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Abstract: Metal columns of hollow and smoothly variable cross-sections, simply supported at their
ends are considered in the paper. Columns of such shapes are recently frequently designed by architects
in public utility buildings of various types. In this work authors present the comparatively simplemethod
of buckling resistance assessment which can be used by designers of metal columns of such shapes. The
formula on critical force required in the procedure was derived for columns of variable cross section by
means of Mathematica™system. The closed formulae were obtained for a rod with a certain, predefined
geometry being the surface of revolution. Critical forces obtained by means of derived formulae were
compared with results of numerical solutions. To assess the compression resistance of considered rods
the general Ayrton–Perry approach was applied and bow imperfection with assumed amplitude was used
in the analysis. Results of numerical simulations and experimental tests inserted in the paper confirm
the correctness and the effectiveness of the proposed procedure of buckling resistance assessment of
considered struts.
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1. Introduction
Tapered columns resembling a spindle shape and fabricated as a steel, hollow sections

are more and more often encountered in engineering practice (Fig. 1). Some of the main
reasons for their increasing use are thematerial savings, a greater load capacity and aesthetic
requirements [10, 11, 18]. Provisions of EN 1993 [5] do not offer direct procedures which
can be used in designing of such kind of columns. Existing design procedures based on
general Ayrton & Perry [3] approach refers only to columns of constant sections. This
general approach requires knowledge of the critical force value and it is the principal
problem which should be solved.

(a) (b)

Fig. 1. Santiago Calatrava’s “Turning Torso” in Malmö a), Wroclaw Airport hall b)

There are a large number of papers in which the buckling problem of non-prismatic
columns is considered [6, 8, 9]. Value of the critical forces is absolutely necessary to the
assessment of load bearing capacity.
In the present paper the effective method of determination of the critical force has

been presented. To this end the energetic criterion of stability proposed in Timoshenko
& Gere [17] was used. The obtained analytical expression on the critical force has been
verified positively by means of numerical solutions using commercial software based on
finite element method.
To assess the compression resistance of the considered kind of columns the general

Ayrton–Perry approach is adopted. This approach dating from XIX century [3], after many
modifications, was inserted into contemporary design provisions [4] and used by many
authors [7, 14, 15].
The stress criterion, in which the maximum stress was equated to the yield stress fy in

the most stressed section, was the condition from which the allowable compressive force
was obtained. Similarly, as in the Ayrton–Perry approach, the initial bow imperfection has
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been taken into account with the amplitude corresponding to the fabrication quality class.
The effect of the eccentricity amplification, typical for slender compressed members, was
taken into account as well. The stress condition has been checked in every section x along
the column axis because, due to the column cross-section variability, it was not possible to
predict in advance in which cross-section the stress condition will be decisive.
Only specific class of geometries of bulged column was considered in the paper.

The effectiveness of the proposed designing procedure was illustrated on examples. They
confirm the effectiveness of the proposed approach. Experimental tests carried out on
specimens made of copper and presented in the paper also proved the correctness of the
proposed procedure.
In authors’ opinion the presented procedure can be used by engineers designing metal,

bulged columns of the shape considered in the paper.

2. Derivation of formulae for the critical force
Due to the fact that columns of variable cross-sections are subject of interest in this

work, the critical force can be established only in an approximate way using the energetic
criterion of stability [17]. According to this criterion the critical force for pin ended column
can be obtained from (2.1):

(2.1) 𝑃cr = 𝐸 ·
𝐿∫
0

(
𝑑𝑤(𝑥)
𝑑𝑥

)2
d𝑥

/ 𝐿∫
0

𝑤(𝑥)2
𝐽 (𝑥) d𝑥

where: 𝑤(𝑥) – expected buckling form adopting here the shape of ½wave of sine function
with the amplitude 𝐴0 (Fig. 2), 𝐽 (𝑥) – the moment of inertia of the cross section, 𝐸 – the
Young’s modulus.

