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Abstract. In the paper we compare the geometric descriptions of the deformed sphere (i.e., the so-called λ -sphere) and the standard spheroid
(namely, World Geodetic System 1984’s reference ellipsoid of revolution). Among the main geometric characteristics of those two surfaces of
revolution embedded into the three-dimensional Euclidean space we consider the semi-major (equatorial) and semi-minor (polar) axes, quarter-
meridian length, surface area, volume, sphericity index, and tipping (bifurcation) point for geodesics. Next, the RMS (Root Mean Square)
error is defined as the square-rooted arithmetic mean of the squared relative errors for the individual pairs of the discussed six main geometric
characteristics. As a result of the process of minimization of the RMS error, we have obtained the proposition of the optimized value of the
deformation parameter of the λ -sphere, for which we have calculated the absolute and relative errors for the individual pairs of the discussed
main geometric characteristics of λ -sphere and standard spheroid (the relative errors are of the order of 10−6 – 10−9). Among others, it turns out
that the value of the flattening factor of the spheroid is quite a good approximation for the corresponding value of the deformation parameter of
the λ -sphere (the relative error is of the order of 10−4).

Key words: deformed sphere; standard spheroid; sphericity index; tipping (bifurcation) point for geodesics; elliptic integrals and functions.

1. INTRODUCTION

The λ -spheres (as deformations of the usual sphere) have been
introduced by Faridi and Schucking in [1] as an alternative to
the spheroids (ellipsoids of revolution). In our previous papers,
using the mechanical approach developed in [2,3], we have ob-
tained the general form of the solutions of the geodesic [4] and
geodetic (i.e., without any potential energy) [5] equations of
motion for the incompressible test bodies moving on the de-
formed spheres with the parameter of deformation λ < 1/3
(then the Gaussian curvature of the surface is strictly positive).

It turns out that the geodesics on λ -spheres can be expressed
through the well-known analytical functions (inverse tangent),
whereas the geodesics on the spheroids are expressed through
the incomplete elliptic integrals of the first and third kind (see
Section 3). The above observation justifies our idea to propose a
new reference model for the geoid (i.e., the surface that approx-
imates the actual shape of the Earth [6]) that is based on the
λ -spheres (see [4, 7, 8]) alternatively to the standard reference
models that are based on the rotational ellipsoids.

It is worth mentioning here that there are some propositions
about the triaxial (nonrotational) ellipsoid reference models as
more accurate approximations of the shape of the Earth than the
biaxial (rotational) reference ellipsoids (see, e.g., [9]). In future
research, it would be also interesting to confront the proposed
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reference model based on the deformed spheres with the exist-
ing proposals of the triaxial terrestrial ellipsoidal models.

In the present article we have constructed the appropriate
schemes that allow us to compare the geometric characteris-
tics of the deformed sphere and the standard spheroid. For this
comparison we use the ellipsoidal reference model for the geoid
within the World Geodetic System 1984 (WGS 84) [10].

As a result, performing the process of minimization of the
RMS (root mean square) error, in Section 4 we propose the opti-
mized value of the deformation parameter that can be next used
for calculations (e.g., of the solutions of the direct and inverse
geodetic problems [8] in geodesy or navigation) done within
the new reference model for the geoid based on the λ -sphere
that is well-suited to the WGS84’s standard spheroid.

2. GEOMETRIC DESCRIPTION OF λ -SPHERE
Let us consider a deformed sphere of the equatorial radius R
with the deformation parameter λ being in the range from 0
to 1/3, where the case λ = 0 corresponds to the usual, non-
deformed sphere of the radius R. The above condition on the
deformation parameter ensures that the shape of such a surface
is oblate and its Gaussian curvature is strictly positive. Then
the parametrization of the λ -sphere surface embedded into the
three-dimensional Euclidean space is given as (see [5])

x(u,v) = Rucosv, y(u,v) = Rusinv, (1)

z(u) =±R
(

E(θ ,k)
1− k

−F(θ ,k)− 1− k
r2 Π(n,θ ,k)

)
, (2)
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where u ∈ [0,1], v ∈ [−π,π] define the local latitude and lon-
gitude variables respectively, r = 1/

√
1−λ ∈ [1,

√
3/2) since

λ ∈ [0,1/3), whereas F(θ ,k), E(θ ,k), and Π(n,θ ,k) denote
the incomplete elliptic integrals of the first, second, and third
kind (see [11–13]) with n = k/r2 being the characteristic,

k =
1
2

(
r2 +1−

√
(r2 +1)2−4

)
(3)

being the elliptic modulus that fulfills identically the equation

k(r2−1) = (1− k)2 (4)

and θ(u) = arcsin
(
(r2− k)

√
1−u2

)
being the so-called Jaco-

bian amplitude. The signs ± in (2) correspond to the Northern
or Southern Hemisphere of the λ -sphere, respectively, whereas
u = 1 corresponds to the Equator and u = 0 corresponds to the
North/South Pole.

