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machine in structural health monitoring of bridges
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Abstract: Structural health monitoring (SHM) of bridges is constantly upgraded by researchers and
bridge engineers as it directly deals with bridge performance and its safety over a certain time period.
This article addresses some issues in the traditional SHM systems and the reason for moving towards
an automated monitoring system. In order to automate the bridge assessment and monitoring process,
a mechanism for the linkage of Digital Twins (DT) and Machine Learning (ML), namely the Support
Vector Machine (SVM) algorithm, is discussed in detail. The basis of this mechanism lies in the
collection of data from the real bridge using sensors and is providing the basis for the establishment and
calibration of the digital twin. Then, data analysis and decision-making processes are to be carried out
through regression-based ML algorithms. So, in this study, both ML brain and a DT model are merged
to support the decision-making of the bridge management system and predict or even prevent further
damage or collapse of the bridge. In this way, the SHM system cannot only be automated but calibrated
from time to time to ensure the safety of the bridge against the associated damages.
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vector machine
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1. Introduction

The great importance of bridge structures results in high requirements for their reliable
and long-term use [1]. Over the last 15 years, concerns about bridges’ deterioration have
increased significantly, as the existing bridge structures are subjected to numerous envi-
ronmental and operational loads in daily operations [2]. The influences of these external
loads are unfavorable and prone to accelerated structural damages. The probable reduction
in bridge performance is the result of various factors such as weather, overloading by traf-
fic, poor design work, motion excitation, fatigue cracking, construction deficiencies, and
material deterioration [3, 4].
Extreme events, like earthquakes, may also be encountered throughout the bridge

service life; for example, Baihua Bridge, an RC multi-span girder bridge located in the
near-fault region, collapsed in the curved spans and was damaged significantly in the
straight spans during the Wenchuan, China earthquake of May 12.2008 [5], where five
spans collapsed utterly, Some columns suffered from shear cracking, crushing of concrete,
and destruction of collar beams [6]. Deterioration rates of different RC bridge elements are
influenced by the combined effects of several complex phenomena such as reinforcement
corrosion, concrete degradation, creep, shrinkage, cracking, fatigue, etc. [7]. Rajeev et
al. analysed bridge failures in 10 thousand bridges from 1977 to 2017 and found that
the dominant causes include natural disasters at 80.30%, deterioration of the material at
10.10%, bridge overloading at 3.28%, and Human-Made disasters at 2.19% of all the
failures of the studied bridges [8].
Finding and controlling the deterioration factors that damage bridges are as crucial

to efficient bridge maintenance as repairing the caused damage. Identifying these factors
will certainly help in the cause-and-effect analysis, damage diagnosis, modelling of bridge
deterioration, improving prediction accuracy, and reducing bridge life cycle cost [9]. Tra-
ditionally, visual inspection plays an essential role in the detection of structural surface de-
fects and assessing the structural condition. However, visual inspection is labour-intensive,
time-consuming, and subjective even for well-trained inspectors, hence is unable to track
condition variations in real-time. Structural health monitoring (SHM) techniques have been
proposed and increasingly used in bridges in the past decades to address the problem [3,10].
The core of a well-designed SHM system is a data acquisition system that relies on de-
ployed sensors to initiate the information workflow from which ultimate decisions about
operations, maintenance, and other life-cycle actions will be made [11].
Sensors are generally divided into two types, namely wired and wireless sensors [12].

Wired sensors are usually limitedly applied since they require installation during struc-
ture construction. The wiring could impact the function of the structure with a limited
number of sensors. Therefore, with the development of wireless sensors, wireless mon-
itoring has emerged in recent years as a promising technology that could significantly
impact SHM [13]. Nevertheless, assessing civil structures is a complex task caused by the
stochastic nature of the underlying deterioration processes and the loading demands [14].
Yet the contradiction is that this situation can lead to difficulties if, for example, no rel-
evant information is extracted from monitored data. Hence, the critical issue associated
with SHM techniques nowadays is how to extract relevant information that can be in-
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corporated into the decision-making process relating to managing and maintaining civil
infrastructure [15].
SHM approach is still facing some serious challenges in changing environmental (tem-