Fig. 2. Buckling mode of the pin ended compressed bar

Amplitude 𝐴0 is irrelevant in these calculations as it is easy to see when analyzing
formula (2.1). The moment of inertia 𝐽 (𝑥) is defined in the following way (2.2):

(2.2) 𝐽 (𝑥) = 𝜋

4
[
𝑟 (𝑥)4 − (𝑟 (𝑥) − 𝑡)4

]
where: 𝑟 (𝑥) – the external radius of variable cross section (comp. Fig. 3).
The external radius of variable cross section is defined as follows (2.3):

(2.3) 𝑟 (𝑥) = 𝐷1
2

+
(
𝐷2
2

− 𝐷1
2

)
· sin

( 𝜋 · 𝑥
𝐿

)
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Fig. 3. Sections (scale not preserved) of the rod a) and static scheme of the compressed bar b)

where: 𝐷1 – the external diameter of the terminal cross section, 𝐷2 – the external diameter
of the middle cross section, 𝑡 – wall thickness, 𝐿 – the length of the column.

Further considerations presented in this work were limited to some specific geometry
defined uniquely by the column’s length 𝐿. It was assumed that the external diameter of
the terminal cross section is constant and equal 𝐷1 = 1/100𝐿. External diameters of the
middle cross sections of considered bars adopt the following values 𝐷2/𝐿 = 4/200, 5/200,
6/200, 7/200, 8/200. The wall thickness t is constant and adopts the following values:
𝑡/𝐿 = 1/1000, 2/1000, 3/1000. These particular geometrical parameters were used in
further considerations.

Formulae expressing the critical forces for particular geometries of columns are pre-
sented in Table 1. They were obtained from (2.1) by means of derivations carried out in
Mathematica™ system [20].

Table 1. Derived formulae on critical forces 𝑃cr/(𝐸 · 𝐿2)

𝐷2/𝐿 𝑡/𝐿 = 1/1000 𝑡/𝐿 = 2/1000 𝑡/𝐿 = 3/1000

4/200 1.91996 · 10−8 3.22130 · 10−8 4.05223 · 10−8

5/200 3.50317 · 10−8 6.03591 · 10−8 7.79138 · 10−8

6/200 5.71347 · 10−8 1.00223 · 10−7 1.31664 · 10−7

7/200 8.63133 · 10−8 1.53380 · 10−7 2.04083 · 10−7

8/200 1.23333 · 10−7 2.21330 · 10−7 2.97366 · 10−7

To illustrate the procedure of obtaining 𝑃cr for given data let us consider the case:
𝐸 = 210000 N/mm2, 𝐿 = 1000 mm, 𝐷1 = 𝐿/100 = 10 mm, 𝐷2 = 2𝐿/100 = 20 mm,
𝑡 = 𝐿/1000 = 1 mm. From the Table 1we obtain 𝑃cr = 1.91996·10−8 ·𝐸 ·𝐿2 = 4031.92 N =

4.032 kN. This particular value appears in Table 2 and in example presented in Section 5.
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3. Numerical verification of derived formulae
on critical forces

The correctness of derived formulae was verified numerically by means of commercial
software based on finite element method. Three different programs were used and two
different models were created. The beam model was prepared in Autodesk® Robot™
Structural Analysis Professional system [2], the shell model was created in COSMOS/M
system [4] while the 3Dmodel was prepared in Simulia Abaqus system [1]. Details relating
to particular finite elements used in analyses are presented in Section 5.
In the performed comparative analysis, the following data were adopted: 𝐿 = 1000 mm,

𝐷1 = 𝐿/100 = 10 mm, 𝐸 = 210000 MPa (column made of steel). Results are presented in
Table 2.

