The evaluation of energy from grapevine shoots used as biomass depending on the cultivar

Kamila E. Klimk 1), Magdalena Kaplan 2), Grzegorz Maj 3)

1) University of Life Sciences in Lublin, Department of Applied Mathematics and Computer Science, Lublin, Poland
2) University of Life Science, Institute of Horticulture Production, Lublin, Poland
3) University of Life Science, Department of Power Engineering and Transportation, 28 Głęboka St., 20-612 Lublin, Poland

Abstract: The article examines the influence of physicochemical traits on yield depending on the variety and year of cultivation. Four common to Poland grape cultivars, i.e. 'Regent', 'Rondo', 'Seyval Blanc', and 'Solaris', were evaluated by analysing, among others, number of clusters per bush, their weight, number of berries, and the yield per hectare, number of woody shoots, weight of woody shoots, and the diameter of woody shoots. Energy and emission parameters were evaluated by conducting technical evaluation (lower heating value, ash content, volatile matters content, moisture content, fixed carbon) and elemental analysis (carbon, nitrogen, hydrogen, sulphur and oxygen contents) of one-year, two-year and three-year vine shoots. In addition, emission factors for CO, CO2, NOx, SO2 and dust were estimated. The study showed that there was no significant differences between years under study (2020, 2021 and 2022) and energy emission parameters. It was observed that the highest LHV (lower heating value) occurred in the 'Regent' cultivar while the lowest level in the 'Rondo' cultivar. As regards energy-emission parameters, a significant influence of cultivar ('Solaris', 'Rondo', 'Seyval Blanc' and 'Regent') was shown on the parameters studied except for nitrogen content and NOx emission index. The interaction of year and cultivar showed no significant differences except for the moisture content.

Keywords: biomass, crop, energy properties, shootings, vine

INTRODUCTION

Viticulture in Poland has developed in the conditions of the so-called cold climate. These conditions are significantly different from the traditional cultivation area of grapevine species. Characteristic growing conditions determine precise recommendations for the selection of appropriate fertilisation and cultivation, as well as the verification of results obtained against natural conditions (Lisek et al., 2016).

In regions with a cool climate, extremely low temperatures are the most common constraint to grape production. Frost damage to buds, fruiting shoots and trunks increases production costs due to additional reclamation and replacement of damaged vines in the case of a yield drop (Zabadal et al., 2007). Freezing injuries may be caused under extremely low negative temperatures in winter and spring, significantly impairing grapevine development (Gonzalez Antivilo et al., 2020). Grape genotypes with excellent tolerance to low temperatures are necessary for a successful wine industry in climate areas of low temperatures. Cold climate interspecific hybrid grapevines (CCIHG) have a genetic background including Vitis aestivalis, V. labrusca, V. riparia, V. rupestris and V. vinifera (Smiley and Cochran, 2016; Atucha, Tanzi and Lanzetta, 2018). The high fruit quality of V. vinifera with excellent winter hardiness found in wild Vitis species due to the development of CCIHG cultivars.

Recently, the interest in interspecific varieties has increased again around the world, mainly due to greater awareness among consumers and growers about organic farming and the environmental impact of phytochemicals (Jacquet et al., 2020). Successful viticulture must meet expectations of both consumers and growers regarding high-quality wine, tolerance to insects and diseases (Lisek, 2004; Vool, Rätsep and Karp, 2015; Casanova-
Gascón et al., 2019; Roca, 2019; Clark, 2020). In recent years, environmental issues have increasingly sparked political and social discussions. The European agricultural policy has introduced management and integrated agronomic practices in vineyards (Directive, 2009) while reducing the use of fungicides and pesticides by resorting to more disease-resistant varieties instead of conventional ones. Hybrid varieties are probably the most promising for low-cost, time-saving and low-input viticulture due to their pest and disease tolerance (Lisek, 2008; Lisek, 2009). Currently, the wine industry in many countries outside the European Union uses a high percentage of interspecific varieties with very good results. They also provide funding for special breeding programmes (Dobrowolska-Iwanek et al., 2014). These varieties are desirable to combine the quality of traditional European varieties (V. vinifera) with diverse resistance characteristics typical of American varieties, such as V. aestivalis, V. amurensis, V. berlandieri, V. labrusca and V. riparia.

Currently, a promising market for hybrids has been created by the ‘Regent’ cultivar in Germany, where it is grown on more than 600 ha; a similar trend can be foreseen in Europe, especially in Italy (Fisher, 2000). Since soil, location and climate, and soil conditions play a key role in vine productivity and wine quality characteristics, the relationship between hybrids and the environment is essential when assessing the study area.