perature, humidity, wind, etc.) and subjected operational conditions (live loads, etc.) of
bridges [16]. These variations influence the measured signals, making data interpretation
a complex task. Thus, it can be impossible to distinguish structural changes due to the
failure to quantify the input-output relationship between environmental and operational
conditions, on one hand, and on the other hand structural responses (e.g., strains and dis-
placements) or derived quantities (e.g., natural frequencies) [17]. Several mathematical
alternatives may be able to account for the environmental and operational effects, with
regression analysis being a suitable tool in Machine Learning (ML) when there is a large
quantity of data obtained under varying conditions [15].
Since modern monitoring systems provide large amounts of data, regression analyses

have been explored in several SHM applications. Within a local approach to SHM, Guo et
al. [18,19] carried out a linear regression analysis to describe the pattern between monthly-
averaged S-N fatigue damages (number of cycles to failure, N(S), when a material is
repetitively cycled over a given stress range S), monthly-averaged temperatures, and traffic
flow. Furthermore, [20], and [21] have used SHM systems to predict further damages or
the bridge’s collapse if an alarm system is established with a Digital Twin (DT). They can
give the comparison phase threshold values for stresses and internal forces. DTs have two
essential characteristics, interactive feedback, and self-evolution. They can realise intuitive
observations and predictions of the working state, making operation and maintenance work
more efficiently [22].
Further, it is analysed thatMachine Learning algorithms are needed to drive the analysis

and processing of the twin data platform.By analysing the data, DT can diagnose and predict
the bridge’s status [23]. The coupling mechanism of the DT and ML is now becoming the
core of SHM monitoring [24]. Its primary function is to collect, process, and analyse data
and then output diagnostic and predictive results to support the decision-making of related
work and predict or even prevent further damage or collapse of the bridge [25].
Based on the above-mentioned literature authors have tried to present the technological

advancements currently in use for SHM bridges and linked them with smart systems using
DT technology andML algorithms. Further, it is summarized how crucial it is to develop an
automatic SHMmethodology to detect damages in reinforced concrete bridges at their early
stages. The presented methodology consists of three main segments; data collecting which
is represented by sensors for themeasurement of data, digital twinwhich is a 3Dmodel iden-
tical to the physical bridge and helps to identify threshold values for some suggested param-
eters, and an artificial intelligence algorithm (SVM), that is based on the assigned threshold
values, can detect the occurred damage, and predict the future behaviour of the bridge.

2. SHM of bridges

Most bridges are either coming to the end of their design life or are in poor situations. For
example, the Canadian Infrastructure Report Card 2016 declared that 25% of the existing
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bridges are in poor condition. The equivalent value from the US Infrastructure Report Card
highlighted that 9.1% (equivalent to 56,000 bridges) of the existing bridges are designated
structurally deficient [26]. A bridge’s deterioration can lead to functional or structural
failure without appropriate monitoring and maintenance measures. SHM is a measuring
system established to constantly monitor a structure’s technical condition and behaviour.
Housner et al. [27] defined SHM as using sensing techniques and structural characteristics
analysis to detect structural damage or degradation. Aktan et al. [28] proposed that SHM
should be considered within the domain of condition assessment; Farrar and Worden [29]
regarded SHM as a damage detection process. In summary, SHM aims to assess the current
structural health state to enable stakeholders to make informed performance, maintenance,
or repair decisions, based on appropriate in situ measured data analyses [11].
SHM techniques have been applied in bridges by installing structural health moni-

toring systems for almost 40 years and have been increasingly used in long-span bridges
worldwide [30]. These SHM systems have accumulated massive data after long-term mea-
surement by numerous sensors with high sampling frequencies. Interpreting these data
from the viewpoint of structure safety becomes a priority of SHM research [3]. SHM al-
lows monitoring and measuring the physical quantities obtained from monitoring devices
in a structure to check the assumptions made at the design stage; abnormalities are also cor-
rectly detected. Setting an appropriate alarm system in the SHM application minimises the
possibility of damage and thus increases the structure’s safety [31]. New-found structural
health monitoring systems have been developed with different approaches, such as using
wireless sensors with self-diagnosing and self-calibration to reduce data transmission and
power consumption [31].

