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Abstract: The study evaluated physicochemical properties of bio-waste as a potential biofuel in the form of leaves from 
‘Regent’ grapevines grown on six different rootstocks and a control grown on its own roots for three years of 
cultivation. An elemental analysis was carried out, determining the content of carbon, hydrogen, nitrogen, and sulphur 
in the leaves tested. A technical analysis of the biofuel was also carried out to determine the content of moisture, volatile 
matter, and ash. The calorimetric method was used to determine the higher heating value for the material. Fixed carbon 
and oxygen carbon was calculated based on the elemental and technical analyses. The study showed that the type of 
rootstock and the year of cultivation influence the amount of leaves obtained from the cultivation area. Leaf 
entrustment per hectare ranged from 1,140,868.02 in rootstock 161-49 to 1,265,286.7 Mg∙ha–1 in rootstock SO4. 
Regardless of the year of the study, shrubs grafted on 125AA rootstock and the control had the highest combustion heat 
of 17.5 MJ∙kg–1 and 17.6 MJ∙kg–1 respectively, while 5BB rootstock had the lowest combustion heat (16.4 MJ∙kg–1). 
Statistical analysis showed no significant effect of test year on the elemental and technical parameters evaluated. It was 
observed that regardless of the evaluated parameter and the type of rootstock in most parameters, the values in 2022 
were the highest, while in 2021 they were the lowest.  
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INTRODUCTION 

In most of the world’s grape-growing regions, grapevines (Vitis 
vinifera L.) are grafted onto rootstocks resistant to phylloxera 
(Daktulosphaira vitifoliae). This insect appeared in European 
vineyards growing its own roots in the 1850s. It devastated 
significant areas and then spread to other regions around the world. 
French researchers discovered that the problem could be solved by 
grafting European vines onto American species (Pouget, 1990). This 
gave rise to the establishment of vineyards using grafted vines. 
Initially, single American species were used for this purpose. Today, 
rootstocks are derived from crossing two or more Vitis species. 

When choosing the type of rootstock, it is important to 
consider the location of the plantation (sunshine, amount of 

rainfall, type of soil and the presence of various organisms in it, 
such as insects, fungi and nematodes). The selection of a suitable 
rootstock also depends on the characteristics of the interaction 
between rootstock, scion and the environment. In addition, the 
purpose of production should also be considered. These 
characteristics can produce different responses to vegetative 
growth, grape yield size and quality, and grape composition and 
sensory attributes. In fact, each factor, and interaction between 
them, can unevenly induce nutrient assimilation by roots, sap 
translocation in the xylem system and accumulation in grapevine 
tissues. This leads to the biosynthesis of a wide range of 
compounds, different biochemical reactions and consequently 
grapevine physiology (Miele and Rizzon, 2017). In fact, there is 
a wide cultivar of rootstocks, each with characteristics sought by 
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grape growers for specific growing conditions and purposes. The 
most important of these are related to soil parasites, climatic 
adversity, adaptability to soil nutrient excess or deficiency, and 
vine vigour. 

There are papers covering various aspects of rootstock 
effects on grapevines, such as those related to physiology 
(Virgona, Smith and Holzapfel, 2003; Cookson et al., 2012), 
biochemistry (Somkuwar et al., 2014; Souza de et al., 2015), 
mineral nutrition (Miele, Rizzon and Giovannini, 2009; Kodur 
et al., 2011), yield (Terra et al., 2003; Keller, Mills and Harbertson, 
2012), water deficiency or excess (Heralde de et al., 2006), salinity 
(Walker et al., 2007), fungal diseases (Brown et al., 2013; Wallis, 
Wallingford and Chen, 2013), viruses (Rosa et al., 2011) and 
nematodes (Ferris, Zheng and Walker, 2012). 