The connection between the local latitude uP of the point P
on the λ -sphere and corresponding geodetic latitude φP, which
is defined through the angle between the normal vector to the
surface at the point P and the equatorial plane, is given as [8]

tanφP =− R
z′ (uP)

=± α (uP)√
1−α2 (uP)

(5)

or equivalently sinφP =±α (uP), where the signs± correspond
to the localization of P in the Northern/Southern Hemisphere,
z′(u) denotes the derivative of (2) with respect to u and

α(u) =
(
1+
(
r2−1

)
u2)√1−u2. (6)

Therefore, for any chosen point P on the deformed sphere
the geodetic latitude φ (uP) =±arcsinα (uP) defines the verti-
cal (normal to the surface) direction and can be used in order
to calculate the vertical distances (heights) above the surface
within the new proposed reference model for the geoid.

Actually, it is planed in the future study to find out the explicit
formula for the λ -sphere heights (i.e., the distances along the
vertical direction between a chosen point on the Earth’s surface
and the corresponding point on the deformed sphere surface)
and compare them to the ellipsoidal heights (i.e., the similar
distances determined relative to the ellipsoid of revolution).

Similarly, there could be also investigated the spatial pat-
tern of differences between two discussed reference surfaces,
i.e., the deformed sphere and the WGS84 ellipsoid, using either
the orthogonal (vertical) projection of the corresponding sur-
face points on them or the one-to-one relationship between the
grids of meridians and parallels on those surfaces.

3. COMPARISON OF λ -SPHERE TO SPHEROID
The oblate (a > b) spheroid (ellipsoid of revolution) is defined
through the equation

x2 + y2

a2 +
z2

b2 = 1, (7)

where a and b are called the semi-major and semi-minor axes
(or equivalently, the equatorial and polar radii).

The parameterization of such a surface embedded into the
three-dimensional Euclidean space is given as

x = asinφ cosv, y = asinφ sinv, z = bcosφ , (8)

where φ ∈ [0,π] and v ∈ [−π,π] are the latitude and longitude
variables on the spheroid respectively.

We can also define the first and second eccentricities and the
flattening factor describing the spheroid (7) as

ε =

√
1− b2

a2 , ε
′ =

√
a2

b2 −1 , f = 1− b
a
. (9)

Therefore, we see that all geometric characteristics of the
spheroid can be defined as functions of only two chosen pa-
rameters. For instance, the ellipsoidal reference model for the
geoid within the WGS 84 is based on two geometric parame-
ters (see [10, 14]) a = 6 378 137 m, 1/ f = 298.257 223 563,
i.e., the Earth’s equatorial radius and the reciprocal of the flat-
tening factor of the Earth, respectively.

Similarly, all the geometric characteristics of the λ -sphere
can be determined as functions of two parameters, e.g., the
equatorial radius R and the deformation parameter λ .

This means that in order to compare those two surfaces one
to another we need to construct some correspondence between
the above-defined pairs of geometric parameters. Of course, it
could be done in many different ways, some of which are dis-
cussed in detail in the following sections of the article.

3.1. Semi-major axis and semi-height or flattening factor
Let us identify the semi-major and semi-minor axes a and b
of the spheroid (7) with the equatorial radius R and the semi-
height Hλ of the λ -sphere at the level of the North Pole (or, in
other words, the polar radius of the λ -sphere), i.e., R≡ a and

Hλ = R
(

E (θ0,k)
1− k

−F (θ0,k)−
1− k

r2 Π(n,θ0,k)
)
≡ b (10)

with θ0 = arcsin
(
r2− k

)
. From (10) we see that the general

dependency of the scaled semi-height Hλ/R on the deformation
parameter λ is a one-to-one function in the range λ ∈ [0,1/3)
with values smaller than or equal to 1 (see Fig. 1). By the way,
this justifies the statement that the shape of λ -sphere is oblate.

