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Multi–server loss queueing system with random
volume customers, non–identical servers
and a limited sectorized memory buffer
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Abstract. In the present paper, the model of multi–server queueing system with random volume customers, non–identical (heterogeneous)
servers and a sectorized memory buffer has been investigated. In such system, the arriving customers deliver some portions of information of
a different type which means that they are additionally characterized by some random volume vector. This multidimensional information is
stored in some specific sectors of a limited memory buffer until customer ends his service. In analyzed model, the arrival flow is assumed to be
Poissonian, customers’ service times are independent of their volume vectors and exponentially distributed but the service parameters may be
different for every server. Obtained results include general formulae for the steady–state number of customers distribution and loss probability.
Special cases analysis and some numerical computations are attached as well.

Key words: multi–server queueing system with heterogeneous servers; queueing systems with random volume customers; sectorized memory
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1. INTRODUCTION
Queueing theory (QT) is the field of applied mathematics that
has been facing the problem of modeling real–life telecom-
munication and computer systems since early years of the
20th century. At the beginning, it helped to design telecom-
munication centers (mainly telephone exchanges) and gave
first results connected with investigations of simple models of
the M/M/n/m, M/G/n/0 and M/G/1/∞–types (in this pa-
per modified Kendall’s notation of the queueing system of the
M/G/n/m–type is used, where m denotes maximal number of
customers waiting in the queue (waiting room) – without those
that are on service) which were basic for future research [1].
Almost all first models assumed that servers are identical tak-
ing into consideration their service time distribution function.
Later on, some works analyzed also systems with non–identical
servers [2–5].

After years, together with the headway in telecommunica-
tion and computer science, more and more complicated models
were analyzed and QT itself became the basic discipline used
during analysis and designing process of computer systems,
networks and so on. In the 70s of the twentieth century first
investigations appeared that tried to analyze systems in which
customers transport information that is stored in some memory
buffer (so they are non–homogeneous in some sense as having
random volume (size)). The practical aim of these works was to
calculate or approximate needed size of such memory buffers
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analyzing customers’ total volume characteristics (the sum of
the volumes of all customers present in the queueing system).
Many of first papers usually used only classical models of QT
and authors did not take into account that the character of de-
pendency between customer volume and his service time has
an important meaning for customers’ summary (total) volume
characteristics [6, 7]. Moreover, it was often assumed that an-
alyzed random variables are independent, which is sometimes
possible in real systems but it is not the only case, e.g. in com-
puter networks service time of a data packet is usually propor-
tional to its size so they are strongly dependent. In many pa-
pers published both in the past and in recent years, customer
volume is assumed to be exponentially distributed (say with
parameter f > 0) and service time of a customer is assumed
to be proportional to his volume (say with coefficient c > 0)
which means that customer service time is also exponentially
distributed with parameter f/c. Many authors of investigations
from the above-mentioned area assumes that dependence be-
tween customer volume and his service time is then considered
in the parameter of customer service time distribution function.
In fact, it is not true from the mathematical point of view as we
take into account only projection on one–dimensional distribu-
tion function of the customer service time and still treat these
random variables as independent. It can be easily shown that
customers total volume characteristics depend strictly on two–
dimensional joint distribution function of the customer volume
and his service time (see e.g. [8]). But this simplification (as-
suming independence in some partial form) let obtain approxi-
mate performance characteristics of the system.

In some works, it was noticed that such system analysis needs
extensions (compared to classical methods) that assume exis-

Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 5, p. e146764, 2023 1

https://orcid.org/0000-0001-8907-8813
mailto:marcin_ziolkowski@sggw.edu.pl


M. Ziółkowski

tence of a limited memory buffer and dependence between cus-
tomer volume and his service time [9, 10]. It started a new di-
rection in QT called theory of queueing systems with random
volume customers. In future investigations, new models were
analyzed and they were divided into four classes according to
their level of mathematical complexity (the number of classes is
connected with the fact that we analyze systems with limited or
unlimited memory buffer and also systems with dependence or
independence between customer service time and his volume).
In monograph [8] one of the main chapters is dedicated to such
models, the most important results can also be found in [11].
Unfortunately, the most difficult to analyze are those models in
which memory buffer is limited and service time of a customer
is dependent on his volume (which is very often in practice)
and exact analysis was possible only in cases where there was
no queue [12, 13].