Unlike other orchard species, the vine requires intensive pruning in order to obtain the highest quality and production volume (Spinelli et al., 2012). The recovery of plant biomass in the form of waste and residues from vine cutting and their possible use for energy production is one of the most important innovations in the agricultural sector (González-García et al., 2014; Choudhury et al., 2021; Garita-Cambronero et al., 2021). Residues from agricultural production can become a potential source of biomass for renewable energy production, as they are available annually (Manzone et al., 2016; Senila et al., 2020). Total wood production in a given year depends on many factors, i.e. habitat conditions, rootstock, cultivar, planting density and type of fertilisers, health (Rosúa and Pasadas, 2012).

Vine pruning residue should be removed before any other treatment is undertaken (Dam van et al., 2007; Spinelli et al., 2012; González-García et al., 2014; Burg et al., 2017; Garita-Cambronero et al., 2021). In commercial vineyards, the residue is stored outside the vineyard and burned or mulched on site (Souček, Burg and Kroulík, 2007; González-García et al., 2014). Both solutions pose problems in terms of time, environmental impact and economy. Mulching is very dangerous in terms of spreading disease, but it helps to maintain organic matter, nutrients and moisture in the soil (Blasi di, Tanzi and Lanzetta, 1997). In addition to being labour-intensive, incineration is cheap (Mendívil et al., 2013). At the same time, it is characterised by an increased amount of dust emitted to the atmosphere (Spinelli et al., 2012; Spinelli et al., 2014). It should be noted that vineyard pruning residues have qualitative characteristics compared to other lignocellulosic raw materials, which most likely affects the choice and efficiency of processing technology (Scarlat, Blujdea and Dallemand, 2011), as well as the potential for co-firing (Magagnotti et al., 2009).

In their work, Corona and Nicoletti (2010) showed that in the Agrigento district, Italy, the production of biomass, which includes pruned shoots, is 2.69 Mg·ha⁻¹·y⁻¹. The research discussed in this paper is innovative, because the evaluation of “PIWI” (from the German “pilzwiderstandsfähige Rebsorten” – vine varieties resistant to fungal diseases) varieties in terms of energy potential and biomass residues is little known compared to the varieties commonly cultivated in the world, such as V. vinifera (Souček et al., 2007; Scarlat, Blujdea and Dallemand, 2011; Mendívil et al., 2013; González-García et al., 2014).

The aim of the work was to indicate differences in the number of shoots generated and energy and emission parameters of biomass depending on the grape cultivar and the year of research as a potential biofuel.

MATERIALS AND METHODS

The experimental material consisted of one-year-old woody shoots (beds) collected in the spring (March) of 2020, 2021 and 2022 from common to Poland grape cultivars: ‘Regent’, ‘Rondo’, ‘Seyval Blanc’ and ‘Solaris’. To verify the validity of results, a preliminary analysis of normal distribution was carried out using Shapiro–Wilks test. The significant effect of lignified shoots of four vines on dry biomass was verified by Tukey’s test and one-way ANOVA. Inference was carried out at the significance level of α = 0.05. Multivariate techniques, i.e. cluster analysis, were used to graphically represent the biomass studied.

Figure 1 shows the statistical methods used for the four grape varieties, the three years of the study and the energy potential. A detailed description of the plant material sampling methodology is also presented. Table 1 presents weather conditions in the place of cultivation of the vines tested.

The average air temperature for the growing season in 2021 was lower than the long-term average. A similar trend was observed in April, May and August. In the remaining period of the study, the opposite situation was observed, i.e. the average air temperature was higher than the long-term average.

It was observed that in 2021 the total precipitation from April to October was higher than the long-term average. In the other years, the opposite relationship was shown. The wettest month in the entire study period was August 2021, and the driest October 2021.

The tests were carried out in accordance with the procedure included in the individual standards listed in Figure 2. Individual parameters for the grinded material were determined using dedicated analysers. It included the determination of the lower heat value (LECO AC 600), and technical analysis (LECO TGA 701) and elemental analysis (LECO CHNS 628) for solid fuels. On the basis of the data obtained, in the next stage, the emission assessment was performed using the detailed indicator method described in Figure 2.