Equivalently, we can rewrite the above identity (10) as an
identity imposed on the flattening factors of the λ -sphere and
spheroid that are defined by the last formula in (9), i.e.,

fλ = 1+F (θ0,k)−
E (θ0,k)

1− k
+

1− k
r2 Π(n,θ0,k)≡ f . (11)

Again, the general dependency of the flattening factor fλ on the
deformation parameter λ is a one-to-one function in the range
λ ∈ [0,1/3) (see Fig. 2).
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Fig. 1. Dependence of semi-height Hλ scaled by equatorial radius R
on deformation parameter λ ∈ [0,1/3). Gridlines (dashed) are λ =

1/3, Hλ /R = 0.555 947 286 . . ., and Hλ /R = 1

Fig. 2. Dependence of flattening factor fλ (continuous line) on de-
formation parameter λ ∈ [0,1/3). For comparison there is also shown
the graph of fλ = λ (dotted line). Gridlines (dashed) are λ = 1/3,

fλ = 1/3, and fλ = 0.444 052 714 . . .

It can be also shown that for small values of λ we have that
k is close to 1, therefore, using the identities (see, e.g., [11])

F (θ0,1) = arctanh(sinθ0) , E (θ0,1) = sinθ0 , (12)

Π(n,θ0,1) =
√

n arctanh(
√

nsinθ0)− arctanh(sinθ0)

n−1
, (13)

and taking into account that θ0 = arcsin
(
r2− k

)
≈ r2−k when

r2− k is close to 0, we obtain that

fλ ≈ 1+ r2− k− r2− k
1− k

+
1− k

r2

(
r2− k

)
=

r2−1
r2 = λ (14)

since 1+r2−k = 1/k, r2−k = (1−k)/k, and from (4) we have
that (1− k)(r2− k) = (1− k)2/k = r2−1.

Finally, from (10) or (11) we can estimate the value of the
deformation parameter for the λ -sphere corresponding to the
spheroid (ellipsoid of revolution) of WGS84 (see, e.g., [4]) as

λ1 ≈ 0.003 347 187 . . . (15)

For the above value of the deformation parameter, we obtain
that the semi-height Hλ and the flattening factor fλ of the λ -
sphere (or, equivalently, the semi-minor axis b and the flattening
factor f of the spheroid) can be estimated as

Hλ = b≈ 6 356 752.314 245 176 . . . m , (16)

fλ = f ≈ 0.003 352 811 . . . (17)

As it was shown above, we have that fλ = f ≈ λ1 (with the
relative error δ = |( f −λ1)/ f | being of the order 1.677×10−3).
This also means that we can estimate the eccentricity of the
spheroid as ε =

√
f (2− f )≈

√
λ (2−λ ) =

√
r4−1/r2.

3.2. Semi-major axis and quarter-meridian length
Let us identify the semi-major axis a and the quarter-meridian
length (defined as the arc length along the meridian between
the Equator and North Pole) mP of the spheroid (7) with the
equatorial radius R and the quarter-meridian length mλ of the
λ -sphere, i.e., R≡ a and mλ ≡ mP, where (see, e.g., [7, 8, 15])

mλ =
πR
2r

, mP = aE(ε), (18)

and E(ε) is the complete elliptic integral of the second kind
(i.e., E(ε) = E(π/2,ε)) with the eccentricity ε =

√
f (2− f ).

From the first equation in (18) we can see that the gen-
eral dependency of the quarter-meridian length mλ of the λ -
sphere scaled by the quarter-meridian length of the equivalent
sphere with the radius R (i.e., msphere = πR/2) on the deforma-
tion parameter λ is again a one-to-one function in the range
λ ∈ [0,1/3) (see Fig. 3).

Fig. 3. Dependence of quarter-meridian length mλ of deformed
sphere scaled by quarter-meridian length msphere = πR/2 of equiv-
alent sphere with radius R on deformation parameter λ ∈ [0,1/3).
Gridlines (dashed) are λ = 1/3, mλ /msphere = 0.816 496 581 . . ., and

mλ /msphere = 1

Therefore, we have the condition for estimation (on the basis
of WGS84) of the deformation parameter value given as

λ2 = 1− 4E2(ε)

π2 ≈ 0.003 348 595 . . . (19)
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For the above value of the deformation parameter, we obtain
that the quarter-meridian length mλ for the λ -sphere (or, equiv-
alently, mP for the spheroid) can be estimated as

mλ = mP ≈ 10 001 965.729 312 722 . . . m. (20)

3.3. Semi-major axis and surface area
The surface area of the λ -sphere is given as

Sλ = 2πR
1∫

0

√
R2 +(z′(u))2 du2 = 2πR2

1∫
0

du2

α(u)
. (21)