In last years the number of publications from this area has
been increasing and there is no problem finding scientists from
different countries that deal with analogous anlyses (see e.g.
[14–18]) but in most of these papers, the analyzed models still
assume the above-mentioned independence between random
characteristics of the arriving customers. Authors relatively sel-
dom discuss models with random volume customers and non–
identical servers. The examples of such papers are [19, 20]. In
the second of them, very interesting investigation of a compli-
cated model belonging to the most difficult class was presented,
together with analysis of some special cases showing that the
character of dependency between customer service time and his
volume has a substantial influence on main characteristics of the
system even on the level of steady–state number of customers
distribution and the value of loss probability.

The newest, novel approach is concentrated on the fact that
customers should be sometimes treated as multidimensional (in
the sense of their volume) because they transport information
of a different type. For example, in computer networks pack-
ets may contain separate text parts, audio parts, video parts and
parts consisting of data connected with description of the packet
(its volume, header and time of the beginning of its transmis-
sion) that are stored independently in sectors of memory buffer
dedicated to them, which is schematically presented in Fig. 1.
These parts may be both dependent and independent. Technical

Fig. 1. Scheme of a queueing system with random volume customers
and a sectorized memory buffer

realizations of such models are discussed e.g. in [21,22]. These
patents confirm that new investigations in the area of queueing
systems with random volume customers are still necessary. In
this case, analyses of models that take into account the above-
mentioned customer volume sectorization are more interest-
ing but more complex from the mathematical point of view
as many of the calculated characteristics are multidimensional
(e.g. total volume) and their obtaining needs advanced tech-
niques from the theory of functions of many variables. More-
over, during analysis, new interesting computational problems
often appear. Their solutions demand introducing extensions of
the well known (in the case of one–variable function) mathe-
matical concepts (integral transforms, convolutions, etc.). First
papers facing that problem for some exemplary simple models
were [23, 24] whereas in [25, 26] the general results for mod-
els of M/G/n/0, M/G/1/∞, M/G/1/m-types and model with
egalitarian processor sharing have been obtained.

In this paper, the exact investigation for the novel modifica-
tion of a multi–server queueing model of the M/M/n/m–type is
presented. It is assumed here both that servers are non–identical
and customers are additionally characterized by some random
volume vectors but service time of a customer is independent of
his volume vector. Of course, the last assumption makes analy-
sis simpler (if these random variables were dependent it would
not be possible to obtain exact results, only approximate ones)
but on the other hand one may show the presence of this as-
sumption in some real–life situations: e.g. mail servers store
billions of e-mails whose service time (until user deletes them)
does not depend on their size (volume vector). Users delete
e-mails based on other reasons (importance of an e-mail, its
sender, important attachments). We have analogous situation in
FTP servers that store information presented on Internet sites
until administrator deletes contents that are no longer needed.
The other examples of real–life systems for which we can as-
sume the above-mentioned independence are those that serve
customers characterized by approximately the same small vol-
ume vector (data packets often have similar sizes, they transport
some small constant portions of information) and service time
of such customers is independent of their volume vectors. Our
investigations can be also applied to model the process of mag-
azines working. In this case, service time of storing some goods
in a magazine can also be treated as independent of their vol-
umes (weights).

The multidimensional information delivered by the arriving
customers is stored (during their service) in dedicated memory
buffer sectors that are limited (so arriving customer may be lost
if there is no free server and waiting position for him or at least
one indication of his volume vector is too big to accept this
customer to the system). The main aim of this work is to ob-
tain formulae for important steady–state characteristics of the
system connected with the number of customer distribution and
loss probability, as well as numerical analysis of some special
cases of the model.

The rest of the paper is organized as follows. Section 2 con-
tains detailed description of the model, discusses mathematical
concepts used in the process of analysis and introduces nec-
essary notations. In Section 3 the main results are presented;
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the system of equations characterizing the system behavior is
obtained and its solution is proved. In this section loss proba-
bility formula is also derived. Section 4 investigates some spe-
cial cases of the model showing symbolic formulae and numer-
ical computations, describing additionally some computational
problems appearing. The last Section 5 presents conclusions
and final remarks.