2.1. Existing issues in ordinary SHM

Throughout SHM of bridges, some problems may arise; for instance, large and het-
erogeneous datasets are obtained and are challenging to store, process, and interpret.
Furthermore, low query efficiency of relevant data, as different data resources are stored
in various management systems. In addition to this another concern is interoperability, it
works across multiple software packages for different stages of a bridge project, so it is
low due to inharmonious data file formats. Besides this, there is often a loss of data and
information during project handover, in addition to low integration in various design and
construction iterations and loss of historical data that can help to improve predictions. Four
types of monitoring data can be gathered during bridge assessment; response-based data,
such as strain, displacement, and inclination; geometry-based, such as conventional sur-
veying and laser scanning; vision-based, such as image and video; and loading operational
and environmental loadings [32].
Two main approaches for processing and interpreting bridge monitoring data can be

used: a physics-based approach and a data-driven approach. A physics-based system cor-
relates sensor measurements with previous physics-based model predictions like code
formulas and finite element models; it explains any inconsistencies, thus implying actual
structural conditions and performance. For example, Biliszczuk et al. [33] presented a
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structural health monitoring system and a finite element model-based force analysis as-
sessment for stay cables. The system was designed to monitor the cables’ health and detect
any potential damage or deterioration. The force analysis assessment method was used to
estimate the forces acting on the cables and to evaluate their structural integrity.
The current practice usually involves model updating, mainly by updating the param-

eters within the model to minimise the discrepancies and generate an “As-Is” model; the
differences betweenmodel predictions and newmeasurementsmay indicate the existence of
damages [3]. A data-driven approach is formulated based on data alone in statical models,
which identify trends, patterns, and correlations inside the datasets and quantify structural
conditions and performance uncertainties [32].
Automation of bridge inspection systems is challenging; the first phase involves devel-

oping a 3D digital geometry model, and input/output data processing must be controlled
to decrease the propagation of errors. The second phase consists of the inspection pro-
cess. Engineers can detect structural damages in real-time and have advanced functions for
remote supervision by adapting a good machine vision concept. Inspection data can be per-
ceived and directly uploaded onto the server through a mobile device or an uncrewed aerial
vehicle (UAV), or another wearable/augmented reality (AR) device, and timely analysis to
determine the crack profile, width, length, as well as propagation direction, significantly
supports the decision-making process from a remote office [26].

3. Coupling of DT and ML in SHM

Structural Health Monitoring damage detection method driven by the combination of
digital twinning and machine learning is the use of DT technology to realise the digitisation
and visualisation of the critical elements of SHM in terms of geometry, structural behaviour,
damages, and other aspects, and the analysis and prediction of future structural behaviour
through machine learning algorithms, including the bridge’s state prediction, residual life
prediction, potential future damages or even collapse. Research on the combined application
of DTs and AI technologies like machine learning is still in its infancy [34]. Machine
learning integrated with twin modelling makes it possible to establish a synchronous
operation in the digital space. A mechanism for the fusion of digital twins and artificial
intelligence is built.
The basis of this coupling mechanism is collecting the structural and environmental

information of the actual structure, such as strains, stresses, displacements, or tempera-
ture. In this study, sensors are used to collect information such as the environmental and
mechanical properties of the structure, thereby providing a basis for the establishment and
calibration of the structural digital twin. DT model is shown in Fig. 1.
The core of DT and ML integration systems is an information management and control

platform based on machine learning. This platform is formed by fusing these two technolo-
gies, mainly consisting of two parts: an ML brain and a DT model, as shown in Fig. 1.
Building an information management and control platform will make continuous structural
health assessment and future damage detection possible. Also, direct sensor information
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Fig. 1. Closed-loop of information management and control platform of bridge diagnostics

transmitting to ML algorithms will be sufficient for the structural evaluation. Moreover, the
bridge’s collapse can be avoided if an appropriate alarm system had been established.