RESULTS AND DISCUSSION

The grape varieties analysed are characterised by generating large amounts of wood waste each year. The grape shoots obtained by pruning are characterised by both the large number of woody shoots on the vine and the weight (Tab. 2). On a per hectare basis, a waste product is obtained that should be managed and the quantities indicate a high potential for the utilisation of the raw material.
The number of clusters per bush ranged from 19.8 to 23.5 and differed significantly among the varieties. There were no significant differences in the evaluation of the parameter between the ‘Rondo’, 'Seyval Blanc' and 'Regent' cultivars. In turn, no significant differences were shown between the years of the study and the interaction of cultivar and the year of study.

The weight of one cluster ranged from 119.7 to 202.5 g and differed significantly between the varieties evaluated. Bushes of the ‘Rondo’ and ‘Seyval Blanc’ cultivars had clusters that did not differ significantly among themselves, while the statistical analysis carried out showed significant differences with the other varieties. Significant differences in weight per cluster were shown between the first and last years of the study, and interactions were also found between the year of the study and the cultivar. While evaluating the performance of 19 hybrids and ‘Pinot Gris’ cultivars in north-eastern Italy, Pacifico et al. (2013) showed that grape weight differed significantly among the varieties evaluated, ranging from 103.0 to 217.0 g.

The number of berries per cluster ranged from 96.7 to 152.8 and differed significantly among all the grape varieties evaluated. Indeed, clusters of the ‘Seyval Blanc’ cultivar had the most berries per cluster. Significant differences in the evaluation of the parameter under study were also shown by all years of the study. The highest values of the parameter were shown in 2022, while the lowest in 2020. The correlation between the cultivar and the year of the study was significant.

The grape yield of the varieties ranged from 12.3 to 21.4 Mg·ha⁻¹. There were no significant differences in yield weight between the ‘Regent’, ‘Seyval Blanc’ and ‘Solaris’ cultivars, while they differed significantly from the 'Rondo' cultivar.
Energetic properties

<table>
<thead>
<tr>
<th>Method/Equipment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retsch SM 100 grinder</td>
<td>material pulverisation up to 0.6 mm</td>
</tr>
<tr>
<td>LECO AC 600 isoperibolic calorimeter</td>
<td>Lower Heating Value (LHV)</td>
</tr>
<tr>
<td>EN-ISO 1928:2009</td>
<td></td>
</tr>
<tr>
<td>LECO TGA 701 analyser</td>
<td>ash content (A)</td>
</tr>
<tr>
<td>EN-ISO 18122:2016</td>
<td>volatile matter content (V)</td>
</tr>
<tr>
<td>EN-ISO 18123:2016</td>
<td>moisture content (M)</td>
</tr>
<tr>
<td>EN-ISO 18134-3:2015</td>
<td></td>
</tr>
<tr>
<td>LECO CHNS 628 analyser</td>
<td>carbon content (C)</td>
</tr>
<tr>
<td>EN-ISO 16948:2015-07</td>
<td>hydrogen content (H)</td>
</tr>
<tr>
<td>EN-ISO 16949:2016-10</td>
<td>nitrogen content (N)</td>
</tr>
<tr>
<td>−fixed carbon index (FC) = 100% · C − H − N − S · A</td>
<td>(Choudhury et al. 2021)</td>
</tr>
<tr>
<td>−oxygen content (O) = 100% · C − H − N − S · A</td>
<td>(Alves et al. 2020)</td>
</tr>
</tbody>
</table>

Emission factors

| Emission factor (Ej) of chemically pure coal (Borycka, 2008; Maj, 2018): |
|-----------------------------|--|
| \(E_C = \frac{CO}{C+C(O_CO/CO)/C} \) | \(CO = \text{carbon monoxide emission factor (kg·kg}^{-1}\) |
| \(C = \text{carbon element in biomass (kg·kg}^{-1}\) |
| \(C(O_CO/CO)/C = \text{part of the carbon emitted as CO} \) |

| Emission factor of chemically pure coal (Borycka, 2008; Maj, 2018): |
|---|--|
| \(E_{CO} \) = \(\frac{CO}{C+C(O_CO/CO)/C} \) | \(CO = \text{carbon monoxide emission factor (kg·kg}^{-1}\) |
| \(C = \text{carbon element in biomass (kg·kg}^{-1}\) |
| \(C(O_CO/CO)/C = \text{part of the carbon emitted as CO} \) |