2. THE DESCRIPTION OF THE MODEL, MATHEMATICAL
BACKGROUND AND BASIC NOTATIONS

Assume that we investigate queueing model of the M/M/n/m–
type, where n is the number of servers and m is the number of
waiting positions in the queue (maximal number of customers
that can wait for a service if all servers are busy). It means that
only n+m customers can be present in the system at the same
time. Servers are non–identical, each of them may have differ-
ent parameter µi (i = 1,n) of exponentially distributed service
time that is independent of customer volume vector. Arriving
customers form Poisson flow with parameter a and choose free
servers in random order (they have no knowledge about ser-
vice parameters) i.e. before the beginning of the service they
may choose every of the p free servers with the same probabil-
ity 1/p (or wait in the waiting room if all servers are busy and
there is at least one free waiting position).

In addition, customers are characterized by non–negative l-
dimensional random vectors ζζζ = (ζ1, . . . ,ζl), l ≥ 1 that are
defined by distribution function L(x) = L(x1, . . . ,xl). System
has also l-dimensional limited memory buffer V = (V1, . . . ,Vl),
l ≥ 1 in which the proper indications of the customer volume
vector are stored. By the above-mentioned assumptions, there
is an important difference in mechanism of accepting new cus-
tomers coming to the system compared to classical M/M/n/m
model. Assume that, at fixed time moment t, customer having
volume vector y is arriving to the system. If at least one indi-
cation yi, i = 1, l is too big at this moment, i.e. σi(t)+ yi > Vi,
where σi(t) is total volume of i-th indications of all customers
present in the system at time t, then it will not be accepted
for servicing (it is lost), even when there are free servers or
waiting positions. Moreover, in this case nothing changes in the
system behavior. In opposite case (if the number of customers
present in the system during new customer’s arrival η(t) is less
than n+m and every indication of his volume vector is small
enough: σi(t)+yi ≤Vi), it is accepted to be served and we have
obvious relations: η(t+) = η(t) + 1 and σi(t+) = σi(t) + yi,
i = 1, l.

The mechanism connected with the end of service is almost
exactly the same like in classical M/M/n/m system but takes
into account that customers ending their service release mem-
ory buffer. If at time instant τ one of the servers finishes ser-
vice of the customer characterized by the volume vector y, then
η(τ+) = η(τ)−1 but, in addition, σi(τ

+) = σi(τ)−yi, i = 1, l,
where yi is the proper indication of this customer volume vector.
Investigated model will be denoted as M/M/n/(m,V).

Let A(t) be the set of numbers of busy servers at time t. The
behavior of the above-mentioned system can be modeled by the

following Markovian processes:(
A(t),σi(t), i = 1, l

)
, if η(t) = 0,n (1a)

and (
η(t),σi(t), i = 1, l

)
, if η(t) = n+1,n+m. (1b)

These processes are characterized by the following functions:

P0(t) = P{η(t) = 0}, (2)

G{i1,...,ik}(x, t) = P{A(t) = {i1, . . . , ik},σi(t)< xi, i = 1, l},
k = 1,n, (3)

P{i1,...,ik}(t) = P{A(t) = {i1, . . . , ik}}, k = 1,n, (4)

Gk(x, t) = P{η(t) = k,σi(t)< xi, i = 1, l},
k = n+1,n+m, (5)

Pk(t) = P{η(t) = k}, k = n+1,n+m. (6)

In steady state (t → ∞), which exists if ρ =
a

n

∑
i=1

µi

< ∞ (this

condition is almost always satisfied, especially in real–life sys-
tems), we can consider limits (equivalents) of the functions (2)–
(6) that are independent of time variable t: p0, g{i1,...,ik}(x),
p{i1,...,ik}, gk(x) and pk [8].

The main purpose of investigations is to obtain formulae
defining these functions in exact form and show their possible
applications in loss probability computations as well as present
some interesting results for special cases of analyzed model.