4. Digital Twins
Digital twins are vital to adapt to changes in the twenty-first century, categorised as

technology push (e.g., integrated sensing, Industrial Internet of Things) and demand-pull
(e.g., change of use, climate change); virtualising bridges became important for improving
their management and sustainability [32]. A DT is a digital replica of actual physical
objects (processes, systems, etc.) in computers. It is considered a conceptual digital model
of data and behaviour for structures of interest, attributing and operating through their life
cycle [35, 36]. Digital twins must be the most realistic virtual representation of physical
entities, including the digital model and all relevant information, and must be synchronised
with those entities. One important characteristic of DT is self-evolution; they must change
and evolve according to the actual situation while maintaining the contrast between physical
and virtual spaces [23].
DTs are not just pure data; they contain algorithms that describe their real counterparts

and decide an action in the production system based on this processed data [37]. A DT
operates as a virtual representation of the physical bridge, which can be updated in near
real-time as new data is collected, provide feedback to the physical twin, and achieve ‘what-
if’ scenarios for assessing risks and predicting performance [32]. In 2002, the conception
of a digital twin at the center of the fourth industrial revolution was first applied at the
University of Michigan, US [35]. Ye et al. [38] investigated the digital twinning of two
railway bridges in Staffordshire, the UK, with pervasive sensor networks installed. To
manage the DT, a simulation model for the bridge, the interaction with the actual bridge,
and the environment for simulation execution and visualisation must be established. From
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a practical point of view, the created numerical model must follow the real behaviour of
the structure as closely as possible [39].
Furthermore, to maintain the safety of the real bridge despite changes during its life

cycle, the DT must be updated to continuously apply the actual data generated from the
real bridge. Accordingly, a digital twin requires combining a wide range of technologies,
among which modelling and simulation are essential for the evolution of the DT [35]. The
concept of digital twinning spread widely in the last two decades and is considered one of
the top strategic technologies over time, where a DT model is paired with a physical entity
and then represented for its existence. After that, the DT model can perform the functions
of the monitoring system, aiming to catch and remove the problems even before they occur.
Therefore, uncertainty risk can be prevented, and new challenges and opportunities can
be assumed to determine the future through simulation [26]. Leser et al. [40] used DT
technology for the health management of fatigue-critical structures. They observed that
it has application potential in the operation and maintenance processes of multiple fields,
from engineering to medical treatment. Ye et al. [41] built a digital twinmodel for structural
monitoring.

4.1. Twin model concept for bridge maintenance

Three main tasks must be performed to apply the DT concept to a bridge maintenance
system. First, a 3D geometry model, the so-called DT model, is generated based on the
as-built documents of the existing bridge. Second, the reversed 3D surface model with
the bridge’s status, the so-called reality twin model, is created through the 3D scanning
procedure, a combination of scanned photos usingUAVof the lateral and top surfacemodels
and laser scanning cloud data for the bottom surface model. Finally, a federated model is
developed between the DT model and the “reality twin model.” [26]. The structural 3D
model, the so-called mechanical twin model, can be directly derived from the DT model.
Inspection data from the scanning procedure are automatically converted into technical
damage reports based on image processing and image tracing technology and directly
updated onto the initial model.
Furthermore, the environmental conditions, including temperature and humidity his-

tory, loading history, and monitoring data, are indispensable for predicting the consequent
performance of the structural member. Briefly, DT model concept adoption helps engi-
neers make a long-term strategy for the operation and management of the bridge, in other
words, preventive maintenance. Automation of inspection, from the data capturing pro-
cess to image processing and archive-data updating, is used instead of the traditional visual
observation inspection. Thus, assessment is faster, more accurate, and can be scheduled fre-
quently. Regarding the mechanical twin model, it continuously keeps tracking the changes
in the bridge. Thus, engineers can assess the current behaviour of the structure and leave
the basic assumption to the decision-making team.
To conclude, the DT model concept focuses more on capturing and storing the his-

torical data of the asset and based on that, predicting the future behaviour of the asset.
The general procedure for maintenance work is a closed loop of interactive processes,
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including inspecting, monitoring, and performing appropriate repair or rehabilitation work
and upgrading the feedback to the database. Initially, the current condition of an individual
structural member is observed and assessed. The repair or rehabilitation work is diagnosed
and proposed if necessary. Subsequently, the best repair method is chosen and applied. Fi-
nally, all archived data, including inspection/monitoring data, date/method of repair work,
and structural condition right after repair work, are upgraded into the database; this work is
continuously repeated throughout the service life of the bridge. The DTmodel of the bridge
(Fig. 2) is developed by creating a 3D mesh model of the bridge considering the existing
damages and similar material laws to represent the actual behaviour of the structure as
possible.