Substituting α(u) given by (6) into the above expression, we
can calculate that (see, e.g., [1])

Sλ

4πR2 =
1−λ√

λ
arcsinh

√
λ

1−λ
=

1−λ√
λ

arctanh
√

λ . (22)

On the other side, for the surface area of the spheroid we have
that (see, e.g., [16] and [13, p. 102])

S
2πa2 −1 =

1− ε2

ε
arcsinh

ε√
1− ε2

=
1− ε2

2ε
ln

1+ ε

1− ε
. (23)

Again, from (22) we obtain that the general dependency of
the surface area Sλ of the λ -sphere being scaled by the surface
area of the equivalent sphere with the radius R (i.e., Ssphere =
4πR2) on the deformation parameter λ is a one-to-one function
in the range λ ∈ [0,1/3) (see Fig. 4).

Fig. 4. Dependence of surface area Sλ of deformed sphere scaled
by surface area Ssphere = 4πR2 of equivalent sphere with radius R on
deformation parameter λ ∈ [0,1/3). Gridlines (dashed) are λ = 1/3,

Sλ /Ssphere = 0.760 345 996 . . ., and Sλ /Ssphere = 1

Therefore, let us identify the semi-major axis a with the
equatorial radius R, i.e., R ≡ a, whereas the surface area of the
spheroid is identified with the surface area of the λ -sphere, i.e.,
Sλ ≡ S. Then on the basis of WGS84 the estimated value of the
deformation parameter can be now found as

λ3 ≈ 0.003 349 437 . . . (24)

For the above value of the deformation parameter, we obtain
that the surface area Sλ of the λ -sphere (or, equivalently, the
surface area S of the spheroid) can be estimated as

Sλ = S≈ 510 065 621.724 088 . . . km2. (25)

3.4. Semi-major axis and volume
Next, using integration by parts and taking into account that[
u2z(u)

]1
0 = 0, the volume of the λ -sphere can be calculated as

Vλ = 4πR2
1∫

0

uz(u)du =−πR2
1∫

0

uz′(u)du2

= πR3
1∫

0

u

√
1−α2(u)
α(u)

du2. (26)

Substituting α(u) given by (6) into the above expression, we
can calculate this integral as (see Appendix A.1 for details)

Vλ =
2
3

πR3

(√
k(2k−1)(2− k)+(2k−1)F (θ0,k)

(1− k)2

+
k
(
r2−2

)
(1− k)3 E (θ0,k)+

3nΠ(n,θ0,k)
1− k

)
. (27)

On the other side, the volume of the spheroid is given as

V =
4
3

πa2b =
4
3

πa3(1− f ). (28)

Similarly to the previous cases, from (27) we obtain that the
general dependency of the volume Vλ of the λ -sphere being
scaled by the volume of the equivalent sphere with the radius R
(i.e., Vsphere = (4/3)πR3) on the deformation parameter λ is a
one-to-one function in the range λ ∈ [0,1/3) (see Fig. 5).

Fig. 5. Dependence of volume Vλ of deformed sphere scaled by vol-
ume Vsphere = (4/3)πR3 of equivalent sphere with radius R on de-
formation parameter λ ∈ [0,1/3). Gridlines (dashed) are λ = 1/3,

Vλ /Vsphere = 0.612 218 125 . . ., and Vλ /Vsphere = 1

Therefore, when we identify the semi-major axis a with the
equatorial radius R and the volumes of the spheroid and λ -
sphere, i.e., R ≡ a and Vλ ≡ V , then the estimated value of the
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deformation parameter (on the basis of WGS84) is found as

λ4 ≈ 0.003 349 435 . . . (29)

For the above value of the deformation parameter, we obtain
that the volume Vλ of the λ -sphere (or, equivalently, the volume
V of the spheroid) can be estimated as

Vλ =V ≈ 1 083 207 319 801.412 . . . km3. (30)

Let us also note that we can rewrite the pair of identities R≡
a and Vλ ≡ V as an identity on the flattening factor f of the
spheroid and the corresponding expression dependent on the
deformation parameter λ , i.e.,

1− 1
2

(√
k(2k−1)(2− k)+(2k−1)F (θ0,k)

(1− k)2

+
k
(
r2−2

)
(1− k)3 E (θ0,k)+

3nΠ(n,θ0,k)
1− k

)
≡ f . (31)

Please compare the above expression with the identity (11) that
was obtained in Section 3.1.