Table 2. Critical forces 𝑃cr in [kN] obtained for the column of length 𝐿 =1000 mm

𝑡 [mm] Calculation 𝐷2 = 20 m 𝐷2 = 25 mm 𝐷2 = 30 mm 𝐷2 = 35 mm 𝐷2 = 40 mm

1 Analytical 4.032 7.357 11.998 18.126 25.900

1 ROBOT 4.139 7.564 12.301 18.47 26.418

1 COSMOS 4.096 7.561 12.300 18.469 26.162

1 ABAQUS 4.158 7.561 12.373 18.584 26.364

2 Analytical 6.765 12.675 21.047 32.21 46.479

2 ROBOT 6.896 12.955 21.441 32.581 47.155

2 COSMOS 6.822 12.946 21.438 32.581 46.549

2 ABAQUS 6.946 13.032 21.678 32.931 47.095

3 Analytical 8.510 16.362 27.649 42.857 62.447

3 ROBOT 8.538 16.506 27.816 42.780 62.936

3 COSMOS 8.438 16.488 27.808 42.780 61.639

3 ABAQUS 8.748 16.819 28.424 43.647 62.897

Results presented in Table 2 confirm quite good correspondence between results ob-
tained by means of derived formulae (labelled as Analytical) and results obtained numer-
ically for the beam model (ROBOT), for the shell model (COSMOS/M) and for the 3D
model (ABAQUS). The maximum deviations do not exceed 3.5%.

4. Resistance of the compressed column

The resistance of the considered strut will be assessed on the basis of classical Ayrton–
Perry’s approach. Let us assume that the strut has an initial bow imperfectionwith amplitude
𝑒0 (Fig. 4) in a form of the one half-wave sine function defined as follows (4.1):
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Fig. 4. Deflections of the initially curved rod

(4.1) 𝑒(𝑥) = 𝑒0 sin
( 𝜋 𝑥
𝐿

)
The total deflection 𝑢𝑐 (𝑥) can be obtained from the formula (4.2) (cf. [17]):

(4.2) 𝑢𝑐 (𝑥) = 𝑓𝑐 sin
( 𝜋 𝑥
𝐿

)
, 𝑓𝑐 =

𝑒0

1 − 𝑃

𝑃cr

where: 𝑓𝑐 – total eccentricity at middle section of the rod, 𝑃cr – critical buckling force.
The maximum longitudinal stresses at arbitrary cross section defined by 𝑥 can be

calculated from the formula (4.3):

(4.3) 𝜎max =
𝑃

𝐴(𝑥) +
𝑃 · 𝑓𝑐
𝑊 (𝑥) · sin

( 𝜋 · 𝑥
𝐿

)
≤ 𝑓𝑦

where: 𝐴(𝑥), 𝑊 (𝑥) – are the cross sectional area and the elastic section modulus respec-
tively, 𝑓𝑦 – the yield stress.
The 𝐴(𝑥) and𝑊 (𝑥) can be obtained from formulae (4.4):

(4.4) 𝐴(𝑥) = 𝜋
[
𝑟 (𝑥)2 − (𝑟 (𝑥) − 𝑡)2

]
= 𝜋

[
2𝑟 (𝑥)𝑡 − 𝑡2

]
, 𝑊 (𝑥) = 𝐽 (𝑥)

𝑟 (𝑥)
Using (4.2) and taking the equality in (4.3) we obtain:

(4.5)
𝑃

𝐴(𝑥) +
𝑃

𝑊 (𝑥) 𝑒0 ·
𝑃cr

𝑃cr − 𝑃
sin

( 𝜋 · 𝑥
𝐿

)
= 𝑓𝑦

To convert the equation (4.5) to the form known from EN1993-1-1 [5] let us introduce
the notations:

(4.6) 𝑃(𝑥) = 𝜒(𝑥) · 𝐴(𝑥) · 𝑓𝑦 , 𝜆̂(𝑥) =

√︄
𝑓𝑦𝐴(𝑥)
𝑃cr

where: 𝜒(𝑥) – the buckling reduction factor, 𝜆̂ – the non-dimensional slenderness, both
dependent on 𝑥.
Substituting (4.6) to eqn. (4.5) and introducing the quantity Φ(𝑥) defined as fol-

lows (4.7):

(4.7) Φ(𝑥) = 1
2

[
1 + 𝐴(𝑥)

𝑊 (𝑥) 𝑒0 · sin
( 𝜋 · 𝑥

𝐿

)
+ 𝜆̂2 (𝑥)