Along with coal and oil, biomass is an important source of 
primary energy. The main sources of biomass are energy crops, 
agricultural waste, forestry and organic waste. More recently, 
biomass has been used in energy production by combined heat and 
power plants (CHP) to produce heat and electricity (Świerzewski 
and Kalina, 2020). A CHP provides great potential for significant 
improvement in energy efficiency, which explains the interest in 
converting biomass to heat and power (Asomaning et al., 2018). 
Finding new renewable energy sources to produce solid biofuels is 
a priority from a climate and environmental perspective, with the 
aim to mitigate the effects of global warming while producing 
cleaner energy. Recently, densified solid biofuels have seen rapid 
growth due to increasing demand for biomass used for heating, 
electricity and biofuel (Bajwa et al., 2018). 

The annual production of a large amount of green matter 
and pruning in vineyards ensure a large number of vine shoots 
(Sánchez-Gómez et al., 2017). The use of vineyard pruning 
waste has received a lot of attention over the past few years. 
Vineyard pruning waste obtained from agricultural practices can 
be used as a renewable energy source in accordance with 
European Waste Directive 2008/98/EC, which focuses on waste 
management, recycling and conversion to energy (Directive, 
2008). Currently, vineyard pruning waste is used for: surfactant 
production by autohydrolysis, delignification with NaOH, enzy-
matic hydrolysis and fermentation with Lactobacillus paracasei 
(Vecino et al., 2017), bioactive compounds (Moreira et al., 2018), 
bioethanol and chemicals (Pachón, Mandade and Gnansounou, 
2020), and the production of cellulose nanocrystals for the 
development of nanocomposite materials (Achaby et al., 2018). 

In recent years, with the effort to reduce pollution, 
renewable energy production has increased in European countries 
(Muench and Guenther, 2013). Of all renewable energy sources, 
biomass seems to be the one that stands out for its better 
performance in power and heat production (Guo, Song and 
Buhain, 2015). Agricultural residues could become a potential 
source of biomass for energy production not only in Poland but 
also in other European countries (Velazquez-Marti et al., 2001; 
Scarlat, Blukdea and Dallemand, 2011), especially in Italy 
(Bernetti, Fagarazzi and Fratini, 2004; Beccali, Columba and 
D’Aleberti, 2009). In fact, new biomass is available every year and 
is produced in areas accessible to tractors and vehicles 
(Magagnotti et al., 2013). In addition, the use of agricultural 
waste has little environmental impact compared to dedicated 
energy crops (Gonzalez-Garcìa et al., 2014). Leftovers in the form 
of leaves or shoots after pruning in vineyards, whose exhaust 
emissions are comparable to those obtained from wood chips, can 

be a suitable fuel for energy production (Picchi, Silvestri and 
Cristoforetti, 2013). Unlike orchards, in order to improve the 
quality and quantity of vine production, vineyards require 
significant pruning of all plants each year. This results in 
significant amounts of residue (Blasi di, Tanzi and Lanzetta, 
1997). Currently, the residue is mulched in the vineyards or 
stored outside vineyards and burned (Spinelli et al., 2014). Both 
solutions pose problems in terms of time consumption, economic 
sustainability and environmental impact. Mulching, contributes 
to maintaining organic matter, nutrient and moisture content in 
soil, but it is very dangerous as it may spread disease (Scarlat, 
Blukdea and Dallemand, 2011). Burning, in addition to being 
cheap, it is labour-intensive (Magagnotti et al., 2009) and 
produces significant particulate emissions to the atmosphere 
(Keshtkar and Ashbaugh, 2007). Alternatively, pruning residues, 
like other woody biomass from agriculture and forestry, could be 
used as a fuel to replace fossil oil in electricity generation (Jones 
et al., 2010) or in small boilers to produce heat (Picchi, Silvestri 
and Cristoforetti, 2013). In addition, this fuel has a positive 
energy balance and low emissions, and it is capable of providing 
great environmental benefits (Gonzalez-Garcìa et al., 2014). 

MATERIALS AND METHODS 

The study examined the effect of rootstock type on the quality 
and fruit yield of ‘Regent’ grapevines, as well as leaf area, weight 
and number of leaves. The grapevines of the varieties studied 
were grown on seven types of rootstocks, such as 101-14, 125AA, 
161-49, 5BB, SO4, SORI, whereas the control was grafted on its 
own roots. 

Figure 1 depicts statistical methods used for the energy and 
carbon analysis of the raw materials, plant material sampling, and 
the apparatus used. 