3. THE MAIN RESULTS
3.1. Number of customers distribution
If we analyze the behavior of our system characterized by pro-
cesses (1a) and (1b), we can write down steady–state equations
containing functions p0, g{i1,...,ik}(x), p{i1,...,ik}, gk(x) and pk.
These equations are some modifications of those obtained in
the case of classical M/M/n/m queueing model with non–
identical servers – see e.g. [27], but take into account the
above-mentioned limitation of memory buffer sectors and ran-
dom choice of a free server. We will obtain equations using
well–known classical method investigating state changes of the
stochastic process describing of system’s behavior. This method
is based on the fact that in the steady state the intensity of quit-
ting from every state equals the sum of all intensities of entering
from the other states to this state [1, 8, 27]. In addition, transi-
tions are possible only from neighboring states like in classical
birth–death process.

At the beginning, let us analyze state 0 of the process. It
means that there are no customers in the system. The process
can quit from this state only to one of the states { j} (then j-th
server starts servicing the arriving customer) if a new customer
arrives in the system and he has volume vector x less than V
(all indications xi of a volume vector x are less than the proper
memory buffer indications Vi), whereas process can enter the
investigated state also only from states { j} which means that
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there was one customer served by j-th server and his service
was finished. So we obtain the following relation:

ap0L(V) =
n

∑
j=1

µ j p{ j}. (7)

Assume now that the process is in state { j} (it means that we
have only one customer served by j-th server and, of course,
his volume vector is less than V). It can quit from this state in
two situations. First of them is connected with arrival of a new
customer whose volume vector x is small enough to be accepted
on service (the sum of the volume vector of served customer
and volume vector of the arriving one is less than V). Then it
enters the state {i, j}. The second situation describes service
termination and then the process enters to state 0. Moreover,
analyzed process enters the state { j} also in two situations: first
means the arrival of a new customer in an empty system (his
volume vector must be less than V, the j-th server is chosen
with probability 1/n), and second situation is connected with
service finishing of the customer served by i-th server (then we
enter this state quitting from {i, j}). The analysis leads to the
following equation:

a
V∫

0

g{ j}(V−x)dL(x)+µ j p{ j} =
ap0

n
L(V)

+
n

∑
i=1,i 6= j

µi p{i, j}, j = 1,n. (8)

Investigate now the presence of the process in state {i1, . . . , ik}
(2 ≤ k < n) (we have k customers in the system, all of them
are served by servers i1, . . . , ik, respectively). Our process quits
from this state in two situations. First of them means again
the arrival of a new customer whose volume vector size lets
him be accepted on service. Then process enters to state
{i1, . . . , ik, j}. The second situation describes the end of a ser-
vice on one of the busy servers {i1, . . . , ik}, then process enters
the state {i1, . . . , i j−1, i j+1, . . . , ik}, whereas process enters the
state {i1, . . . , ik} also only in two situations: first is connected
with the new customer’s arrival (the process quits from the state
{i1, . . . , i j−1, i j+1, . . . , ik}, arriving customer volume vector size
must be small enough and the j-th server is chosen with proba-

bility
1

n− k+1
), the second means service termination on j-th

server (then we enter this state quitting from {i1 . . . , ik, j}). Here
is the next obtained relation:

a
V∫

0

g{i1,...,ik}(V−x)dL(x)+

(
k

∑
j=1

µi j

)
p{i1,...,ik}

=
a

n− k+1

k

∑
j=1

V∫
0

g{i1,...,i j−1,i j+1,...,ik}(V−x)dL(x)

+ ∑
j/∈{i1,...,ik}

µ j p{i1,...,ik, j},

k = 2,n−1, {i1, . . . , ik} ∈Cn
k , (9)

where Cn
k denotes the set of all k-element combinations of

n-element set.