]
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one obtains the equation (4.8):

(4.8) 𝜒2 (𝑥) · 𝜆̂2 (𝑥) − 𝜒(𝑥) · 2Φ(𝑥) + 1 = 0

from which the searched reduction factor 𝜒(𝑥) is obtained in the form (4.9):

(4.9) 𝜒(𝑥) = Φ(𝑥) −
√︁
Φ2 (𝑥) − 𝜆̂2 (𝑥)
𝜆̂2 (𝑥)

=
1

Φ(𝑥) +
√︁
Φ2 (𝑥) − 𝜆̂2 (𝑥)

which is consistent with the formula (6.49) from EN 1993-1-1 [5] valid for columns of
constant cross-section.
The column’s resistance 𝑃𝑢𝑙𝑡 is determined by the smallest value of the expres-

sion (4.10):

(4.10) 𝑃𝑢𝑙𝑡 (𝑥) = 𝜒(𝑥) · 𝐴(𝑥) · 𝑓𝑦

The value of ultimate force defined by formulae (4.10) could be too high in some
circumstances. For save design procedures the additional partial safety coefficient 𝛾 = 1.2
is proposed and the final formula for design value of column’s resistance is as follows (4.11):

(4.11) 𝑃𝑅𝑑 (𝑥) =
1
𝛾
· 𝜒(𝑥) · 𝐴(𝑥) · 𝑓𝑦

where: 𝛾 – the partial safety factor.
The whole procedure can be easily inserted in spreadsheet for every 𝑥 from the interval

0 < 𝑥 < 𝐿/2, and in this way the smallest value of 𝑃𝑅𝑑 can be found.
The initial bow amplitude 𝑒0 required in this procedure can be adopted according to the

code recommendations. Following provisions inserted in Eurocodes specifying tolerances,
dimensions and sectional properties of steel structural elements the 𝑒0 can be adopted as
𝐿/750 and this value guaranteeing the conservative assessment of columns resistance was
adopted in examples presented in the next section.

5. Examples

As the first example of the application of presented procedure let us consider the
bulged, steel bar of length 𝐿 = 1000 mm, 𝐷1 = 𝐿/100 = 10 mm, 𝐷2 = 2𝐿/100 = 20 mm,
𝑡 = 𝐿/1000 = 1 mm and 𝑒0 = 𝐿/750 = 1.333 mm. Material parameters: 𝐸 = 210 MPa,
the yield stress 𝑓𝑦 = 355 MPa.
The critical force calculated by means of the formula (cf. Table 1) is 𝑃cr = 4.032 kN.

Using the spreadsheet, the sequence of 𝑃𝑢𝑙𝑡 were calculated from the formula (4.11)
for 𝑥 = 0 to 500 (𝐿/2) with step 5 mm. The smallest value of the compression force
𝑃𝑢𝑙𝑡 ,min = 3.766 kN and this value was obtained for 𝑥 = 220 mm. The column’s design
resistance calculated from the formula (4.11) is equal 𝑃𝑅𝑑 = 3.138 kN and it is the searched
measure of the bar’s compression resistance.
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The same example was solved numerically by means of Abaqus system. Two kind of
modelling were adopted in numerical simulations which were carried out and namely the
shell model (63126 DOF) and the 3D (solid) model (94695 DOF). In the first case, the
S4 type of shell finite element was used, which uses thick shell theory and include four
internal integration points. With the solid model used C3D8I type of solid finite element’s
family with (“incompatible modes”). These elements have additional internal degrees of
freedom (incompatible deformation modes) eliminating “parasitic shear stresses” and the
shear-locking phenomena described in [21]. Using these models for ¼ of the column (the
column had two planes of symmetry) the geometrically and materially nonlinear analysis
with imperfections (GMNIA) was performed. The uniformly distributed load was applied
at the columns end. The bilinear material model for steel was adopted. Equilibrium paths
obtained by twomodels were nearly identical (less than 2%)which confirms the correctness
of the simulation performed.
The 𝜎𝑥 = 355 MPa appeared at section 𝑥 = 237.5 mm (comp. Fig. 5) when the load

attained value 𝑃 = 3.874 kN. It is the value 2.5% higher than the result obtained with the
analytical method. Themaximum load on the equilibrium path was equal 𝑃max = 3.883 kN.
The design value of column’s resistance was equal 3.874/1.2 = 3.23 kN and this level was
shown in Fig. 5.

