
|𝜂 |2 − 𝑎2

)
. (16)

Putting 𝑠 = −𝑖
√︁
|𝜂 |2 − 𝑎2 into (12) gives an equation corresponding to (16),

namely

𝜂 = e−𝑖
√
|𝜂 |2−𝑎2𝜏0

(
−𝑎 − 𝑖

√︃
|𝜂 |2 − 𝑎2

)
. (17)

Equations (16) and (17) show the relation between all coefficients (or param-
eters) of (12) in the boundary case of transition between asymptotic stability
and instability. Thus we focus on the triple (𝜏0, 𝑎, 𝜂) and how changes within
it influence stability of

𝑠 − 𝑎 − 𝜂 e−𝑠𝜏0 = 0. (18)
By point 2, for 𝑎 and 𝜂 as in (16) and with every 𝜏 > 𝜏0 equation (18) is
unstable, while for 𝜏 < 𝜏0 it is stable. And so, while keeping 𝜏0 and 𝑎 fixed,
we turn our attention to varying 𝜂.

5. Let 𝜂 be a solution of (16). Then 𝜂 is a solution of (17) and these solutions
are obviously symmetric about the real axis. It will be more convenient to
use different notation that the one in (16) or (17). Define 𝛾+ : [|𝑎 |,∞) → C
and 𝛾− : [|𝑎 |,∞) → C as the right side of (16) and (17), respectively, i.e.

𝛾+(𝑤) := e𝑖
√
𝑤2−𝑎2𝜏0

(
−𝑎 + 𝑖

√︁
𝑤2 − 𝑎2

)
, (19)

𝛾−(𝑤) := e−𝑖
√
𝑤2−𝑎2𝜏0

(
−𝑎 − 𝑖

√︁
𝑤2 − 𝑎2

)
. (20)
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Let Γ+ := 𝛾+( [|𝑎 |,∞)) be the image of (19) and Γ− := 𝛾−( [|𝑎 |,∞)) be the
image of (20). We easily see that 𝛾+(𝑤) = 𝛾−(𝑤) for every 𝑤 ­ |𝑎 | and so
Γ+ is symmetric to Γ− about the real axis.
Up to this moment all considerations in points 2–5 were done regardless of
the sign of parameter 𝑎. In the reminder of the proof, along with (13) and
(15), we will consider additional assumptions on 𝑎, namely 𝑎 < 0, 𝑎 = 0,
𝑎 ∈

(
0, 1

𝜏0

]
and 𝑎 > 1

𝜏0
.

Part II

6. Assume additionally that 𝑎 < 0 and let a function describing a continuous
argument increment of (19) be given by Δ𝛾+ : [|𝑎 |,∞) → [0,∞),

Δ𝛾+(𝑤) =
√︁
𝑤2 − 𝑎2𝜏0 + arctan

(
− 1
𝑎

√︁
𝑤2 − 𝑎2

)
. (21)

We easily see that it is a strictly increasing, non-negative function. We also
define Δ𝛾− : [|𝑎 |,∞) → (−∞, 0] and Δ𝛾−(𝑤) = −Δ𝛾+(𝑤) for every 𝑤 ∈
[|𝑎 |,∞).
Looking at (19) note that the first component has modulus 1 and introduces
counter-clockwise rotation, while the second component is always in the first
quadrant, with a positive real part equal to −𝑎, and its modulus is strictly
increasing and tends to infinity as 𝑤 → ∞. Thus Γ+ is a curve that is a
counter-clockwise outward spiral that begins in −𝑎 ∈ C. An exemplary pair
of Γ+ and Γ− curves is shown in Fig. 5.

7. Let a set {𝜂(2𝑘−1)𝜋}𝑘∈N be such that the argument increment along Γ+ as 𝑤
changes from |𝑎 | to |𝜂(2𝑘−1)𝜋 | is equal to (2𝑘 − 1)𝜋, that is

Δ𝛾+
(
|𝜂(2𝑘−1)𝜋 |

)
= (2𝑘 − 1)𝜋. (22)

Due to constraint (13) we take into account only these parts of Γ+ (or Γ−)
that lie to the left of 𝑢 = −𝑎 line, as depicted in Figs. 5 and 6. Let us now
focus on the closure of the first part of Γ+ that lies in Π+ i.e. 𝛾+( [ |𝑎 |, |𝜂𝜋 | ]).
By (21) and (22) for every 𝑤 ∈ [| 𝑎 |, |𝜂𝜋 | ] we have Δ𝛾+(𝑤) ∈ [0, 𝜋]. For
the case of the part of Γ− equal to 𝛾−( [ |𝑎 |, |𝜂𝜋 | ]) the argument expression
gives Δ𝛾−(𝑤) = −Δ𝛾+(𝑤). Expressing both cases with one equation, with
the notation of (16) and (17), we arrive at

|Arg 𝜂 | =
√︃
|𝜂 |2 − 𝑎2𝜏0 + arctan

(
− 1
𝑎

√︃
|𝜂 |2 − 𝑎2

)
, |𝜂 | ¬ |𝜂𝜋 |, (23)

where 𝜂𝜋 is such that:

Δ𝛾+( |𝜂𝜋 |) =
√︃
|𝜂𝜋 |2 − 𝑎2𝜏0 + arctan

(
− 1
𝑎

√︃
|𝜂𝜋 |2 − 𝑎2

)
= 𝜋.
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Figure 5: Curves Γ+ (solid line) and Γ− (dash-
dotted line) drawn for 𝜏0 = 1 and 𝑎 = −1.5
with |𝜂 | = 𝑤 ∈ (|𝑎 |, 10). The constraint re-
lated to 𝑎 and expressed by (13) is marked
with a dotted line. The crossings of the real
negative semi-axis by Γ+ (and Γ−) are at 𝜂𝜋

and 𝜂3𝜋 . The crossings of 𝑢 = −𝑎 by Γ+, as
𝑤 increases, are at 𝜂1, 𝜂2 and 𝜂3
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Figure 6: Enlargement of the central
part of Fig. 5 with 𝛾+( [|𝑎 |, |𝜂𝜋 |]) ∪
𝛾−( [|𝑎 |, |𝜂𝜋 |]) with two cases 𝐷 ′𝜂0
(solid line) and 𝐷 ′′𝜂0 (dashed line).
Note that 𝐷 ′′𝜂0 is bounded due to (13)

8. The set of all 𝜂 ∈ C that satisfy (23) is the boundary of the Λ𝜏0,𝑎 region – see
Fig. 1 for its shape. To show that for every 𝜂 ∈ Λ𝜏0,𝑎 \ {𝜂 ∈ C : |𝜂 | ¬ |𝑎 |} the
roots of (18) are inC\C+ consider the following. For every 𝜂 in the half-plane
{𝑢 + 𝑖𝑣 ∈ C : 𝑎 + 𝑢 < 0} simple geometric considerations show that there
exists exactly one 𝜂0 fulfilling (23) and such that Arg 𝜂 = Arg 𝜂0. Conversely,
let us fix 𝜂0 fulfilling (23) and consider a function 𝜏 = 𝜏( |𝜂 |) defined on a
ray from the origin and passing through 𝜂0. More precisely, define:

𝐷𝜂0 := {𝜂 = 𝑢 + 𝑖𝑣 ∈ C : |𝜂 | > |𝑎 | and 𝑎 + 𝑢 < 0 and Arg 𝜂 = Arg 𝜂0}

and let 𝐷𝑡
𝜂0
:= {𝑡 ­ 0: 𝑡 = |𝜂 |, 𝜂 ∈ 𝐷𝜂0}. Now reformulate the equality in

(23) to express 𝜏 as a function 𝜏 : 𝐷𝑡
𝜂0
→ (0,∞),

𝜏(𝑡) =
arctan

(
1
𝑎

√
𝑡2 − 𝑎2

)
+ |Arg 𝜂0 |

√
𝑡2 − 𝑎2

. (24)
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This is a well-defined positive continuous function. Indeed, for positivity
note that for 𝑢 ¬ 0 there is |Arg 𝜂0 | ­ 𝜋

2 , while for 𝑢 ∈ (0,−𝑎) consider the
following trigonometric identity

arctan
(
1
𝑎

√︁
𝑡2 − 𝑎2

)
+ |Arg 𝜂0 | = arctan

(
1
𝑎

√︁
𝑡2 − 𝑎2

)
+ arctan

(���𝑣
𝑢

���)
= arctan

©­­«
𝑢

𝑎

√
𝑡2 − 𝑎2 + |𝑣 |

𝑢 − 1
𝑎

√
𝑡2 − 𝑎2 |𝑣 |

ª®®¬
and the estimation

𝑢

𝑎

√
𝑡2 − 𝑎2 > −

√
𝑢2 + 𝑣2 − 𝑎2 > −|𝑣 |. The derivative of

(24) is given by
d𝜏
d𝑡
(𝑡) = 𝑡

𝑡2 − 𝑎2

(
𝑎

𝑡2
− 𝜏(𝑡)

)
. (25)

As 𝑎 < 0 we have 𝑑𝜏
𝑑𝑡

< 0 for every 𝑡 ∈ 𝐷𝑡
𝜂0
and 𝜏 is a decreasing function.