RESULTS AND DISCUSSION 

The aim of this study was to evaluate physicochemical properties 
of bio-waste as a potential biofuel in the form of leaves of the 
‘Regent’ grape cultivar grown on six different rootstocks and 
a control grown on its own roots for three years of cultivation. 
Table 1 shows effect of rootstock type on selected leaf parameters 
of ‘Regent’ grapevines in 3 years of the study. 

The number of lateral shoots of ‘Regent’ grapevines ranged 
from 17.9 to 18.4 units and did not differ significantly between 
the rootstock clones evaluated. There was no significant effect of 
test year on the analysed parameter, as well as the interaction of 
test year and rootstock type. This trait largely depends on the 
form of vine management. In the course of research on the 
evaluation of biomass size of selected grapevine cultivars, no 
significant effect of cultivar on the number of shoots per plant 
was shown (Klimek et. al., 2022). 

The number of leaves per shoot showed significant 
differences between the combinations evaluated. Shrubs grafted 
on 161-49, 101-14 and 5BB rootstocks produced significantly 
more leaves per shoot than shrubs on 125AA. There was 
a significant effect of the year of testing on the evaluated 
parameter. In 2022, plants had significantly more leaves per 
1 shoot than in other years. No significant interaction was found 
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between the year of testing and the type of rootstock. Klimek et al. 
(2022) showed that this parameter is significantly modified by 
cultivar and year of testing. 

The number of leaves per hectare of ‘Regent’ grapevines 
varied from 1,253,383.3 to 1,408,300.0 units, depending on the 
rootstock type. All rootstock types differed significantly among 
themselves. The highest number of leaves was in shrubs grafted 

on 101-14 rootstock, while the lowest in 125AA. It was not 
confirmed that the biological factor had a significant effect on the 
number of leaves per hectare when assessing the number of leaves 
in grapevines of the ‘Regent’, ‘Seyval Blanc’ and ‘Solaris’ cultivars 
(Klimek et. al., 2022). 

The number of leaves per hectare ranged from 
1,140,868.02 m2 in the 161-49 rootstock to 1,265,286.7 m2 in the 

Fig. 1. Test procedure; source: own elaboration 
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SO4 rootstock. All types of rootstocks differed significantly among 
themselves in leaf area. A significant effect of cultivar on the 
evaluated parameter was shown in the study of Klimek et al. (2022). 

The analysed mass of petioled leaves per 1 ha differed signi-
ficantly among all assessed rootstock types. It was shown that shrubs 
grafted on 161-49 rootstock (7.1 Mg∙ha–1) produced significantly 
the lowest leaf mass, while those on SO4 rootstock (9.0 Mg∙ha–1) 
produced significantly the highest among all evaluated combina-
tions. A significant effect of cultivar on the evaluated parameter was 
shown in the study of Klimek et al. (2022). 

Considering the green weight of leaves (number, area and 
weight of leaves with petioles per ha), a significant influence of 
the year of the study was shown. In 2022, all green leaf mass 
parameters were the highest, while in 2020 they were significantly 
the lowest. A significant interaction of the year of testing and 
rootstock type was observed. The influence of the year of testing 
on the aforementioned parameters was demonstrated by evaluat-
ing three grapevine varieties under Polish conditions (Klimek 
et al., 2022). 

Results of higher heating value are presented on Figure 2. 
The analyses of the higher heating value (HHV) showed 

major differences in the rootstocks used in particular years of the 
study. However, the difference between average values was 
statistically insignificant. It was found that regardless of the type 
of rootstock used, the heat from leaf combustion was the highest 
in 2021. It was shown that there was no clear trend between the 

higher heating value in the first and last years of the study. 
Regardless of the year of the study, vines grafted on 125AA 
rootstock and control were characterised by the highest heating 
value, while the 5BB rootstock had the lowest value. Comparing 
the higher heating values for the leaves from 101-14, 125AA, SO4, 
SORI rootstocks and the control, it should be noted that there 
were similarities in the second year of cultivation with the values 
obtained for pruning vine and wood chips (Torreiro et al., 2020), 
Eucalyptus globulus (Enes et al., 2019), black poplar leaves, oak 