Fig. 5. Nonlinear equilibrium path obtained in numerical simulation

As the other example let us consider the column of following parameters: 𝐷2 =

4𝐿/100 = 40 mm, 𝑡 = 3𝐿/1000 = 3 mm. Remaining geometrical and material param-
eters were the same.
The critical force calculated by means of the formula (Table 1) is 𝑃cr = 62.447 kN.

In this case the 𝑃𝑢𝑙𝑡 ,min = 23.421 kN and this value was obtained for 𝑥 = 0 mm (col-
umn’s end). The column’s design resistance calculated from the formula (4.11) is equal
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𝑃𝑅𝑑 = 18.45 kN. The counterpart of this value obtained numerically was equal 18.66 kN.
Fig. 6 presents a comparison of numerical simulations with the buckling resistance assess-
ment proposed in Section 4.

Fig. 6. Nonlinear equilibrium path obtained in numerical simulation

In both examples the column’s design resistances obtained analytically were conservative.

6. Experimental tests supported by numerical simulations

6.1. Experimental tests

In order to confirm the effectiveness of the proposed procedure experimental tests were
carried out. Due to some difficulties in manufacturing the steel specimen, it was made of
copper sheet. Detailed geometrical parameters of specimen were presented in Fig. 7. Due
to symmetry, only half of the specimen was shown in the figure.

Fig. 7. Nominal geometrical parameters of the specimen: 𝐴 – steel ball, 𝜙 = 20 mm, 𝐵 – reinforcement
collar, 𝑡 = 1 mm, 𝐶 – conical part: 𝜙ext = 10 mm to 𝜙ext = 16.4 mm, 𝐷 – conical part: 𝜙ext =

16.4 mm to 𝜙ext = 20 mm, 𝐸 – cylindrical part: 𝜙ext = 20 mm

Surfaces of specimens were covered by spot patterns required to displacement mea-
surements based on 3D digital image correlation (DIC) method (comp. Fig. 8).
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(a) (b)

Fig. 8. Specimen during the compression test a), snapshot from GOM Correlate software with
trajectory curve and lateral displacement diagram b)

In general, the DIC technology makes it possible to scan the geometry of the visible
part of the surface and its changes during the deformation by optical digital cameras.
This technology provides precise notation of the spatial (3D) displacement of surface
points with subsequent analysis of displacements, deformations, etc. This technology can
be used to identify some mechanical parameters or making comparative analyses with
numerical simulations [13, 16]. In this work, DIC was used to measure the magnitude of
lateral displacements (in an arbitrary direction) of the middle point of the beam during
the compressive test. Computer processing was carried out using GOM Correlate software
(comp. Fig. 8b).
Specimensweremanufactured from the copper sheet of thickness 𝑡 = 0.3 mm. Coupons

of this material were used to detect material characteristics. Particular parts of specimen
were connected to each other by tin welds. Terminal parts of specimens were reinforced
by collars made of zinc sheet of thickness 𝑡 = 1 mm. To simulate pin ended boundary
conditions of examined columns their ends were supported by steel balls (comp. Fig. 7
and Fig. 8).
To obtain material characteristic, tensile tests were made on six coupons cut from the

copper sheet. The exemplary stress-strain characteristic was presented in Fig. 9 in which
also best fit characteristic obtained by means Mathematica™ [20] was shown. In this figure
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also the 𝜎true (𝜀true) plot was shown in accordance with formula (C.1) from EN1993-1-
5. Within considered range of stresses the 𝜎(𝜀) relationship is nearly identical to the
𝜎true (𝜀true) plot. The best fit nonlinear characteristic in a form presented in Fig. 9 was used
in numerical simulations.