Thus for every 𝜂 ∈ 𝐷𝜂0 such that |𝜂 | ¬ |𝜂0 | we have 𝜏( |𝜂 |) ­ 𝜏( |𝜂0 |) = 𝜏0,
that is

|Arg 𝜂 | ­
√︃
|𝜂 |2 − 𝑎2𝜏0 − arctan

(
1
𝑎

√︃
|𝜂 |2 − 𝑎2

)
, |𝜂 | ¬ |𝜂𝜋 |. (26)

As the above is true for every 𝜂0 fulfilling (23), condition (26) is true for every
𝜂 ∈ Λ𝜏0,𝑎 \ {𝜂 ∈ C : |𝜂 | < |𝑎 |}. Using now strict monotonicity of function 𝜏
in (24) we see that for a given 𝜂′ ∈ Λ𝜏0,𝑎 \{𝜂 ∈ C : |𝜂 | < |𝑎 |} the delay time 𝜏′
allowed by this 𝜂′ to be such that the first root of (18) reaches the imaginary
axis is greater than 𝜏0. This also gives that 𝜏′ > 𝜏0 implies Λ𝜏′,𝑎 ⊂ Λ𝜏0,𝑎, as
shown in Fig. 1.

9. Results of the previous point show that the only parts ofΓ+ andΓ− thatwe need
to consider are the ones already discussed i.e. 𝛾+( [|𝑎 |, |𝜂𝜋 |])∪𝛾−( [|𝑎 |, |𝜂𝜋 |]).
Indeed, let 𝜂𝑘 , 𝑘 = 1, 2, . . . be consecutive points where Γ+ crosses the
constraint line 𝑢 = −𝑎, as depicted in Figs. 5 and 6. Then for every

𝜂+ ∈ 𝛾+( |𝜂𝜋 |, |𝜂1 |) ∪ 𝛾+( [|𝜂2𝑘 |, |𝜂(2𝑘+1) |]), 𝑘 ∈ N

there exists
𝜂0 ∈ 𝛾+( [|𝑎 |, |𝜂𝜋 |]) ∪ 𝛾−( [|𝑎 |, |𝜂𝜋 |])

such that:
Arg 𝜂0 = Arg 𝜂+ and |𝜂0 | < |𝜂+ |.
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The result of point 8 now gives a contradiction as 𝜏0 cannot be the smallest
delay for which the first crossing happens. In fact, although (16) still describes
(18) with a root corresponding to 𝜂+ at the imaginary axis, at least one root
of (18) – the one corresponding to 𝜂0 – is already in C+. The same argument
holds for Γ−.

10. It is easy to see that for |𝜂 | = |𝑎 | estimation (26) is true and the closed disc
{𝜂 ∈ C : |𝜂 | ¬ |𝑎 |} ⊂ Λ𝜏0,𝑎. Taking into account that for the interior of this
disc the roots of (18) are in C− (see point 3), we reach the necessity of the
condition 𝜂 ∈ Λ𝜏0,𝑎 for 𝑎 < 0.

11. Let now 𝑎 = 0 and let 𝜏0 > 0 be as before (considerations in points 1 and 2
remain the same). The crossing takes place at 𝑠 = ±𝑖 |𝜂 |. Equation

|Arg 𝜂 | = |𝜂 |𝜏0 +
𝜋

2
(27)

comes now directly from (16). The analysis of points 5–9 simplifies greatly
resulting in a necessity condition of the form:

|Arg 𝜂 | ­ |𝜂 |𝜏0 +
𝜋

2
, |𝜂 | < 𝜋

2𝜏0
. (28)

12. Assume now 0 < 𝑎. Equations (19) and (20) have the same form. The
difference now is that the second product term in (19) is constantly in the
second quadrant, with a negative real part −𝑎 and imaginary part tending to
+∞ as 𝑤 → ∞. This changes e.g. the behavior of the continuous argument
increment function Δ𝛾+, as it is in general no longer strictly increasing.
In fact for 0 < 𝑎 we have Δ𝛾+ : [𝑎,∞) → [0,∞),

Δ𝛾+(𝑤) =
√︁
𝑤2 − 𝑎2𝜏0 + arctan

(
−1
𝑎

√︁
𝑤2 − 𝑎2

)
+ 𝜋 (29)

and Δ𝛾− : [𝑎,∞) → [0,∞), Δ𝛾−(𝑤) = −Δ𝛾+(𝑤) for every 𝑤 ­ 𝑎. As (29)
is a differentiable function its derivative is

𝑑Δ𝛾+
𝑑𝑤
(𝑤) = 𝑤

√
𝑤2 − 𝑎2

(
𝜏0 −

𝑎

𝑤2

)
. (30)

We have

𝑑Δ𝛾+
𝑑𝑤
(𝑤) < 0 if and only if 𝑤 < 𝑤𝑚 :=

√︂
𝑎

𝜏0
, (31)
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Taking into account the domain of (29) i.e. 𝑎 ¬ 𝑤, we see that for 𝑎 ∈ (0, 1
𝜏0
)

function Δ𝛾+ is firstly decreasing, reaching a local minimum Δ𝛾+(𝑤𝑚) >
𝜋

2
,

and then it is increasing to infinity. For 𝑎 >
1
𝜏0
function Δ𝛾+ is increasing.