Consider now state {1, . . . ,n} (we have n customers in the
system, all servers are busy). Our process can quit from this
state to states {1, . . . , j−1, j+1, . . . ,n} or n+1. First situation
means the end of a service on j-th server and second one –
arrival of a new customer having the proper size of his volume
vector (of course, the arriving customer waits in a waiting room
as all servers are busy). Process can enter this state only from
states {1, . . . , j−1, j+1,n} or n+1. First situation is connected
with an arrival of a new customer (having small enough size
of his volume vector) that goes on service to j-th server and
second one is connected with the end of the service on one of
the n busy servers (then waiting customer leaves waiting room
and starts his service). The obtained equation is very similar to
the previous one:

a
V∫

0

g{1,...,n}(V−x)dL(x)+

(
n

∑
j=1

µ j

)
p{1,...,n}

= a
n

∑
j=1

V∫
0

g{1,..., j−1, j+1,...,n}(V−x)dL(x)

+

(
n

∑
j=1

µ j

)
pn+1 . (10)

If we analyze transitions from and to k state
(k = n+1,n+m−1) then we easily notice that we have
analogous situation. The process enters the state k when
there were k + 1 customers in the system and one of these
customers ended his service on one of the n busy servers or
there were k−1 customers in the system and one new customer
having the proper size of his volume vector arrived in the
system. Transition from this state is possible only to the same
states k− 1 and k + 1 which means that we consider service
termination or arriving of a new customer that can be accepted
to the system as having proper size of his volume vector. This
analysis leads to the following equation:

a
V∫

0

gk(V−x)dL(x)+

(
n

∑
j=1

µ j

)
pk

= a
V∫

0

gk−1(V−x)dL(x)+

(
n

∑
j=1

µ j

)
pk+1,

k = n+1,n+m−1. (11)

In the end, we consider the last possible state n + m. Enter-
ing this state is possible only from state n+m− 1 because in
our queueing system the maximal number of present customers
equals n+m. This transition is connected again with the new
customer’s arrival, whereas the only transition from state n+m
also leads to the same state n+m−1 and means service termi-
nation. So we have the final relation:

a
V∫

0

gn+m−1(V−x)dL(x) =

(
n

∑
j=1

µ j

)
pn+m . (12)
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It can be easily proved that system of equations (7)–(12) has the
following solution:

g{i1,...,ik}(x) =
ak(n− k)!p0Lk(x)

n!∏
k
j=1 µi j

, k = 1,n, (13)

gk(x) =
an p0Lk(x)
n!∏

n
j=1 µ j

ρ
k−n, k = n+1,n+m, (14)

p{i1,...,ik} =
ak(n− k)!p0Lk(V)

n!∏
k
j=1 µi j

, k = 1,n, (15)

pk =
an p0Lk(V)

n!∏
n
j=1 µ j

ρ
k−n, k = n+1,n+m, (16)

where Lk(x) is the k-th order Stieltjes convolution of functions
L(x) defined recurrently as follows:

L0(x)≡ 1, Lk(x) =
x∫

0

Lk−1(x−u)dL(u), k ≥ 1.

The value of p0 can be determined from the normalization con-
dition:

p0 +
n

∑
k=1

∑
{i1,...,ik}∈Cn

k

p{i1,...,ik}+
n+m

∑
k=n+1

pk = 1. (17)

Now, using direct substitution of formulae (13)–(16) into equa-
tions (7)–(12), the proof of the correctness of obtained results
will be presented (note that in the steady state there exists only
one solution of previously written system of equations).

Proof.
• Ad (7):

n

∑
j=1

µ j p{ j} =
n

∑
j=1

µ j
a(n−1)!p0L(V)

n!µ j

=
an(n−1)!p0L(V)

n!
= ap0L(V).

• Ad (8):

ap0

n
L(V)+

n

∑
i=1,i6= j

µi p{i, j} = µ j
a(n−1)!p0L(V)

n!µ j

+
n

∑
i=1,i 6= j

µi
a2(n−2)!p0L2(V)

n!µiµ j

= µ j p{ j}+(n−1)
a2 p0L2(V)

n(n−1)µ j

= µ j p{ j}+a · ap0L(V)

nµ j

= µ j p{ j}+a
V∫

0

ap0

nµ j
L(V−x)dL(x)

= µ j p{ j}+a
V∫

0

g{ j}(V−x)dL(x).