Fig. 9. Stress-strain characteristic

It is seen that stress-strain relation is strongly nonlinear. As the yield stress the average
value of 𝑅0.02 was adopted and in the case of tested material it was equal 107.3 MPa.
Fig. 8a presents the specimen on the test rig during compression test. Lateral dis-

placements were measured by means the DIC technique. Two cameras make possible to
register spatial motion of dots located in neighbourhood of middle segment of the speci-
men. Vertical displacements of the upper end were measured by the inductive displacement
transducer arranged in the way shown in Fig. 8a. The test was carried out in such a manner
that the grip of the hydraulic test machine was being moved downward with very slow
motion (1 mm/min). During the test the compression force was measured by the load cell
(comp. Fig. 8a) and characteristic displacements were registered at the same instants. Sam-
pling rates were equal to 1 sps (sample per second) in a case of picture registration and
4 sps in a case of load and axial displacements acquisition. As a result, the whole load
displacement paths were obtained. The maximum load on these paths were the measure
of buckling resistances of tested specimens. Results obtained for three tested specimens
were shown together with results of numerical simulations in Fig. 11. Initial segments of
obtained nonlinear equilibrium paths were used to determine critical forces 𝑃cr required in
the procedure presented in Section 4. To this end the Southwell’s method [12] was used.
Critical forces obtained by this way for three specimens were shown in Table 3.
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Table 3. Critical forces 𝑃cr obtained in laboratory tests

Parameter
Specimen’s identification

PM1 PM2 PM3

𝑃cr [N] 745.10 737.75 791.49

𝑃cr,average [N] 758.11

6.2. Numerical simulations

Numerical simulations of compression tests were carried out by means of COSMOS/M
system based on FEM [4]. Column’s geometry was discretized by means of quadrilateral
finite elements with six degrees of freedom at nodes. Due to double symmetry only one
quarter of the specimen was discretized and the discrete model was defined by 11531
elements and 12068 nodes which led to discrete model with 72408 degrees of freedom.
Appropriate boundary conditions were superimposed: clamped middle section and sym-
metry conditions on 𝑥 − 𝑦 surface (Fig. 10). The concentrated load was applied at terminal
node of the steel ball.

Fig. 10. Discrete model of the strut quarter with bow imperfection of amplitude L/150

Five different modes of initial imperfections were considered. These were bow imper-
fections with amplitudes: 𝑓 = 𝐿/150, 𝐿/400, 𝐿/500, 𝐿/1000, 𝐿/2000, 𝐿/5000.
The critical value of load couldn’t be obtained by the method presented in Section 2

due to the fact that the Young’s modulus was not constant as it was in case of steel. To
obtain the critical buckling force for considered columns of ideal geometry, the Southwell’s
approach was adopted [12]. To this end the initial segments of equilibrium paths obtained
numerically were used. Results of the Southwell’s approach were presented in Table 4.

Table 4. Critical forces 𝑃cr obtained in laboratory tests

Parameter
Imperfection case

𝑓 = 𝑙/150 𝑓 = 𝑙/400 𝑓 = 𝑙/500 𝑓 = 𝑙/1000 𝑓 = 𝑙/2000 𝑓 = 𝑙/5000
𝑃cr [N] 792.48 812.75 808.08 792.87 806.84 801.27

𝑃cr,average [N] 802.38
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Fig. 11. Equilibrium paths: test results and numerical simulations

The average value 𝑃cr = 803.4 N was used in the procedure presented in Section 4. As
the yield stress the value obtained in material tests as 𝑅0.02 = 107.3 MPa was adopted. The
statement of all obtained results was presented in Table 5.