These two cases are analyzed separately.

13. Fix 0 < 𝑎 ¬
1
𝜏0
. Similarly as in points 7 and 8 we focus initially on a part of

Γ+ given by 𝛾+( [𝑎, 𝜂𝜋]), as indicated in Fig. 7. Take 𝜂1 that fulfils (19) and
with |𝜂1 | = 𝑤1 < 𝑤𝑚. For such 𝜂1 we have

Δ𝛾+(𝑤𝑚) < Arg 𝜂1 = Δ𝛾+(𝑤1) ¬ 𝜋.

Define a ray from the origin and passing through 𝜂1 by

𝐷𝜂1 := {𝜂 = 𝑢 + 𝑖𝑣 ∈ C : |𝜂 | > |𝑎 | and 𝑎 + 𝑢 < 0 and Arg 𝜂 = Δ𝛾+(𝑤1)}
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Figure 7: (a) Curves Γ+ (solid line) and Γ− (dash-dotted line) drawn for 𝜏0 = 1 and
𝑎 = 0.25 with 𝑤 ∈ (|𝑎 |, 10). The constraint related to 𝑎 and expressed by (13) is marked
with a dotted line. The first crossings of the real negative semi-axis by Γ+ (and Γ−) is at
𝜂𝜋 . Auxiliary rays 𝐷𝜂𝑚 and 𝐷𝜂0 are indicated in solid and dashed lines, respectively;
(b) enlargement of the central part of (a) with 𝛾+( [|𝑎 |, |𝜂𝜋 |]) ∪ 𝛾−( [|𝑎 |, |𝜂𝜋 |]) with 𝐷𝜂1

(solid line) and 𝐷𝜂0 (dashed line), |𝜂1 | = 𝑤1, |𝜂2 | = 𝑤2. The ray 𝐷𝜂0 is based on 𝜂0
such that Arg 𝜂0 < Δ𝛾+(𝑤𝑚); point 𝜂𝑚 = 𝛾+(𝑤𝑚) is indicated with an arrow and a star ∗
symbol, Arg 𝜂𝑚 = Arg 𝜂∗𝑚
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and let 𝐷𝑡
𝜂1
:= {𝑡 ­ 0: 𝑡 = |𝜂 |, 𝜂 ∈ 𝐷𝜂1}. To express 𝜏 as a function on this

ray, i.e. 𝜏 : 𝐷𝑡
𝜂1
→ (0,∞) we now reformulate (29) to obtain:

𝜏(𝑡) :=
arctan

(
1
𝑎

√
𝑡2 − 𝑎2

)
+ Δ𝛾+(𝑤1) − 𝜋

√
𝑡2 − 𝑎2

, (32)

where Δ𝛾+(𝑤1) = Arg 𝜂1. Note also that as 𝑤1 < 𝑤𝑚 there exists 𝜂2, with
|𝜂2 | = 𝑤2, such that 𝜂2 ∈ 𝐷𝜂1 ∩ 𝛾+( [𝑎, 𝜂𝜋]) and 𝑤𝑚 < 𝑤2 ¬ |𝜂𝜋 |.
The derivative of (32) is again expressed by (25), namely:

𝑑𝜏

𝑑𝑡
(𝑡) = 𝑡

𝑡2 − 𝑎2

(
𝑎

𝑡2
− 𝜏(𝑡)

)
,

but, unlike in point 8, this derivative is in general not negative due to 𝑎 > 0.
In fact, at the intersections {𝜂1, 𝜂2} = 𝐷𝜂1 ∩ 𝛾+( [𝑎, 𝜂𝜋]) we find

𝑑𝜏

𝑑𝑡
(𝑤1) =

𝑤1

𝑤21 − 𝑎2

(
𝑎

𝑤21
− 𝜏(𝑤1)

)
=

𝑤1

𝑤21 − 𝑎2

(
𝑎

𝑤21
− 𝜏0

)
=

1√︃
𝑤21 − 𝑎2

(
−𝑑Δ𝛾+

𝑑𝑤
(𝑤1)

)
> 0, (33)

where the last inequality comes from (31); similarly:

𝑑𝜏

𝑑𝑡
(𝑤2) =

1√︃
𝑤22 − 𝑎2

(
−𝑑Δ𝛾+

𝑑𝑤
(𝑤2)

)
< 0. (34)

We see that 𝜏 is an increasing function in a neighborhood of 𝑡1 = 𝑤1 and
a decreasing one in a neighborhood of 𝑡2 = 𝑤2 i.e. at the boundaries of the
Λ𝜏0,𝑎 region shown in Fig. 7. If we show that 𝜏 has only one extreme value
– a local maximum – inside Λ𝜏0,𝑎, that is for some 𝑡 ∈ (𝑤1, 𝑤2), then with
the reasoning of point 8 we will show that for every 𝜂 inside Λ𝜏0,𝑎 region the
roots of (2) are in C \ C+.