Table 1. Effect of rootstock type on selected leaf parameters of ‘Regent’ grapevines in 2020–2022 

Factor 

Number of shoots 
per shrub 

Number of leaves 
per shoot 

Number of leaves 
per 1 ha area Leaf surface per 

1 ha area (m2) 

Leaf mass with 
petioles per 1 ha area 

(Mg·ha–1)   

Rootstock type (A) 

101-14 18.4 ±0.3A 15.3 ±0.8A 1,408,300.0 
±93,773.6A 

1,213,498.0 
±1,362,17.2C 7.6 ± 0.8D 

125AA 18.3 ±0.2A 13.7 ±0.5B 1,253,383.3 
±40,472.7G 

1,234,909.6 
±55,571.6B 8.4 ±0.2B 

161-49 18.1 ±0.2A 15.5 ±0.6A 1,397,233.3 
±544,65.6B 

1,140,868.0 
±61,324.2G 7.1 ±0.6G 

5 BB 17.9 ±0.2A 15.1 ±0.5A 1,352,000.0 
±46,207.4C 

1,196,330.8 
±52,811.4D 7.2 ±0.5F 

S04 18.1 ±0.1A 14.6 ±0.7AB 1,318,833.3 
±58,502.8E 

1,265,286.7 
±54,183.7A 9.0 ±0.6A 

SORI 18.1 ±0.2A 14.6 ±0.5AB 1,319,216.7 
±62,096.0D 

1,146,907.4 
±11,707.6F 7.4 ±0.5E 

control 18.0 ±0.2A 14.5 ±0.5AB 1,302,216.7 
±32,736.8F 

1,181,713.7 
±47,101.9 7.9 ±0.4C 

p-value 0.0527 0.0031 0.0041 0.0051 0.0041 

Year (B) 

2020 18.1 ±0.2A 14.2 ±0.6B 1,287,764.3 
±49,505.0C 

1,152,935.8 
±53,646.8C 7.3 ±0.7C 

2021 18.1 ±0.3A 14.7 ±0.6B 1,326,500.0 
±43,091.2B 

1,179,239.5 
±45,117.8B 7.7 ±0.7B 

2022 18.2 ±0.3A 15.3 ±0.7A 1,393,385.7 
±76,679.8A 

1,259,045.1 
±72,503.5A 8.3 ±0.6A 

p-value 0.7978 0.0021 0.0011 0.0010 0.0010 

A×B p-value 0.9951 0.9967 0.0009 0.0007 0.0101  

Explanations: A, B, …, F in the columns show significant differences at α = 0.05, p-values in italic = significant values. 
Source: own study. 

Fig. 2. Results of higher heating value (HHV) measurements for the tested 
leaves of the ‘Regent’ cultivar; 101-14, 125AA, 161-49, 5BB, SO4, SORI = 
rootstocks; source: own study 
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tree leaves, peach tree leaves or pinecone leaf (Güleç et al., 2022). 
For the first and third year of cultivation regardless of rootstock 
type, similar results were achieved for barley grain, eucalyptus 
chips, orange tree leaves (Güleç et al., 2022), sugarcane bagasse, 
or tea waste (Rahimi, Anand and Gautam, 2022). It can be noted 
that the levels of higher heating value do not differ from those 
typically achieved for agricultural or forest biomass. 

Results of technical and elemental analysis for the tested 
leaves of the ‘Regent’ cultivar are shown Table S1. 

The statistical analysis showed no significant effect of the 
year of the study on the elementary and technical parameters. It 
was observed that regardless of the parameter and rootstock type 
the values in 2022 were the highest, while in 2021 they were the 
lowest. There was no significant effect of rootstock type on V and 
H parameters. It was observed that the level of the parameters M 
and A did not depend on the year of the study and it was 
significantly the highest in leaves from shrubs grafted on 5BB 
rootstock, while significantly the lowest in the control. An inverse 
relationship was found for the C content. In the case of the 
N content, it was observed that it did not depend on the year of 
testing and the highest values occurred in the case of the 125AA 