| CO\(_2\) emission factor (Borycka, 2008; Maj, 2018): |
|--|--|
| \(CO_2 = \frac{14}{12} \left(E_C - \frac{12}{28} CO - \frac{12}{16} E_{CH_4} - \frac{32}{16} E_{NMVOC} \right) \) | \(CO_2 = \text{carbon dioxide emission factor (kg·kg}^{-1}\) |
| \(E_{CH_4} = \text{methane emission factor,} \) |
| \(E_{NMVOC} = \text{emission index of non-methane VOCs} \) |

| Methane emission factor (Borycka, 2008; Maj, 2018): |
|---|--|
| \(E_{CH_4} = \frac{12}{14} E_C (C+C(O_CO/CO)/C) \) | \(E_{CH_4} = \text{methane emission factor (kg·kg}^{-1}\) |
| \(C(O_CO/CO)/C = \text{part of the carbon emitted as CH}_4 \) |

| NO\(_x\) emission factor was calculated from (Borycka, 2008; Maj, 2018): |
|---|--|
| \(NO_x = \frac{14}{14} E_C (C+C(O_CO/CO)/C) \) | \(NO_x = \text{NO}_x \text{ emission factor (kg·kg}^{-1}\) |
| \(E_{NO_x} = \text{NO}_x \text{ emission factor (kg·kg}^{-1}\) |
| \(E_{NO_x} \) = \(\text{molar mass ratio of nitrogen dioxide to nitrogen,} \) |
| \(N_NO_x/N = \text{part of nitrogen emitted as NO}_x \) |

| SO\(_2\) emission factor (Borycka, 2008; Maj, 2018): |
|---|--|
| \(SO_2 = \frac{28}{100} (1 - r) \) | \(SO_2 = \text{sulphur dioxide emission factor (kg·kg}^{-1}\) |
| \(r = \text{coefficient determining the part of total sulphur retained in the ash} \) |

| Rising factor and dust emission factor \(E_{\text{dust}} \) was calculated according to Eq (Borycka, 2008; Maj, 2018): |
|---|--|
| \(E_{\text{dust}} = 1.5A \left(\frac{100 - n_0}{100 - k} \right) \) | \(E_{\text{dust}} = \text{dust emission factor (kg·Mg}^{-1}\) |
| \(1.5A = \text{rising index, indicating the amount of dust formed during combustion (kg·Mg}^{-1}\) |
| \(A = \text{ash content in fuel (\%) } \) |
| \(n_0 = \text{dust removal efficiency for biomass 20\%} \) |
| \(k = \text{content of flammable parts in the dust} \) |

Fig. 2. Methods and apparatuses used for the energy and carbon analysis of the raw materials studied; source: own study
Higher than those reported by Pacifico et al. 'Regent' cultivar were higher, which were described by Ochmian (2005) and Lisek (2010). In addition, the cultivation results for the in the study by Gąstoł (2015) confirmed earlier reports by Lisek (red grapes). The high productivity of the 'Seyval Blanc' cultivar 'Hibernal' (2.35). 'Frontenac' outperformed other red varieties from the cultivars of 'Seyval Blanc' (2.80 kg per vine) and 4.433 Mg·ha–1 and differed significantly. Bushes of the 'Rondo' cultivar had the statistically significant largest number of shoots, significantly in the grape varieties evaluated. Vines of the 'Regent' confirm the high productivity of 'Regent' compared to the other.