We are interested in the number of solutions of
𝑑𝜏

𝑑𝑡
(𝑡) = 0, what is equivalent

to the number of solutions of

𝑎

𝑡2
=

arctan
(
1
𝑎

√
𝑡2 − 𝑎2

)
+ 𝛽

√
𝑡2 − 𝑎2

, (35)
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where 𝛽 = Δ𝛾+(𝑤1) − 𝜋. Define 𝑟 :=
1
𝑎

√
𝑡2 − 𝑎2. Then 𝑟 > 0 is a bijective

image of 𝑡 > 𝑎 and (35) can be rearranged to

𝑟

𝑟2 + 1
= arctan(𝑟) + 𝛽. (36)

As
𝜋

2
< Δ𝛾+(𝑤𝑚) < Arg 𝜂1 ¬ 𝜋 we have 𝛽 ∈ (− 𝜋

2 , 0] and by Corollary 1
we infer that there is only one local extremum i.e., local maximum of 𝜏 for
𝑡 ∈ (𝑤1, 𝑤2). Hence for every 𝜂 ∈ 𝐷𝜂1 ,𝑤1 ¬ |𝜂 | ¬ 𝑤2wehave 𝜏( |𝜂 |) ­ 𝜏0 i.e.

Arg 𝜂1 ­
√︃
|𝜂 |2 − 𝑎2𝜏0 − arctan

(
1
𝑎

√︃
|𝜂 |2 − 𝑎2

)
+ 𝜋.

Thus by the definition of 𝐷𝜂1 and symmetry about the real axis we obtain
that for every 𝜂 with |𝜂 | ¬ |𝜂𝜋 | such that

|Arg 𝜂 | ­
√︃
|𝜂 |2 − 𝑎2𝜏0 − arctan

(
1
𝑎

√︃
|𝜂 |2 − 𝑎2

)
+ 𝜋 (37)

the time 𝜏 for this 𝜂 to be such that the first root of (12) reaches the imaginary
axis is bigger than or equal to 𝜏0. Argument similar to the one in point 8
shows that if |Arg 𝜂 | ­ Δ𝛾+(𝑤𝑚) then the only region we need to consider is
the one given by (37). Thus we distinguish a ray

𝐷𝜂𝑚 = {𝜂 = 𝑢 + 𝑖𝑣 ∈ C : |𝜂 | > |𝑎 |, 𝑎 + 𝑢 < 0, Arg 𝜂 = Δ𝛾+(𝑤𝑚)}

together with a delay time function based on it, namely 𝜏𝑚 : 𝐷𝑡
𝜂𝑚
→ (0,∞),

𝜏𝑚 (𝑡) =
arctan

(
1
𝑎

√
𝑡2 − 𝑎2

)
+ Δ𝛾+(𝑤𝑚) − 𝜋

√
𝑡2 − 𝑎2

, (38)

where Δ𝛾+(𝑤𝑚) = Arg 𝜂𝑚, see Fig. 7. The above analysis shows that for 𝜏𝑚
we have 𝜏𝑚 (𝑡) ¬ 𝜏0 for every 𝑡 ∈ 𝐷𝑡

𝜂𝑚
, where the equality holds only for

𝑡 = 𝑤𝑚.

14. Take now, without loss of generality due to symmetry, 𝜂 ∈ C− ∩ Π+ such
that Re 𝜂 < −𝑎 and 𝜋

2
< Arg 𝜂 < Δ𝛾+(𝑤𝑚) = Arg 𝜂𝑚. We claim that for

every such 𝜂, there is 𝜏( |𝜂 |) < 𝜏0, where 𝜏 is defined on a ray containing
𝜂. Indeed, let us fix 𝜂 as above and assume otherwise i.e. 𝜏( |𝜂 |) ­ 𝜏0. Then
there exists 𝜂0 that fulfils (16), Arg 𝜂0 = Arg 𝜂 and Δ𝛾+(𝑤0) = Arg 𝜂 + 2𝜋,
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where 𝑤0 = |𝜂0 | (see Fig. 7). As 𝜂 ∈ 𝐷𝜂0 we have 𝜏 : 𝐷𝑡
𝜂0
→ (0,∞) defined

as in (32) but on the ray 𝐷𝜂0 , and such that for 𝑡 = |𝜂 | it takes the value:

𝜏(𝑡) =
arctan

(
1
𝑎

√
𝑡2 − 𝑎2

)
+ Arg 𝜂0 + 𝜋

√
𝑡2 − 𝑎2

, (39)

where we used a fact that Δ𝛾+(𝑤0) = Arg 𝜂0 + 2𝜋. Note that for a fixed 𝑡 the
above is a continuous function of Arg 𝜂0 ∈

(
𝜋
2 , 𝜋

)
. Let us take a sequence

{𝜂𝑘0}𝑘∈N such that 𝜂
𝑘
0 fulfils (16), |𝜂

𝑘
0 | < |𝜂

𝑘+1
0 | for every 𝑘 ∈ N and 𝜂

𝑘
0 → 𝜂∗𝑚

as 𝑘 →∞, where Arg 𝜂∗𝑚 = Arg 𝜂𝑚. Geometry of the problem shows that for
every 𝑘 ∈ N we have

Arg 𝜂𝑘0 < Arg 𝜂
𝑘+1
0 < Arg 𝜂𝑚 and 𝐷𝑡

𝜂𝑘0
⊂ 𝐷𝑡

𝜂𝑘0+1
⊂ 𝐷𝑡

𝜂𝑚
.

For the fixed 𝑡 from (39) consider a continuous, strictly increasing function
𝜏𝑡 : [Arg 𝜂0, 𝜋] → (0,∞),

𝜏𝑡 (Arg 𝜉) =
arctan

(
1
𝑎

√
𝑡2 − 𝑎2

)
+ Arg 𝜉 + 𝜋

√
𝑡2 − 𝑎2

.

Our hypothesis now gives:

𝜏0 ¬ 𝜏(𝑡) < lim
𝑘→∞

𝜏𝑡 (Arg 𝜂𝑘0) = 𝜏𝑡 (Arg 𝜂∗𝑚) = 𝜏𝑚 (𝑡) ¬ 𝜏0 ,

where we used strict monotonicity and continuity of 𝜏𝑡 , continuity of 𝛾+, def-
inition of 𝐷𝜂𝑚 and boundedness of 𝜏𝑚 given by (38). The above contradiction
proves our claim.

Thus with 0 < 𝑎 ¬
1
𝜏0
for the roots of (18) to be in C \ C+ the region given

by (37) is the only allowable one for 𝜂.

15. Fix 𝑎 >
1
𝜏0
. By (31) and a comment directly below it the continuous argument

increment function Δ𝛾+ given by (29) is now strictly increasing with range
Δ𝛾+( [𝑎,∞)) = [𝜋,∞). The minimal value of Δ𝛾+(𝑤) = 𝜋 for 𝑤 = |𝑎 | and
point 14 shows that if the roots of (18) are in C \C+ then 𝜂 = −𝑎; there is no
such 𝜂 that the roots of (18) are in C−.
This finishes the necessity proof for (18) and, by the same argument, for (12).
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Part III

16. To be able to use previous notation and ease referencing we show sufficiency

for (18). Let 𝜏0 > 0 be given and 𝑎 ¬
1
𝜏0
. The behavior of the roots described

in points 1 and 2 does not change. Every 𝜂 ∈ Λ𝜏0,𝑎, where Λ𝜏0,𝑎 is defined
accordingly to 𝑎, is either insideD|𝑎 | or satisfies (26), (28) or (37). Following
backwards the reasoning in points 5–13 we reach the boundary condition
(23), (27) or equality in (37), for which the roots of (18) are on the imaginary
axis, what happens exactly when 𝜂 is at the boundary of Λ𝜏0,𝑎.

Corollary 2 Let a delay 𝜏 > 0, coefficients 𝜆, 𝛾, 𝜂 ∈ C be such that 𝜆 = 𝑎 + 𝑖𝑏
with 𝑎 ¬ 1

𝜏
, 𝑏 ∈ R, and let the corresponding Λ𝜏,𝑎 ⊂ C be given by (9)–(11).

Then

(i) every solution of the equation 𝑠 − 𝑎 − 𝜂 e−𝑠𝜏 = 0 belongs to C− if and only if
𝜂 ∈ Λ𝜏,𝑎;

(ii) every solution of
𝑠 − 𝜆 − 𝛾 e−𝑠𝜏 = 0 (40)

and its version with conjugate coefficients

𝑠 − 𝜆 − 𝛾 e−𝑠𝜏 = 0 (41)

belongs to C− if and only if 𝛾 e−𝑖𝑏𝜏 ∈ Λ𝜏,𝑎.