• Ad (11):

a
V∫

0

gk(V−x)dL(x)+

(
n

∑
j=1

µ j

)
pk

= a
V∫

0

an p0Lk(V−x)

n!
n

∏
j=1

µ j

ρ
k−n dL(x)

+

(
n

∑
j=1

µ j

)
an p0Lk(V)

n!
n

∏
j=1

µ j

ρ
k−n

=
an+1 p0ρk−n

n!
n

∏
j=1

µ j

V∫
0

Lk(V−x)dL(x)

+

(
n

∑
j=1

µ j

)
an p0ρk−n

n!
n

∏
j=1

µ j

V∫
0

Lk−1(V−x)dL(x)

=
an+1 p0ρk−n

n!
n

∏
j=1

µ j

Lk+1(V)

+ρ

(
n

∑
j=1

µ j

) V∫
0

an p0ρk−n−1

n!
n

∏
j=1

µ j

Lk−1(V−x)dL(x)

= a

(
n

∑
j=1

µ j

)−1

· a
n p0ρk−nLk+1(V)

n!
n

∏
j=1

µ j

·
n

∑
j=1

µ j

+a
V∫

0

gk−1(V−x)dL(x)

=
an p0ρk−n+1Lk+1(V)

n!
n

∏
j=1

µ j

·
n

∑
j=1

µ j +a
V∫

0

gk−1(V−x)dL(x)

= a
V∫

0

gk−1(V−x)dL(x)+

(
n

∑
j=1

µ j

)
pk+1 .

• Ad (12):

a
V∫

0

gn+m−1(V−x)dL(x)

= a
V∫

0

an p0Ln+m−1(V−x)
n!∏

n
j=1 µ j

ρ
m−1

=
am+1ρm−1 p0

n!
n

∏
j=1

µ j

V∫
0

Ln+m−1(V−x)dL(x)
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cont: Ad (12)

=
an+1ρm−1 p0

n!
n

∏
j=1

µ j

Ln+m(V)

=
a

n

∑
j=1

µ j

· a
nρm−1 p0Ln+m(V)

n!
n

∏
j=1

µ j

·
n

∑
j=1

µ j

=
anρm p0Ln+m(V)

n!
n

∏
j=1

µ j

(
n

∑
j=1

µ j

)
=

(
n

∑
j=1

µ j

)
pn+m .

• Ad (9):

a
n− k+1

k

∑
j=1

V∫
0

g{i1,...,i j−1,i j+1,...,ik}(V−x)dL(x)

+ ∑
j/∈{i1,...,ik}

µ j p{i1,...,ik, j}

=
a

n− k+1

k

∑
j=1

V∫
0

ak−1(n− k+1)!p0Lk−1(V−x)dL(x)

n!
k

∏
l=1,l 6= j

µil

+ ∑
j/∈{i1,...,ik}

ak+1(n− k−1)!p0Lk+1(V)

n!
k

∏
j=1

µi j

=
k

∑
j=1

V∫
0

ak(n− k)!p0Lk−1(V−x)dL(x)

n!
k

∏
l=1,l 6= j

µil

+
(n− k)ak+1(n− k−1)!p0Lk+1(V)

n!
k

∏
j=1

µi j

=
k

∑
j=1

ak(n− k)!p0Lk(V)

n!
k

∏
l=1,l 6= j

µil

+
ak+1(n− k)!p0Lk+1(V)

n!
k

∏
j=1

µi j

=
k

∑
j=1

ak(n− k)!p0Lk(V)

n!
k

∏
l=1,l 6= j

µil

+a
V∫

0

ak(n− k)!p0Lk(V−x)dL(x)

n!
k

∏
j=1

µi j

=

(
k

∑
j=1

µi j

)
ak(n− k)!p0Lk(V)

n!
k

∏
j=1

µi j

+a
V∫

0

g{i1,...,ik}(V−x)dL(x)

=

(
k

∑
j=1

µi j

)
p{i1,...,ik}+a

V∫
0

g{i1,...,ik}(V−x)dL(x).