Significant differences were shown between the years of study with the yield of the varieties evaluated being the highest in 2022. A significant correlation was observed between the cultivar and the year of study. A study by Gąstoł (2015), evaluating the yield of the 13 most promising varieties suitable for wine production in cold climates, shown that the least productive varieties yielded an average of 5.0 Mg·ha–1, and the most productive varieties 8.9 Mg·ha–1. The highest yields of white grapes were harvested from the cultivars of 'Seyval Blanc' (2.80 kg per vine) and 'Hibernal' (2.35). 'Frontenac' outperformed other red varieties (2.64 kg per vine). Cultivars with moderate yields were 'Aurora', 'Muscat Odeskij' and 'Siibera' (white grapes) and 'Swenson Red' (red grapes). The high productivity of the 'Seyval Blanc' cultivar in the study by Gąstoł (2015) confirmed earlier reports by Lisek (2005) and Lisek (2010). In addition, the cultivation results for the 'Regent' cultivar were higher, which were described by Ochmian et al. (2013) in Pomerania, Poland. The yields obtained were higher than those reported by Pacifco et al. (2013) (4.1–11.7 kg per vine) in north-eastern Italy. The present study did not confirm the high productivity of 'Regent' compared to the other varieties evaluated. However, differences resulted not only from different climatic and soil conditions, but also from different viticulture systems. The number of fruiting shoots differed significantly in the grape varieties evaluated. Vines of the 'Regent' cultivar had the statistically significant largest number of shoots, while 'Seyval Blanc' had the smallest number. The weight of shoots from the vines of the cultivars ranged from 3.250 to 4.433 Mg·ha–1 and differed significantly. Bushes of the 'Rondo' cultivar had the highest weight, while 'Regent' and 'Solaris' had the lowest weight. The diameter of fruit-bearing shoots in shrubs of the 'Seyval Blanc' cultivar was significantly larger than in 'Regent'. There was no significant effect of year on the biomass parameters evaluated. Significant correlations between the year of study and cultivar were shown in the weight of lignified shoots, while in other cases no significant correlation was found. The study by Lisek et al. (2016), which evaluated the growth, yield and health of 'Solaris' and 'Regent' grapevines, showed that Solaris vines produced on average more than twice the weight of woody shoots than 'Regent' in 2009–2015. This was not confirmed by the present study. Table 3 shows energy and emission parameters for the grapevine shoots studied. Significant differences in the level of LHV between the grapevine varieties were shown. It was observed that the highest level of LHV was in the 'Regent' cultivar, while significantly the lowest level in 'Rondo'. There was no significant effect of the year of testing on the evaluated parameter. The presented research showed that the analysed vine shoots are characterised by different energy values. Test years (2020, 2021 and 2022) showed no significant effect on the energy-emission parameters analysed. There was a significant impact of the cultivars ('Solaris', 'Rondo', 'Seyval Blanc' and 'Regent') on the parameters studied except N, N/C and WNOx. The correlation between the year and cultivar showed no significant differences except for the moisture level (Tab. 3). The parameters obtained for heat of combustion were consistent with other types of plant biomass, e.g. wheat straw (Montero et al., 2016); sugarcane leaves (Jutakridsada et al., 2016), rice straw (Uzun et al., 2017), or sorghum (Zhang et al., 2017). Significantly higher combustion heat values were observed for vine shoots of 'Tempranillo', 'Mazuelo', 'Viura' and 'Malvasia' (Mendivil et al., 2015; Miranda

<table>
<thead>
<tr>
<th>Factor</th>
<th>Average number of cluster (pcs)</th>
<th>Number of berries per cluster (g)</th>
<th>Cluster weight (Mg·ha–1)</th>
<th>Yield (Mg·ha–1)</th>
<th>Number of lignified shoots (pcs)</th>
<th>Mass of lignified shoots (kg·ha–1)</th>
<th>Diameter of lignified shoots (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vine variety (A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'Regent'</td>
<td>20.6 ±1.2A</td>
<td>96.7 ±11.4B</td>
<td>119.7 ±72C</td>
<td>12.3 ±0.9B</td>
<td>15.5 ±0.5A</td>
<td>3250.0 ±100.0C</td>
<td>8.1 ±0.1B</td>
</tr>
<tr>
<td>'Rondo'</td>
<td>19.8 ±1.5B</td>
<td>106.7 ±6.6C</td>
<td>202.5 ±11.4A</td>
<td>20.1 ±1.5A</td>
<td>14.2 ±0.8B</td>
<td>4433.3 ±256.6A</td>
<td>8.5 ±0.2A</td>
</tr>
<tr>
<td>'Seyval Blanc'</td>
<td>20.0 ±1.2B</td>
<td>152.8 ±14.7A</td>
<td>200.8 ±12.1A</td>
<td>20.1 ±1.6A</td>
<td>12.5 ±0.5C</td>
<td>3883.3 ±256.6B</td>
<td>8.9 ±0.1A</td>
</tr>
<tr>
<td>'Solaris'</td>
<td>23.5 ±1.6C</td>
<td>127.8 ±16.5B</td>
<td>181.8 ±18.5B</td>
<td>21.4 ±3.0A</td>
<td>14.0 ±0.5B</td>
<td>3533.3 ±202.1C</td>
<td>8.2 ±0.2A</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0010</td>
<td>0.0012</td>
<td>0.0011</td>
<td>0.0014</td>
<td>0.0031</td>
<td>0.0021</td>
<td>0.0118</td>
</tr>
<tr>
<td>Study year (B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>20.9 ±1.4A</td>
<td>110.1 ±20.2C</td>
<td>170.1 ±38.2B</td>
<td>17.8 ±4.1B</td>
<td>14.0 ±1.6A</td>
<td>3737.3 ±619.6A</td>
<td>8.3 ±0.3A</td>
</tr>
<tr>
<td>2021</td>
<td>20.7 ±2.0A</td>
<td>120.1 ±23.6B</td>
<td>176.4 ±36.4B</td>
<td>18.2 ±3.8B</td>
<td>14.1 ±1.4B</td>
<td>3800.0 ±549.2A</td>
<td>8.5 ±0.4A</td>
</tr>
<tr>
<td>2022</td>
<td>21.4 ±2.5A</td>
<td>132.8 ±27.3B</td>
<td>182.1 ±36.4B</td>
<td>19.5 ±4.5A</td>
<td>14.0 ±0.9</td>
<td>3787.5 ±460.8B</td>
<td>8.5 ±0.4A</td>
</tr>
<tr>
<td>p-value</td>
<td>0.3772</td>
<td>0.0001</td>
<td>0.0318</td>
<td>0.0031</td>
<td>0.9109</td>
<td>0.7658</td>
<td>0.4995</td>
</tr>
<tr>
<td>Interaction (A×B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td>0.0529</td>
<td>0.0216</td>
<td>0.0273</td>
<td>0.0001</td>
<td>0.1105</td>
<td>0.0101</td>
<td>0.9226</td>
</tr>
</tbody>
</table>