Proof. Part (𝑖) follows from the analysis of continuity and monotonicity of (24)
or (32) given in the proof of Theorem 1. Part (𝑖𝑖) follows from (𝑖) and Lemma 1
by defining 𝜂 = 𝛾 e−𝑖𝑏𝜏 for the case of (40), while for the case of (41) by the
real-axis symmetry of Λ𝜏,𝑎 we have 𝜂 ∈ Λ𝜏,𝑎 if and only if 𝜂 = 𝛾 e𝑖𝑏𝜏 ∈ Λ𝜏,𝑎. 2

4. Discussion

Before going to examples wemake some comments concerning previouswork
of other authors with respect to the proof of Theorem 1. We also comment on
practicality of results obtained in this paper.
Theorem 1 relies on subsets Λ𝜏,𝑎 of the complex plane that are defined before

the theorem itself. Their origin, however, becomes clear after going through points
6 – 7 of the proof of Theorem 1. The remainder of the proof is in fact an analysis
of what happens inside those regions. It is worth to mention that inequalities in
(9)–(11) can be obtained from the result in [10] after suitable simplifications.
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As noted in the introduction an analysis of 𝜏 as a function of coefficients is
present also in [8]. The author obtains there an inequality similar to (24), but does
so in the context where 𝛾 of (1) is a 2 × 2 real matrix of a special form (and with
𝜆 ∈ R).
The necessary and sufficient condition for stability of first order scalar

differential-difference equations with complex coefficients characterized by (2)
are given by Corollary 2. The condition is based on mutual implicit relation be-
tween coefficients of the characteristic equation (2) and a subset of C given by
(9)-(11). As the latter is defined by non-linear inequalities there arises a question
whether numerical approximation of the rightmost root isn’t a more practical
approach than finding numerically (i.e. approximately) the region given by (9)–
(11), especially given the abundance of literature of computational techniques to
approximate characteristic roots.
Analysis of dependence between 𝜏 and the crossing of the imaginary axis by

the first root in points 2–3 of the proof is well-known. In one of the early works [4]
authors discuss (2) with 𝜆, 𝛾 ∈ R, in [16] the authors show a general approach for
real polynomial case of (4) with multiple delays, what is also shown in [12]. More
recently such analysis is also used in [8]. A good exposition of such techniques
is in [18, Chapter 5.3.2]. Our calculations in point 2–3 are in fact based on [16]
and we decided to include all of its steps for the reader’s convenience.
The answer to the above question depends, in the authors’ opinion, on the

purpose of approaching that problem. If the purpose is an analysis of a given
differential-difference equation, considered as a delayed dynamical system, ful-
filling assumptions of Corollary 2, than a numerical check, up to a given accuracy,
of at most one of inequalities (9)-(11) is usually a straightforward procedure.
If, on the other hand, the purpose is a synthesis of a delayed dynamical system

that has some a priori specified properties, as may be the case of a controller
design for such system, then a numerical search for the rightmost root may carry
more relevant information.

5. Examples

With the above discussion in mind, we present examples concerning only
analysis of given differential-difference equations. These examples illustrate how
the necessary and sufficient conditions of Theorem 1 can be compared with
and improve known literature results. Note initially that the stability condition
discussed in [1] and later proved in [3], that is −Re𝜆 > |𝛾 |, follows immediately
from |𝜂 | < |𝑎 | (point 3 in the proof of Theorem 1). Note also that as Corollary 2
concerns the placement of roots of the characteristic equation (2), it gives also a
necessary and sufficient condition for stability of (1). With that in mind we give
the following examples.
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5.1. Example 1

Consider a differential-difference equation:
𝑥′(𝑡) = 𝑖20𝑥(𝑡) + 𝛾𝑥(𝑡 − 0.1), (42)

where R 3 𝛾 > 0. Equation (42) is a special case of (1), for which necessary
and sufficient conditions of stability were found in [3]. By Corollary 2 equation
(42) is stable if and only if 𝛾 e−𝑖2 ∈ Λ0.1,0, where Λ0.1,0 is given by (10). We thus
obtain that (42) is stable if and only if 𝛾 < 20 − 5𝜋, what is equivalent to the
condition given by [3, Theorem 3.1].

5.2. Example 2

Consider the differential-difference equation

𝑥′(𝑡) =
(
1
4
+ 𝑖 𝜋
4

)
𝑥(𝑡) −

(
1
√
2
+ 𝑖 1√

2

)
𝑥(𝑡 − 1), (43)

for which the corresponding characteristic equation takes the form

𝑠 −
(
1
4
+ 𝑖 𝜋
4

)
−

(
− 1√
2
− 𝑖 1√

2

)
e−𝑠 = 0. (44)

By Corollary 2 and (11) (or, in fact, by investigating Fig. 4) we see that (44) is
stable.