3.5. Semi-major axis and sphericity index
Let us consider the sphericity index defined by Wadell in [17]
as a measure of how closely the shape of an object resembles
that of a perfect sphere. It is generally defined as the ratio of the
surface area of an equivalent sphere with the same volume as
the given object to the surface area of the object, i.e.,

Ψ =
π1/3 (6V )2/3

S
. (32)

For a sphere, the sphericity index Ψ is identically equal to one.
Next, using (32) in order to obtain the general dependency of

the sphericity index Ψλ of the λ -sphere on the deformation pa-
rameter λ , we see that it is again given as a one-to-one function
in the range λ ∈ [0,1/3) (see Fig. 6).

Therefore, when we identify the semi-major axis a and the
sphericity index Ψ of the spheroid with the equatorial radius

Fig. 6. Dependence of sphericity index Ψλ of deformed sphere on
deformation parameter λ ∈ [0,1/3). Gridlines (dashed) are λ = 1/3,

Ψλ = 0.948 257 294 . . ., and Ψλ = 1

R and the sphericity index Ψλ of the λ -sphere, then we obtain
that the estimation of the deformation parameter (on the basis
of WGS84) is given as

λ5 ≈ 0.003 347 992 . . . (33)

For the above value of the deformation parameter, we obtain
that the sphericity index Ψλ of the λ -sphere (or, equivalently,
the sphericity index Ψ of the spheroid) can be estimated as

Ψλ = Ψ≈ 0.999 997 993 753 . . . (34)

3.6. Semi-major axis and tipping (bifurcation) point
In our previous papers [4, 5, 8] we obtained that the differential
formula for the geodesic on the λ -sphere is given as

dv =± du

uα(u)
√

δ 2u2−1
, (35)

where δ = R/C is the inverse of the dimensionless Clairaut’s
constant. Let us recall that the Clairaut’s relation states that for
a geodesic on any surface of revolution the product of the radius
of the parallel Ru and the sine of the azimuth α has a constant
value C called the Clairaut’s constant: Rusinα =C.

Integrating the expression (35) we obtain that [4, 8]

v(u) = v0± arctan

√
1−u2

δ 2u2−1

∓ λ

γ
arctan

γ

√
1−u2

δ 2u2−1

 , (36)

where γ = (1/r)
√

δ 2 + r2−1.
In Fig. 7 there is shown an exemplary dependency v(u) of

the geodesic (36) on the unit (R = 1) λ -sphere with the chosen
value of the deformation parameter λ = f and the Clairaut’s
constant C = sin(π/4) = 1/

√
2, i.e., with δ =

√
2.

Fig. 7. Dependence of longitude v on local latitude u for geodesic
on deformed sphere of unit equatorial radius R = 1 with deforma-
tion parameter λ = f ≈ 0.003 352 811 . . . and Clairaut’s constant
C = sin(π/4) = 1/

√
2. Gridlines (dashed) are u =

√
2, u = 1, and

v = π/2

Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 5, p. e147058, 2023 5



V. Kovalchuk and I.M. Mladenov

From the Clairaut’s relation we can deduce that any geodesic
on a surface of revolution is sinusoidally changes in the strip
around the Equator where the radius of the parallel Ru is greater
than or equal to the Clairaut’s constant |C|, since |sinα| =
|C|/Ru ∈ [0,1]. This means that the local latitude u is restricted
to the range from umin = 1/|δ | to umax = 1.

Therefore, the half-period T 1/2
λ

in the longitude variable v for
the chosen geodesic (36) described with the help of the inverse
dimensionless Clairaut’s constant δ can be obtained as

T 1/2
λ

(δ ) = π

(
1− λ r√

δ 2 + r2−1

)
. (37)

From the above expression we can obtain that for two points
P1 = (1,0) and P2 = (1,v2) laying on the Equator there ex-
ists the tipping (bifurcation) point (see, e.g., [8, 18]) defined as
T 1/2

λ
(δ = 1) = π(1− λ ) which distinguishes between the re-

gion where the solution of the inverse geodetic problem (IGP)
is unique, i.e., then we have that v2 ≤ T 1/2

λ
, and the region

where the solution of IGP is not unique, i.e., then we have that
v2 > T 1/2

λ
. In the second case there are two distinct geodesics

with the equal lengths but different azimuths (one of them
is ascending to the north, whereas another is descending to
the south). Eventually, when C = 0 (i.e., δ → ∞) the above
two geodesics become the meridian arcs connecting the start-
ing point P1 and the destination point P2 that pass through the
North/South Pole, respectively.