Explanation: mean values marked with the same letters do not differ significantly at α = 0.05.

Explanations: LHV = lower heating value, S = sulphur content, N = nitrogen content, C = carbon content, H = hydrogen content, M = moisture content, O = oxygen content, A = ash content, V = volatile matter content, FC = fixed carbon, N/C = molar ratio of nitrogen and carbon, H/C = molar ratio of hydrogen and carbon, O/C = molar ratio of oxygen and carbon, WoC = emission factor of chemically pure coal, WECO2 = emission factor of carbon dioxide, WNOx = emission factor of nitrogen oxides, WESOx = emission factor of sulphur dioxide, WEmet = emission factor of dust.

Source: own study.

Table 2. Yield and quality parameters and biomass (vine shoots residues) of four grape varieties in 2020–2022
et al., 2015) and, at the same time, ash, nitrogen, carbon and hydrogen content was at similar levels.

The multivariate correlation analysis showed that as the number of clusters per one bush increased, the parameters H, S, FC, H/C and WE SO2 correlated negatively. Significantly positive correlations were observed between the weight of one cluster and berry, fruit yield per hectare, weight of lignified shoots per planting area, and O, A, V and O/C, while significantly negative correlations were observed for C, FC, WeC, WECO and WECO2. Significantly positive correlations were observed between berry weight and the number and weight of woody shoots collected from the cultivation area, and We dust, while M showed a negative correlation. As the number of berries per cluster increased, S, M and WE SO2 increased significantly. The weight of woody shoots significantly positively correlated with the level of the H/C parameter, while the diameter of woody shoots significantly positively correlated with S and WECO2 (Tab. 4). The study indicates that emission parameters significantly correlate with