rootstock, while the lowest in the case of the 5BB rootstock. 
Regardless of the year of study, significantly the smallest value of 
the S content was obtained from leaves derived from the 101-14 
rootstock. In the case of 125AA, SORI and 161-49 rootstocks, the 
values were significantly the highest not depending on the year of 
the study, while in the case of the SO4 rootstock in the first and 
last year, and in the case of 5BB in 2022. The ash content for the 
tested raw materials was at a fairly high level. Similar results were 
achieved for apple tree leaves, peach tree leaves (Güleç et al., 
2022), grapevine leaves, lemon leaves, plum leaves or raspberry 
leaves (Vassilev et al., 2017). As regards agrobiomass, the same 
levels were recorded for corn stover, sunflower pressed bagasse, 
and wheat husk (Rahimi, Anand and Gautam, 2022). Carbon, 
nitrogen and hydrogen contents were similar for pruning vine, 
pruning kiwi (Torreiro et al., 2020) apple tree leaves, cherry tree 
leaves, hazelnut tree leaves (Güleç et al., 2022), but significantly 
higher levels were recorded for sulphur than those obtained for 
the aforementioned biomass. Figure 3 shows results of the 
principal component analysis for leaves of ‘Regent’ grapevines. 

A principal elemental parameter analysis (Fig. 3a) of the 
‘Regent’ grapevine leaves oculised on six types of rootstocks and 
own-root vines (control) allowed to separate three clusters. The 
first cluster consists of rootstock 101-14 and control, and 
subcluster 125AA. The next two clusters consist of leaf biomass 
of vines grafted on SO4 and SORI rootstocks, as well as 5BB and 
161-49. The next dendogram of technical principal component 
analysis (Fig. 3b) of ‘Regent’ grapevine leaves allowed two separate 
clusters to be distinguished. The first cluster included the leaf 
biomass of 101-14 rootstocks and controls, while the next cluster 
consisted of the other rootstock types. When considering elemental 
and technical analyses, similarity was observed in the first cluster 
consisting of leaf biomass of 101-14 rootstock and control (own- 
rooted shrubs). Despite the fact that the number of leaves per 
shrub in the above-mentioned plants differed significantly, to the 
extent that shrubs grafted on 101-14 rootstock produced 
significantly the largest volume of leaves, while the own-rooted 
ones produced significantly the least volume of leaves among all 
the combinations evaluated. For the other parameters determining 
biomass, i.e. leaf mass and leaf area, no clear relationship was 
observed with elemental and technical parameters (Fig. 3). 

CONCLUSIONS 

In most of the studied parameters, tests carried out for the leaves 
of grapes of the ‘Regent’ cultivar showed no significant differences 
depending on the year of cultivation. Hence, when considering 
the possibility of obtaining additional raw material as biomass for 
energy purposes, the year of cultivation does not play a role in 
shaping the energy potential, no less it affects the amount of raw 
material obtained. Instead, the energy potential is influenced by 
the type of rootstock used in cultivation. The analysis of results 
obtained showed that the 101-14 rootstock, 125AA and the 
control have the highest leaf energy potential considering higher 
heating value (HHV), while the lowest value applies to cultivation 
on the 5BB rootstock. Hence, the energy bio-waste management 
should be based on both the amount of available biomass and its 
energy potential. In addition to yield, the optimal choice would be 
to recommend cultivation on the SO4 rootstock, for which both 
the highest weight of leaves with petioles from the growing area 
(9.0 Mg∙ha–1) and high heat of combustion of 18.4 MJ∙kg–1 have 
been observed for leaves of the ‘Regent’ cultivar. 

Fig. 3. Principal component analysis of leaves of ‘Regent’ grapevines oculised on six types of rootstocks (101-14, 125AA, 161-49, 5BB, SO4, SORI) and 
own-rooted vines (control): a) elemental (elementary parameters: carbon content (C), hydrogen content (H), nitrogen content (N) and sulphur content 
(S)), b) technical parameters: moisture content (M), volatile matter content (V), and ash content (A); source: own study 
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SUPPLEMENTARY MATERIAL 

Supplementary material to this article can be found online at:  
https://www.jwld.pl/files/Supplementary_material_Kaplan.pdf. 
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