Fig. 2. 3D deformed shape model of the bridge (A), FE model of the bridge (B), digital twin
representation (C)

5. Inventory system and object ID definition
The first main task for generating a 3D information model is creating the data schema

for maintenance purposes. Therefore, each structural element needs to be identified by a
specific ID. The final information model will be produced by assembling all members’
specific IDs obtained using their orientation data, including coordinates and constraint
information. Each structural element is categorised as a superstructure or a substructure in
an inventory system. Note that structural elements should have similar characteristics and
properties in one category. The 3D information model is generated based on the inventory
system and ID identification. The database consists of attributes of each member and an
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archive of submitted documents, ‘Attribute’ information includes general information such
as structure type, geometric shape, nominal size, or material property, and orientation
information, including location and constraint.
In contrast, an ‘Archive’ includes an inspection plan, inspection manual or damage

history, and repair record [26,42]. The standard report form should be considered to make
the archive data feature computer readable. This means it should be stored in primitive file
formats such as .jpg for photo-checking reports, .avi for video-checking reports, or .pdf/.txt
for document reports [26].

5.1. Information specification

Different levels of accuracy can be considered based on the anticipated Level of Detail
(LOD) and the importance of the project [43]. The final goal of a DT model for bridge
maintenance uses the highest of those levels; from this model, it is possible to derive the
lower level of DT model, such as DT model for conceptual design, DT model for detail
design, or structural analysis, and DT model for shop drawing or preassembly [26]. There
are three maturity levels of digital twin models; the first is the partial DT model which
contains only limited essential information like graphical design, structural analysis, or
prefabrication. The second is called clone DT, which can be established by combining
individual partial DTs. The highest level of DT maturity is the augmented DT, where the
in-use data are enhanced by upgrading from derivative, analytics, or correlated data derived
through the federated model [26, 44].

6. Machine learning in SHM of bridges

The pioneer describedmachine learning in 1959 as a “field of study that gives computers
the ability to learn without being explicitly programmed” and is constructed to learn from
data by automatically extracting patterns [25]. Machine learning techniques are helpful
in various applications, including computer vision tasks, robotics, autonomous vehicle
control, speech, natural language processing, and neuroscience research [45]. Conversely,
AI has recently attracted the attention of civil engineering experts [46]. There are usually
three types of machine learning: supervised, unsupervised, and reinforcement learning, as
shown in Fig. 3. In the SHM domain, Supervised learning (SL) can be used, for instance,
to detect the type and severity of damage [47]. As shown in Fig. 4, ML is a straightforward
process, starting from the database input, passing through the selected algorithm, getting the
output, and stopping or restarting the process by providing feedback. The end of the process
is marked when getting an accurate and well-predicted result. A better understanding of the
data can help select the suitable algorithm at the input stage. Some algorithms can operate
well with smaller sample sets, while others require extensive samples. Also, some work
better with a particular type of data than others.
As illustrated in Fig. 5, data need to be well understood and manipulated using mathe-

matical tools, for example, data statistics and data visualisation, before using any machine
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Fig. 3. ML classification [45]

Fig. 4. Life cycle of ML [45]

learning algorithm. In data statistics, percentiles are used to identify the range, average, and
median of data to describe the central tendency and correlations, also acquiring knowledge
of how the data is linked together [45].
Nevertheless, density plots and histograms are used in data visualisation to show the

data distribution and box plots to identify problems like outliers [48]. Then, data need to be
‘cleaned,’ which means dealing with missing values and outliers that can concern specific
algorithms, decreasing output predictive accuracy. Finally, the data can be enriched to make
the models easier to interpret, reduce redundancy and dimensionality, capture complex
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Fig. 5. Input configuration [46]