Table 3. Energy-emission analysis of woody shoots of selected grape varieties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Year of research</th>
<th>Year</th>
<th>Cultivar</th>
<th>Year × cultivar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2020</td>
<td>2021</td>
<td>2022</td>
<td></td>
</tr>
<tr>
<td>LHV</td>
<td>MJ·kg⁻¹</td>
<td>16.0 ±0.4</td>
<td>16.6 ±0.3</td>
<td>16.3 ±0.3</td>
<td>0.4897</td>
</tr>
<tr>
<td>S</td>
<td>%</td>
<td>0.07 ±0.0</td>
<td>0.07 ±0.0</td>
<td>0.07 ±0.01</td>
<td>0.3433</td>
</tr>
<tr>
<td>N</td>
<td>%</td>
<td>0.5 ±0.0</td>
<td>0.5 ±0.0</td>
<td>0.5 ±0.03</td>
<td>0.3041</td>
</tr>
<tr>
<td>C</td>
<td>%</td>
<td>48.7 ±0.4</td>
<td>48.9 ±0.3</td>
<td>48.8 ±0.3</td>
<td>0.4479</td>
</tr>
<tr>
<td>H</td>
<td>%</td>
<td>5.9 ±0.3</td>
<td>6.1 ±0.3</td>
<td>6.0 ±0.3</td>
<td>0.1549</td>
</tr>
<tr>
<td>M</td>
<td>%</td>
<td>7.0 ±0.3</td>
<td>7.3 ±0.3</td>
<td>7.1 ±0.3</td>
<td>0.0907</td>
</tr>
<tr>
<td>O</td>
<td>%</td>
<td>40.9 ±0.3</td>
<td>41.0 ±0.3</td>
<td>41.0 ±0.3</td>
<td>0.4425</td>
</tr>
<tr>
<td>A</td>
<td>%</td>
<td>3.9 ±0.3</td>
<td>4.0 ±0.3</td>
<td>4.0 ±0.3</td>
<td>0.4401</td>
</tr>
<tr>
<td>V</td>
<td>%</td>
<td>70.7 ±0.3</td>
<td>71.1 ±0.3</td>
<td>70.8 ±0.3</td>
<td>0.1438</td>
</tr>
<tr>
<td>FC</td>
<td>%</td>
<td>18.4 ±0.3</td>
<td>18.4 ±0.3</td>
<td>18.4 ±0.3</td>
<td>0.1945</td>
</tr>
<tr>
<td>N/C</td>
<td>-</td>
<td>0.01 ±0.0</td>
<td>0.01 ±0.0</td>
<td>0.01 ±0.0</td>
<td>0.3095</td>
</tr>
<tr>
<td>H/C</td>
<td>-</td>
<td>1.4 ±0.1</td>
<td>1.5 ±0.1</td>
<td>1.5 ±0.1</td>
<td>0.1622</td>
</tr>
<tr>
<td>O/C</td>
<td>-</td>
<td>0.6 ±0.01</td>
<td>0.6 ±0.0</td>
<td>0.6 ±0.0</td>
<td>0.9977</td>
</tr>
<tr>
<td>WeC</td>
<td>MJ·kg⁻¹</td>
<td>429.0 ±3.3</td>
<td>430.7 ±3.0</td>
<td>429.7 ±3.1</td>
<td>0.0409</td>
</tr>
<tr>
<td>WECO</td>
<td>MJ·kg⁻¹</td>
<td>60.1 ±0.5</td>
<td>60.3 ±0.4</td>
<td>60.2 ±0.4</td>
<td>0.4479</td>
</tr>
<tr>
<td>WNOx</td>
<td>MJ·kg⁻¹</td>
<td>1.8 ±0.1</td>
<td>1.9 ±0.1</td>
<td>1.8 ±0.1</td>
<td>0.3041</td>
</tr>
<tr>
<td>WECO2</td>
<td>MJ·kg⁻¹</td>
<td>1470.7 ±1.15</td>
<td>1471.3 ±1.14</td>
<td>1470.9 ±1.14</td>
<td>0.8956</td>
</tr>
<tr>
<td>WESO2</td>
<td>MJ·kg⁻¹</td>
<td>0.1 ±0.01</td>
<td>0.1 ±0.0</td>
<td>0.14 ±0.01</td>
<td>0.3433</td>
</tr>
<tr>
<td>We dust</td>
<td>MJ·kg⁻¹</td>
<td>4.9 ±0.3</td>
<td>5.1 ±0.4</td>
<td>5.01 ±0.4</td>
<td>0.4401</td>
</tr>
</tbody>
</table>

* Significant difference on the level p < 0.05.
Source: own study.