5.3. Example 3

In [11] the author considers a semi-linear system version of (3) and – due to
the approach method – states results only for a fixed delay 𝜏 = 1. The exemplary
system analyzed in [11] is transformed to the form of (4) with 𝜏 = 1, 𝐴 = 0 i.e.

𝑥′(𝑡) = 𝐵𝑥(𝑡 − 1), 𝐵 =

(
−1 1

8
−1 −1

)
. (45)

As 𝐴 = 0, and thus 𝜆 = 0, we are interested only in eigenvalues of 𝐵, which
are −1 ± 𝑖 1√

8
. The author concludes that the system is stable.

With conditions (10) we can improve results for the exemplary system in
[11] by finding a maximal delay 𝜏 for which such system remains stable. Let
𝜂 = −1 + 𝑖 1√

8
. Then |𝜂 | = 3

√
2
4 and Arg 𝜂 = 𝜋 − arctan 1√

8
and by (10) we obtain

that (45) is stable if and only if

0 < 𝜏 <
1
|𝜂 |

(
Arg 𝜂 − 𝜋

2

)
=
2
√
2
3

(
𝜋

2
− arctan 1√

8

)
.

Note that we do not need to consider 𝜂 due to the symmetry of Λ𝜏,0 about the real
axis.
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5.4. Example 4

Previous examples relate current results to the ones known from the literature
and thus demonstrate the technique. The following example shows how the current
results can be used in the case of a retarded partial differential equation in an
abstract formulation.
Let the representation of our system be:{

¤𝑧(𝑡) = 𝐴𝑧(𝑡) + 𝐴1𝑧(𝑡 − 𝜏) + 𝐵𝑢(𝑡),
𝑧(0) = 𝑥,

(46)

where the state space 𝑋 is a Hilbert space, 𝐴 : 𝐷 (𝐴) ⊂ 𝑋 → 𝑋 is a closed,
densely defined diagonal generator of a𝐶0-semigroup (𝑇 (𝑡))𝑡­0 on 𝑋 , 𝐴1 ∈ L(𝑋)
is also a diagonal operator and 0 < 𝜏 < ∞ is a fixed delay. The input function
is 𝑢 ∈ 𝐿2(0,∞;C) and 𝐵 is the control operator. We assume that 𝑋 posses a
Riesz basis (𝜙𝑘 )𝑘∈N consisting of eigenvectors of 𝐴, which has a corresponding
sequence of eigenvalues (𝜆𝑘 )𝑘∈N.
A simplified form of (46) is analyzed in [13] from the perspective of ad-

missibility which, roughly speaking, asserts whether a solution 𝑧 of (46) follows
a required type of trajectory. One of the key elements in the approach to ad-
missibility analysis presented in [13] is to establish when a differential equation
associated with the 𝑘-th component of (46), namely:{

¤𝑧𝑘 (𝑡) = 𝜆𝑘 𝑧𝑘 (𝑡) + 𝛾𝑘 𝑧𝑘 (𝑡 − 𝜏),
𝑧𝑘 (0) = 𝑥𝑘 ,

(47)

is stable, where 𝜆𝑘 ∈ C is an eigenvalue of 𝐴, 𝛾𝑘 ∈ C is an eigenvalue of 𝐴1
and 𝑥𝑘 ∈ C is an initial condition for the 𝑘-th component of 𝑋 . Then, having
stability conditions for every 𝑘 ∈ N, one may proceed with analysis for the whole
𝑋 . Based on Corollary 2 we immediately obtain a genuine approach method of
obtaining these stability conditions, namely:
Proposition 1 For a given delay 𝜏 ∈ (0,∞) and sequences (𝜆𝑘 )𝑘∈N and (𝛾𝑘 )𝑘∈N
consider a corresponding set of Cauchy problems of the form (47). For every
𝑘 ∈ N system (47) is stable if and only if

𝜆𝑘 = 𝑎𝑘 + 𝑖𝛽𝑘 ∈
{
𝑧 ∈ C : Re(𝑧) < 1

𝜏

}
and 𝛾𝑘 e−𝑖𝛽𝑘𝜏 ∈ Λ𝜏,𝑎𝑘 ∀𝑘 ∈ N,

with Λ𝜏,𝑎𝑘 defined in (9)–(11).
Notice that Proposition 1 not only extends [13, Proposition 3.5] by adding the
necessary condition, but it also allows for analysis of unbounded 𝐴, as it includes
e.g. the case when 𝑎𝑘 → −∞ as 𝑘 →∞. This is in fact exactly the case presented
in [7].
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