relationships, and rescale some variables [49]. After manipulating the data, the problem
must be categorised following an input-output process. If the data is labelled for the input
process, it will involve a supervised learning problem. However, if it is unlabelled, the
learning problem is unsupervised. On the other hand, the output process is classified by
task. If the output is a set of input groups, the problem can be recognised as a clustering
problem.
Understanding the problem’s constraints is also themain task in selecting an appropriate

algorithm. Some conditions could be presented in an ML algorithm, starting from the
awareness of the data storage capacity. Furthermore, prediction time can play a significant
role in the selection process. For instance, some SHMproblems need to be solved promptly.
For example, real-time object detection problems must be super-fast to avoid wasting
information during object recognition [50]. In addition, the model training process should
learn quickly in cases where it is rapidly exposed to new data and must instantly process it.
Other factors in selecting the appropriate algorithm, such as the accuracy and scale of the
model, model pre-processing, and complexity in terms of features, included learning and
predicting more complex polynomial terms, interactions, and computational overhead [49].

6.1. Support vector machine (SVM)

Support Vector Machine is a supervised learning technique with solid theoretical foun-
dations based on the Vapnik-Chervonenkis theory [51]. It has a substantial regularisation
property that can generalise the model to new data. These characteristics help it overcome
overfitting, a common problem for neural networks. Furthermore, SVM can unify different
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discriminant functions in the same framework, such as linear, polynomial, and radial basis
functions [52]. SVM has been widely used in bridge health monitoring applications to
determine damage in the Hangzhou bridge using strain vibration, distortion, and cable
tension [53]. Furthermore, SVM was attempted for crack detection in the Sydney Harbor
Bridge, Australia, using inputs including force, acceleration, and time histories recorded
during regular bridge operation [54].
SVMproved its effectiveness in binary classifications, training, building, and regression

tasks. For instance, “L2 Regularization” is an essential feature of SVM, characterised by
superior generalisation capability [49]. Another important part is that it performs well in
non-linear data from different sensors installed on structures. It also has excellent stability
in the case of a specific change in the data; in contrast, it is an obstacle for other kinds of
neural networks. Nevertheless, using the SVM algorithm can be challenging since the filter
or the kernel needs to be chosen appropriately to handle non-linear data. This can lead to
generating too many support vectors, which will increase the calculation time. Moreover,
the obtained data from sensors need to be scaled manually, reducing the time to effectively
obtain classification and regression results. SVM is accurate enough to have a substantial
margin of separation between classes (a safe structure and a damaged one). However, its
application still depends on computation time, which is one of the most critical factors in
AI tasks [49].

6.2. SVM methodology

The basic idea behind the SVM algorithm is to differentiate between groups of data
features, called vectors which represent the available data (training data set) [55], The
geometrical interpretation of SVM is that the algorithm seeks an optimal separating surface,
i.e. a hyperplane (shown in Fig. 6) equidistant from the two classes and has a maximum
margin [56].

Fig. 6. Example of SVM for classification [55]

Denote 𝑥, a feature vector obtained from sensor data, 𝑦 ∈ {−1, 1} the label of 𝑥, where
𝑦 = −1 means that 𝑥 is recorded from a damaged bridge element and 𝑦 = +1 implies that 𝑥
is measured from a healthy component. A hyperplane with maximum margins separating
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the points with labels 𝑦 = +1 from those with 𝑦 = −1 should be determined [54]. The
classification model is a function, 𝑓 : 𝑅𝑑 → {−1, 1}. Its form is: 𝑓 (x) = sgn(w · x − 𝑏)
where ‘·’ is the dot product, sgn (𝑥) = +1 if 𝑥 > 0 and sgn (𝑥) = −1 otherwise. 𝑤 and
𝑏 are the parameters of the model and can be learned from a training process • can be
obtained from the digital twin. Given a set of 𝑛 training samples,

{
(x𝑖 , 𝑦𝑖)