Table 5. Buckling resistances of considered copper struts

Case 𝑃max [N] 𝑃𝑅𝑘 [N] 𝑃𝑅𝑑 [N]

1 2 3 4

𝑓 = 𝐿/150 436.1 453.5 377.9

𝑓 = 𝐿/400 529.9 600.5 500.4

𝑓 = 𝐿/500 590.7 627.8 523.2

𝑓 = 𝐿/1000 658.8 695.8 579.8

𝑓 = 𝐿/2000 709.6 741.4 617.8

𝑓 = 𝐿/5000 753.3 775.1 645.9

Buckling resistances for particular cases of struts obtained numerically were presented
in column no. 2. Characteristic values of resistances obtained by the method presented
in Section 4 was given in column no. 3. Design values of resistances obtained from eqn.
(4.11) was presented in column no. 4.
Buckling resistances obtained in experimental tests were equal respectively: 702.4 N

(PM1), 609.6 N (PM2), 623.4 N (PM3). One can expect that the fabrication quality of
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examined struts corresponds to amplitude of bow imperfections on the level 𝐿/1000–
𝐿/2000.
It is worth emphasizing that the design values of the load capacity calculated using

the method proposed in Section 4 are lower than the resistances obtained numerically and
experimentally and it confirms its conservative character.

7. Recapitulation and conclusions
Existing design regulations do not contain provisions for design of steel, compressed

members of structures when they are non-prismatic. Authors have presented the procedure
which allows determining the critical force for non-prismatic rods of specific geometry.
Knowing the critical force one can assess the compression resistance of the rod under
consideration using the other, based on Ayrton–Perry approach, procedure details of which
were presented in the paper. Due to the fact that the cross section is variable, the stress
criterion which follows from Ayrton–Perry condition should be checked not only in middle
section of the bar but also in all remaining cross-sections. This stage of the procedure
can be accomplished easily by means of the spreadsheet in which formulae presented in
this paper should be inserted for arbitrary value of the axial coordinate x of the rod. The
smallest value of compression force obtained as the result of the presented procedure is the
measure of compression resistance of the considered rod.
Examples presented in the paper confirm that the proposed procedure is relatively easy,

effective and correct what was proved in geometrically and materially nonlinear numerical
simulations presented in the paper. Experimental tests and numerical simulations made on
strutsmade of copper confirm the positive features of the presented approach to the buckling
resistance assessment of metal columns of variable cross section. The presented design
procedure can be recommended for civil engineers designing metal, structural members of
the particular shape considered by authors. The design value of compressive force obtained
as a final result of the procedure can be treated as a compressive resistance of analysed
columns. The presented proposal effectively fills the gap existing in the available design
recommendations.
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Nośność wyboczeniowa słupów metalowych o płynnie zmiennym
przekroju poprzecznym

Słowa kluczowe: słupy metalowe, zmienny przekrój pierścieniowy, siła krytyczna, metoda Ayrtona-
Perry’ego, symulacje numeryczne, badania eksperymentalne

Streszczenie:

Przedmiotem rozważań zaprezentowanych w artykule są słupymetalowe o przekroju pierścienio-
wym zmiennymwzdłuż ich osi wzdłużnej i swobodnie podpartych na końcach. Słupy tego kształtu są
ostatnio często projektowane przez architektów w różnego typu obiektach użyteczności publicznej.
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Relatywnie prosty sposób oszacowania nośności wyboczeniowej słupów rozważanego kształtu został
zaprezentowany przez autorów pracy. Wzór na siłę krytyczną niezbędną do oszacowania nośności
wyboczeniowej został wyprowadzony z wykorzystaniem systemu Mathematica™. Zamknięte wzory
na siły krytyczne zostały wyprowadzone dla pewnej klasy prętów o wstępnie zdefiniowanej geometrii
stanowiącej powierzchnię obrotową. Siły krytyczne otrzymane z pomocą wyprowadzonych wzorów
były porównane z wynikami symulacji numerycznych. Aby oszacować nośność wyboczeniową zasto-
sowano ogólne podejście Ayrton–Perry’ego i wstępne wygięcie łukowe prętów o założonych różnych
amplitudach.Wyniki symulacji numerycznych i badań eksperymentalnych zamieszczone w pracy po-
twierdziły poprawność i efektywność zaproponowanej metody szacowania nośności wyboczeniowej
rozważanych prętów.
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