Similarly, for the spheroid (ellipsoid of revolution) defined
using the parametrization (8) we can obtain that the differential
formula for the geodesic is given as

dv =

√
1− ε2 sin2

φ

δ 2 sin2
φ −1

dφ

sinφ
, (38)

where δ = a/C is again defined as the inverse of the dimension-
less Clairaut’s constant on the spheroid. Integrating the above
expression (see Appendix A.2 for details), we obtain that

v(u) = v0±
δ 2Π

(
1−δ 2,ϕ,κ

)
− ε2F(ϕ,κ)

√
δ 2− ε2

, (39)

where the amplitude and elliptic modulus of the incomplete el-
liptic integrals of the first and third kind are given as

ϕ = arcsin

√
δ 2 sin2

φ −1
δ 2−1

, κ = ε

√
δ 2−1
δ 2− ε2 . (40)

Figure 8 exemplifies the dependency v(φ) of the geodesic
(39) on the unit (a = 1) spheroid with the Clairaut’s constant
C = sin(π/4) = 1/

√
2, i.e., with δ =

√
2.

From the Clairaut’s relation we can again obtain that on the
spheroid the radius of the parallel asinφ is greater than or equal
to the Clairaut’s constant C, since |sinα|= |C|/asinφ ∈ [0,1].
This means that the latitude φ is restricted to the range from
φmin = arcsin(1/|δ |) to φmax = π/2 for the Northern Hemi-
sphere. Therefore, the half-period T 1/2 in the longitude variable
v for the chosen geodesic (39) can be obtained as

T 1/2(δ ) =
2√

δ 2− ε2

(
δ

2
Π
(
1−δ

2,κ
)
− ε

2K(κ)
)
, (41)

Fig. 8. Dependence of longitude v on latitude φ for geodesic on
spheroid with unit equatorial radius a = 1 and Clairaut’s constant
C = sin(π/4) = 1/

√
2. Gridlines (dashed) are φ = π/4, φ = π/2, and

v = π/2

where K(κ) and Π(n,κ) are the complete elliptic integrals of
the first and third kind that are defined through the equalities
K(κ) = F(π/2,κ) and Π(n,κ) = Π(n,π/2,κ). Then we have
that the tipping (bifurcation) point on the spheroid is given as

T 1/2(δ = 1) = π

√
1− ε2 = π(1− f ). (42)

Finally, let us identify the semi-major axis a with the equa-
torial radius R as well as the tipping points for geodesics on the
spheroid and λ -sphere, i.e., R≡ a and T 1/2

λ
(δ = 1)≡ T 1/2(δ =

1). The last condition gives us equivalently that λ ≡ f .
Therefore, the estimated value (on the basis of WGS84) of

the deformation parameter is given as

λ6 = f ≈ 0.003 352 811 . . . (43)

For the above value of the deformation parameter, we obtain
that the tipping point for geodesics on the λ -sphere (or, equiv-
alently, the tipping point for geodesics on the spheroid) can be
estimated as

T 1/2
λ

(δ = 1) = T 1/2(δ = 1)≈ 179◦23′ 47.38 . . .′′ . (44)

4. MINIMIZATION OF ROOT MEAN SQUARE ERROR
The formula for the RMS (Root Mean Square) error, i.e., the
square root of the arithmetic mean of the squares of relative
errors {δH ,δM,δS,δV ,δΨ,δT}, is defined as

RMS =

√
1
6
(
δ 2

H +δ 2
M +δ 2

S +δ 2
V +δ 2

Ψ
+δ 2

T

)
. (45)

Finding the minimum of the above functional dependency of
the RMS error on the deformation parameter λ , we obtain that
the optimized value of the deformation parameter for the de-
formed sphere is given as (see Fig. 9)

λRMS ≈ 0.003 349 672 . . . (46)

For the above value of the deformation parameter, we obtain
that the minimum value of the RMS error is given as

RMS≈ 1.660 691 537 . . .×10−6 (47)
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Fig. 9. Dependence of RMS error given by (45) on deformation
parameter λ ∈ [0.003 346,0.003 353]. Gridlines (dashed) correspond

to minimum with λRMS = 0.003 349 672 . . . and
RMS = 1.660 691 537 . . .×10−6

whereas the absolute and relative errors for the individual pairs
of the discussed six geometric characteristics (i.e., semi-minor
axes, quarter-meridian lengths, surface areas, volumes, spheric-
ity indices, and tipping points) as well as the absolute and rel-
ative errors for matching the flattening factor f with the defor-
mation parameter λRMS are given in Table 1.