• Ad (10):

a
n

∑
j=1

V∫
0

g{1,..., j−1, j+1,...,n}(V−x)dL(x)+

(
n

∑
j=1

µ j

)
pn+1

= a
n

∑
j=1

V∫
0

an−1 p0Ln−1(V−x)dL(x)

n!
n

∏
i=1,i 6= j

µi

+

(
n

∑
j=1

µ j

)
· a

n p0Ln+1(V)ρ

n!∏
n
j=1 µ j

= a

(
n

∑
j=1

µ j

) V∫
0

an−1 p0Ln−1(V−x)dL(x)
n!∏

n
j=1 µ j

+
an+1 p0Ln+1(V)

n!∏
n
j=1 µ j

=

(
n

∑
j=1

µ j

)
an p0Ln(V)

n!∏
n
j=1 µ j

+
an+1 p0Ln+1(V)

n!∏
n
j=1 µ j

=

(
n

∑
j=1

µ j

)
p{1,...,n}+a

V∫
0

an p0Ln(V−x)dL(x)
n!∏

n
j=1 µ j

=

(
n

∑
j=1

µ j

)
p{1,...,n}+a

V∫
0

g{1,...,n}(V−x)dL(x). 2

Remark 1. Obtained results let calculate mean value of the
steady–state number of customers present in the system. This
characteristic can be computed using the following formula:

Eη =
n

∑
k=1

∑
{i1,...,ik}∈Cn

k

kp{i1,...,ik}+
n+m

∑
k=n+1

kpk,

where p{i1,...,ik} and pk are calculated with the use of formu-
lae (15)–(16). For example, for the system M/M/3/(m,V) we
obtain the following relation:

Eη = p{1}+ p{2}+ p{3}+2(p{1,2}+ p{1,3}+ p{2,3})

+ 3p{1,2,3}+
3+m

∑
k=4

kpk .

Remark 2. Formulae (15)–(16) allow to obtain also character-
istics of the utilization of j-th server (calculating the value of
steady–state probability q j that j-th server is busy):

q j =
n

∑
k=0

∑
{i1,...,ik}∈Cn

k ,
j∈{i1,...,ik}

p{i1,...,ik}+
n+m

∑
k=n+1

pk .

For example, for the system M/M/3/(1,V) we obtain the fol-
lowing results:

q1 = p{1}+ p{1,2}+ p{1,3}+ p{1,2,3}+ p4,

q2 = p{2}+ p{1,2}+ p{2,3}+ p{1,2,3}+ p4,

q3 = p{3}+ p{1,3}+ p{2,3}+ p{1,2,3}+ p4.
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3.2. Loss probability formula
Now we will obtain general formula defining steady-state cus-
tomer loss probability denoted as PLOSS. It is obvious that loss
probability is not equal to pn+m as it was in classical models of
the M/M/n/m–type because an arriving customer can be addi-
tionally lost (even if there are free servers or free waiting po-
sitions) if at least one of his volume vector indication is too
big to be stored in a limited sector of memory buffer. In ana-
lyzed case (when service time of a customer and his volume
vector are independent) we can use well-known equilibrium
equation (see e.g. [8]) assuming that mean number of customers
accepted for service (i.e. arriving and not lost) during some time
interval is equal to mean number of customers ending their ser-
vice within this interval. In our case equilibrium equation has
the form:

a(1−PLOSS) =
n

∑
k=1

∑
{i1,...,ik}∈Cn

k

k

∑
j=1

µi j p{i1,...,ik}

+

(
n

∑
j=1

µ j

)
n+m

∑
k=n+1

pk . (18)

From (18) we easily obtain:

PLOSS = 1− 1
a

 n

∑
k=1

∑
{ii,...,ik}∈Cn

k

k

∑
j=1

µi j p{i1,...,ik}

+

(
n

∑
j=1

µ j

)
n+m

∑
k=n+1

pk

]
. (19)

4. SPECIAL CASES OF THE ANALYZED MODEL, SOME
NUMERICAL EXAMPLES AND COMPUTATIONAL
PROBLEMS

4.1. Computational problems
Although formulae (13)–(16) and (19) seem to be relatively
easy, they contain computationally inconvenient multidimen-
sional Stieltjes convolutions Lk(x). The process of calculating
such a convolution based on its recurrent definition is often very
complicated and obtaining exact form of convolutions is possi-
ble only for some special classes of functions (e.g. exponential
distribution or gamma distribution). For the other functions, it
is possible only for small values of k. But, with the help of
computer algebra systems (e.g. Mathematica environment), for
fixed k, we can obtain exact formulae of convolutions in many
situations. To do this, we usually use the following computa-
tional algorithm:
1. We calculate multidimensional Laplace–Stieltjes transform

(LST) of a single function L(x) = L(x1, . . . ,xl):

α(s1, . . . ,sl) =

∞∫
0

. . .