}𝑛
𝑖=1, the training

process defines the model parameters 𝑤 and 𝑏 by making sure that the classification error
of the obtained model on the training set is minimised while still maximising the margin.
Mathematically, the training process is equivalent to the following minimization problem:

min
𝑤,b ,𝑏

1
2
‖w‖2 + 𝐶

𝑛∑︁
𝑖=1

b𝑖 [54](6.1)

such that 𝑦𝑖 (𝑤 · 𝑥𝑖 − 𝑏) ≥ 1 − b𝑖 , b𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛, [54](6.2)

where b𝑖 is a slack variable to control how much training error is allowed and 𝐶 is the
variable for controlling the balance between b𝑖 (the training error) and w (the margin). The
problem can be transformed into the dual form using the Lagrangian multiplier:

max
𝛼1 ,...,𝛼𝑛

𝑛∑︁
𝑖=1

𝛼𝑖 −
1
2

∑︁
𝑖, 𝑗

𝛼𝑖𝛼 𝑗 𝑦𝑖𝑦 𝑗x𝑖x 𝑗 [54](6.3)

such that
∑︁
𝑖

𝛼𝑖𝑦𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, . . . , n.t [54](6.4)

This problem can be solved using quadratic programming. After prepossessing the raw
data, which is generated from the sensors by replacing any missing data for example, the
SVM searches for the simplest solution that classifies the data correctly using Eq. (6.1).
This means if we have two vectors of parameters, for example, temperature and horizontal
elongation of the bridge, using the former equations we can predict new values after the

classification model 𝑓 (x) = sgn(w · x− 𝑏) = sgn
(∑︁

𝑖

𝛼𝑖𝑦𝑖x𝑖x − 𝑏

)
is learned, and a health

score for a new data record, denoted as 𝑥new, can be generated as
∑︁
𝑖

𝛼𝑖𝑦𝑖x𝑖xnew − 𝑏.

7. Conclusions

This paper has carried out an extensive literature review of theBridgeHealthmonitoring
system and the use of AI-based technologies for the assessment and monitoring of bridges.
This study has discussed the major concerns of the bridge health monitoring system, its

fundamental principles according to different studies available online, the purpose of the
SHM system, and its developments over a couple of decades. Further, it has highlighted
several issues like large and heterogeneous datasets and their processing, low query effi-
ciency of relevant data, interoperability of multiple software packages, and loss of data and
information during project handover which makes the bridge SHM inefficient.
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So, to overcome these issues of SHM systems, authors have critically analysed the AI-
based modern techniques like SVM and their linkage with DT which can control the SHM
system. In this way, it is observed that ML algorithms are needed to drive the analysis and
processing of the twin data platform because. ML integrated with twin modelling makes it
possible to establish a synchronous operation in the digital space giving rise to the fusion of
digital twins and artificial intelligence. This fusion is the core of this paper. which integrates
the information management system and control platform based on machine learning.
Further, this paper highlights the DT model concept that focuses more on capturing

and storing the historical data of the asset and predicts the future behaviour of the asset.
This DT model can be controlled by ML algorithms and the most efficient of them is the
SVM-based regression algorithm. It is outlined in this article that an automated health
assessment of bridges platform is built by the coupling of digital twins which work as a
virtual representation of the physical bridge and can be updated in real-time as new data is
collected by the sensors from the actual bridge, then implanted in vector support. It then
trains data and can predict new outcomes, which will help in the decision-making and
bridge management systems.
The major outcome of this study is the coupling mechanism of the DT and ML which

is now becoming the core of SHM monitoring. Its primary function is to collect, process,
and analyse data and then output diagnostic and predictive results to support the decision-
making of related work and predict or even prevent further damage or collapse of the bridge.
In this way not only the bridge’s health is maintained against the associated damages but
also the SHM system is calibrated against its defects.

8. Recommendations for future studies

To verify the presented methodologies, the authors will test this coupling methodology
of DT and ML in the SHM system of the Soroksari bridge in Hungary. There is an existing
sensory system on the bridge, since the measurement data are not enough to evaluate the
structural behaviour of the bridge or predict future damages, the authors installed seven
new strain gauges inside the bridge’s boxes, this allows the usage of different complex ML
algorithms for more accuracy. Moreover, the authors only developed the FE model-based
DT model of a bridge (Fig. 2) in this research, but the validation of this model is not
presented. For the validation of DT model, a field experiment is already planned through
which data will be collected from the SHM system and will be directly linked to the DT
model of the bridge for its automatic validation.
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