Table 1
Absolute and relative errors for individual pairs of discussed main ge-

ometric characteristics for λ -sphere and standard spheroid

b 6 356 752.314 . . . m

∆H b−Hλ 15.897 . . . m

δH (b−Hλ )/b 2.501 . . .×10−6

mP 10 001 965.729 . . . m

∆m mP−mλ 5.401 . . . m

δM (mP−mλ )/mP 5.400 . . .×10−7

S 510 065 621.724 . . . km2

∆S S−Sλ 79.925 . . . km2

δS (S−Sλ )/S 1.567 . . .×10−7

V 1 083 207 319 801.412 . . . km3

∆V V −Vλ 257 883.134 . . . km3

δV (V −Vλ )/V 2.381 . . .×10−7

Ψ 0.999 997 993 753 . . .

∆Ψ Ψ−Ψλ 0.000 000 002 020 . . .

δΨ (Ψ−Ψλ )/Ψ 2.020 . . .×10−9

T 1/2 179◦23′47.38 . . .′′

∆T 1/2 T 1/2−T 1/2
λ

−0◦00′02.03 . . .′′

δT (T 1/2−T 1/2
λ

)/T 1/2 −3.150 . . .×10−6

f 0.003 352 811 . . .

∆ f f −λRMS 0.000 003 139 . . .

δ f ( f −λRMS)/ f 9.362 . . .×10−4

5. CONCLUSIONS

In the present paper we have proposed a few different schemes
of matching the deformed sphere with the standard spheroid
within the WGS 84 reference model for the geoid. For instance,
this matching can be done by identifying the corresponding val-
ues of the main geometric characteristics for both discussed sur-
faces of revolution. In such a way we have obtained six propo-
sitions for the estimated value of the deformation parameter
λ ∈ [0.003 347, 0.003 353].

It has turned out that one of the above estimations is es-
pecially simple and geometrically appealing. Namely, we can
match the deformed sphere with the standard spheroid (e.g., the
one within the WGS84’s reference model for the geoid) sim-
ply identifying the pairs of geometric characteristics that de-
fine them, i.e., the equatorial radii of both surfaces R = a =
6 378 137 m as well as the deformation parameter of the de-
formed sphere and the flattening factor of the standard spheroid
λ6 = f = 1/298.257 223 563.

Additionally, using the process of minimization of the RMS
error defined as the square-rooted arithmetic mean of the
squared relative errors for the individual pairs of the discussed
six main geometric characteristics, we have obtained the opti-
mized value λRMS ≈ 0.003 349 672 . . . which is placed almost
perfectly in the center of the interval [0.003 347, 0.003 353].

The main practical advantage of using the deformed spheres
to approximate the shape of the Earth is that the geodesics on
λ -spheres can be expressed through the well-known analyti-
cal functions (inverse tangent), whereas the geodesics on the
spheroids are expressed through the incomplete elliptic inte-
grals of the first and third kind. In such a way, we offer an
easier, more friendly, and faster computational model for nu-
merical analysis of this kind of geometrical quantities that are
extremely important in geodesy and navigation problems.

Finally, in future research, we plan to use the obtained esti-
mations of the deformation parameter (especially λ6) or the op-
timized value λRMS for some practical calculations in geodesy
or navigation problems, which can be done within the new ref-
erence model for the geoid based on the deformed sphere that
is an alternative to the standard biaxial (rotational) ellipsoidal
reference models for the geoid (e.g., WGS 84).

As a reference surface, the deformed sphere should fulfil the
same conditions as the terrestrial ellipsoid, namely: 1) the de-
formed sphere center and its equatorial plane should coincide
with the Earth’s center of gravity and the plane of the Earth’s
equator, 2) the deformed sphere volume should be equal to the
geoid’s volume, 3) the sum of the squares of the deviations of
the geoid from the deformed sphere should be minimal.

The presented schemes allow us also to easily re-obtain the
estimations of the deformation parameter λ for different given
values of two geometric parameters describing the standard
spheroid, e.g., for World Geodetic Datum 2000 where we have
that the semi-major and semi-minor axes are defined as

a = 6 378 136.572±0.053 m, (48)

b = 6 356 751.920±0.052 m, (49)
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for the tide-free ellipsoidal reference model of the geoid or as

a = 6 378 136.602±0.053 m, (50)
b = 6 356 751.860±0.052 m, (51)

for the zero-frequency tide geoid of reference specified in [19].