Table 4. Multivariate correlation analysis for crop and energy traits

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Average number of cluster</th>
<th>Number of berries per cluster</th>
<th>Cluster weight (g)</th>
<th>Yield (Mg·ha⁻¹)</th>
<th>Number of lignified shoots (pcs)</th>
<th>Mass of lignified shoots (kg·ha⁻¹)</th>
<th>Diameter of lignified shoots (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHV</td>
<td>−0.1082*</td>
<td>0.0615*</td>
<td>−0.0970*</td>
<td>−0.1412*</td>
<td>0.1639*</td>
<td>−0.0864*</td>
<td>0.1257*</td>
</tr>
<tr>
<td>C</td>
<td>0.0364*</td>
<td>0.0724*</td>
<td>−0.6424</td>
<td>−0.5673</td>
<td>0.1855*</td>
<td>−0.7130</td>
<td>−0.0963*</td>
</tr>
<tr>
<td>H</td>
<td>−0.5419</td>
<td>−0.0359*</td>
<td>0.0511*</td>
<td>−0.1907*</td>
<td>−0.0452*</td>
<td>0.2564*</td>
<td>0.1730*</td>
</tr>
<tr>
<td>N</td>
<td>−0.1003</td>
<td>0.0601*</td>
<td>0.1510*</td>
<td>0.0899*</td>
<td>−0.0372*</td>
<td>0.1638*</td>
<td>0.1195*</td>
</tr>
<tr>
<td>S</td>
<td>−0.5181</td>
<td>0.3378*</td>
<td>0.1462*</td>
<td>−0.1051*</td>
<td>−0.3180*</td>
<td>0.1740*</td>
<td>0.3772</td>
</tr>
<tr>
<td>M</td>
<td>0.0253*</td>
<td>0.6818*</td>
<td>0.0342*</td>
<td>0.0450*</td>
<td>−0.0981*</td>
<td>−0.3335</td>
<td>0.3159*</td>
</tr>
<tr>
<td>O</td>
<td>0.2033*</td>
<td>0.2484*</td>
<td>0.5196</td>
<td>0.5565</td>
<td>−0.2195*</td>
<td>0.3426</td>
<td>0.1868*</td>
</tr>
<tr>
<td>A</td>
<td>0.1711*</td>
<td>−0.2170*</td>
<td>0.4234</td>
<td>0.4592</td>
<td>0.1061*</td>
<td>0.4878</td>
<td>−0.0398*</td>
</tr>
<tr>
<td>V</td>
<td>0.2184*</td>
<td>0.0258*</td>
<td>0.5664</td>
<td>0.5807</td>
<td>0.0155*</td>
<td>0.5487</td>
<td>0.1919*</td>
</tr>
</tbody>
</table>
plant yield. Fruit yield affects the lower carbon content in shoots, which translates into lower carbon dioxide emission during combustion, keeping in mind the closed cycle of the gas in the environment. The positive correlation of shoot diameter with SO2 emissions is also noteworthy. In this case, one would aim to trim shoots at the optimal diameter, which could help reduce emission of the harmful gas from combustion. However, an increase in yield contributes to a reduction in SO2 emission. Hence, with a high yield of vines, we are also able to reduce emission from the shoot burning process.

Principal component analysis of technical and elemental parameters for one-year vine shoot waste of the ‘Rondo’, ‘Solaris’, ‘Seyval Blanc’ and ‘Regent’ cultivars during the three-year study shows two clusters. The data analysis in Figure 1 shows cluster 1 consisting of the ‘Rondo’ cultivar, which has significantly the highest shoot weight per hectare, while cluster 2 consists of the ‘Regent’ cultivar and the sub-group of white-skinned cultivars of ‘Solaris’ and ‘Seyval Blanc’. Considering the amount of biomass obtained from the cultivated area, potentially the ‘Regent’ cultivars can provide the largest amount of raw material for energy production with a fairly high yield potential (Fig. 3).

CONCLUSIONS

A study of grapevine shoots from a three-year crop shows no dependencies on the year of cultivation, while significant differences between the varieties tested. In addition, grapevine yield affects energy production and emission. The ‘Regent’ cultivar is characterised by a high yield, as well as a significant number of shoots from the cultivation area. Hence, the use of this cultivar is both advantageous from the point of view of the main purpose, i.e. yield of high fruit weight, and the additional point of view, i.e. yield of biomass from phytosanitary pruning of the crop. Nevertheless, despite the significant differences shown, the study shows that each of the varieties generates between 3.2–4.4 Mg·ha–1 of woody shoots. This can supplement the energy balance, for example, on the cultivation farm itself.

The research showed there was no significant differences between particular years (2020, 2021 and 2022) regarding energy-emission parameters. The correlation analysis showed that the lowest heating value significantly positively correlated with the number of berries per cluster, number of lignified shoots and diameter of lignified shoots, and negatively with the average number of clusters, cluster weight, yield and mass of lignified shoots. The analysis of emission parameters showed a negative correlation between CO2 and cluster weight, yield, mass of lignified shoots and diameter of lignified shoots. The study has showed that the ‘Regent’ cultivar offers fairly high yield and can potentially provide the largest amount of raw material for energy production.

REFERENCES

upper Midwest,” Journal of the American Pomological Society, 72, pp. 80–93.

Burg, P. et al. (2017) “Review of energy potential of the wood biomass of orchards and vineyards in the Czech Republic,” Research in Agricultural Engineering, 63, S1–S7. Available at: https://doi.org/10.17221/30/2017-RAE.

Mendivil, M.A. et al. (2013) “Chemical characterization of pruned vine shoots from La Rioja (Spain) for obtaining solid bio-fuels,”