APPENDIX
A.1. Calculation of expression (27)
Let us calculate the integral

I1 =
∫

u

√
1−α2(u)
α(u)

du2. (52)

Introducing ξ 2 = (r2−1)u2 we can rewrite it as

I1 =
1

(r2−1)3/2

∫
ξ 2

1+ξ 2

√
ξ 4 +Aξ 2 +B
r2−1−ξ 2 dξ

2, (53)

where A = 3− r2, B = 3−2r2.
Next substituting ζ 2 = r2−1−ξ 2 we obtain that

I1 =
−2

(r2−1)3/2

∫ (
ζ

4− r2
ζ

2 +
r2−1

r2−ζ 2

)
dζ√

P2 (ζ 2)
, (54)

where P2(ζ
2) = ζ 4 +(r2 + 1)ζ 2 + 1 is the second-order poly-

nomial with respect to the variable ζ 2 which has the roots

ζ
2
± =

1
2

(
r2 +1±

√
(r2 +1)2−4

)
. (55)

Let us denote ζ 2
− = k. Then using the relations ζ 2

+ζ 2
− = 1 and

ζ 2
− ≤ ζ 2

+ we obtain that ζ 2
+ = 1/k and k2 ≤ 1. Moreover, using

the relation ζ 2
++ζ 2

− = r2 +1 we obtain that r2 = k+1/k−1.
Then, substituting ζ =

√
k sinθ we rewrite (54) as

I1 =
−2k2

(1− k)3

(
λ

∫ dθ(
1−nsin2

θ
)√

1− k2 sin2
θ

− kr2
∫ sin2

θ dθ√
1− k2 sin2

θ

+ k2
∫ sin4

θ dθ√
1− k2 sin2

θ

)
, (56)

where n = k/r2. Therefore, using the identities (see, e.g., [11])

∫ sin2
θ dθ√

1− k2 sin2
θ

=
1
k2

(
F(θ ,k)−E(θ ,k)

)
, (57)

∫ sin4
θ dθ√

1− k2 sin2
θ

=
2+ k2

3k4 F(θ ,k)−
2
(
1+ k2

)
3k4 E(θ ,k)

+
sinθ cosθ

√
1− k2 sin2

θ

3k2 (58)

and the definition of the incomplete elliptic integral of the third
kind, we obtain that

I1 =−
2
3

(
3nλΠ(n,θ ,k)

1− k
+

k2 sinθ cosθ

√
1− k2 sin2

θ

(1− k)3

+
(2k−1)F(θ ,k)

(1− k)2 +
k(r2−2)E(θ ,k)

(1− k)3

)
, (59)

where the amplitude is given as

θ = arcsin

√
r2−1−ξ 2

k
= arcsin

((
r2− k

)√
1−u2

)
. (60)

Finally, substituting the obtained antiderivative I1(u) into the
definite integral in (26) we obtain the expression (27).

A.2. Calculation of expression (39)
Let us calculate the integral

I2 =
∫ √ 1− ε2 sin2

φ

δ 2 sin2
φ −1

dφ

sinφ
. (61)

Denoting ζ 2 = δ 2 sin2
φ −1 we can rewrite it as

I2 =
∫ √

δ 2− ε2− ε2ζ 2

δ 2−1−ζ 2
dζ

1+ζ 2 . (62)

Next substituting η = ζ/
√

δ 2−1 we obtain that

I2 =
∫ √

δ 2− ε2− ε2 (δ 2−1)η2

1− (1−δ 2)η2
dη√
1−η2

. (63)

Then introducing the new variable ϕ = arcsinη we have

I2 =
∫ √δ 2− ε2− ε2 (δ 2−1)sin2

ϕ

1− (1−δ 2)sin2
ϕ

dϕ. (64)

Finally, when we denote

n = 1−δ
2, κ

2 =
ε2
(
δ 2−1

)
δ 2− ε2 (65)

the above integral can be rewritten as

I2 =
δ 2

√
δ 2− ε2

∫ dϕ(
1−nsin2

ϕ
)√

1−κ2 sin2
ϕ

− ε2
√

δ 2− ε2

∫ dϕ√
1−κ2 sin2

ϕ

. (66)

Therefore, using the definitions of the incomplete elliptic inte-
grals of the first and third kind (see, e.g., [11]) we obtain that

I2 =
1√

δ 2− ε2

(
δ

2
Π(n,ϕ,κ)− ε

2F(ϕ,κ)
)
, (67)

where the amplitude ϕ as a function of the original variable φ

is given as

ϕ = arcsin
ζ√

δ 2−1
= arcsin

√
δ 2 sin2

φ −1
δ 2−1

. (68)
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