∞∫
0

e−s1x1−...−slxl dL(x1, . . . ,xl).

2. We calculate LST of a convolution Lk(x1, . . . ,xl) using the
fact that this convolution is a distribution function of the
sum of k independent random vectors having distribution

functions L(x1, . . . ,xl) and its LST αk(s1, . . . ,sl) has the
form of product of α(s1, . . . ,sl) transforms. So we obtain
the following relation:

αk(s1, . . . ,sl) = [α(s1, . . . ,sl)]
k .

3. We obtain formula for multidimensional Laplace transform

L (s1, . . . ,sl) =

∞∫
0

. . .

∞∫
0

e−s1x1−...−slxl Lk(x1, . . . ,xl)dx1 . . . dxl

of convolution Lk(x1, . . . ,xl) using connection between LST
and Laplace transform:

L (s1, . . . ,sl) =
[α(s1, . . . ,sl)]

k

s1 · . . . · sl
.

4. Finally, we use InverseLaplaceTransform command from
Mathematica environment to obtain exact formula of
Lk(x1, . . . ,xl) convolution [28]:

Lk(x1, . . . ,xl) = L −1(s1, . . . ,sl).

Later in this section, we want to investigate some practical spe-
cial cases of analyzed model and show numerical computations
illustrating obtaining results. Let us notice that in real systems
we usually have one of two situations:
• all indications ζ1, . . . ,ζl of a volume vector are independent

or
• first l − 1 indications are independent and the last one is

proportional to their sum: ζl = c(ζ1 + . . .+ζl−1), c > 0.
In first situation LST of a single function L(x1, . . . ,xl) has the
form of product:

α(s1, . . . ,sl) = ϕ1(s1) · . . . ·ϕl(sl),

where ϕ1(s1), . . . ,ϕl(sl) are one–dimensional LSTs of single
ζ1, . . . ,ζl indications. So in this case we obtain:

L (s1, . . . ,sl) =
[ϕ1(s1)]

k · . . . · [ϕl(sl)]
k

s1 · . . . · sl
. (20)

It can be easily shown that in second situation we obtain the
following relation:

L (s1, . . . ,sl) =
[ϕ1(s1 + csl)]

k · . . . · [ϕl−1(sl−1 + csl)]
k

s1 · . . . · sl
. (21)

4.2. Special cases analysis
In this section, we will present some numerical calculations
connected with analysis of some special cases of the model.
In whole section, we will consider exemplary model of queue-
ing system M/M/2/(1,V) and chosen multidimensional distri-
bution functions of customer volume vector. For such defined
queueing system, using (15)–(17), we obtain the following for-
mulae:

p{1} =
ap0L(V)

2µ1
, p{2} =

ap0L(V)

2µ2
;

p{1,2} =
a2 p0L2(V)

2µ1µ2
, p3 =

a3 p0L3(V)

2µ1µ2(µ1 +µ2)
;
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p0 =

[
1+

aL(V)

2µ1
+

aL(V)

2µ2

+
a2L2(V)

2µ1µ2
+

a3L3(V)

2µ1µ2(µ1 +µ2)

]−1

. (22)

Later on, we will analyze two versions of this model.

4.2.1. Memory buffer contains two sectors
Assume that customer volume vector contains only two indica-
tions. We will show some numerical results in two situations:
• indications of customer volume vector are independent and

exponentially distributed with parameters f1, f2, respec-
tively,

• first indication of a customer volume vector is exponentially
distributed with parameter f and second one is proportional
to the first with coefficient c (c > 0) which means that ζ2 =
cζ1.

Formulae defining Stieltjes convolutions in first situation are
calculated as follows (see formula (20)):

L(V1,V2) = (1− e− f1V1)(1− e− f2V2),

L2(V1,V2) =
[
1− e− f1V1(1+ f1V1)

][
1− e− f2V2(1+ f2V2)

]
,

L3(V1,V2) =

[
1− e− f1V1

(
1+ f1V1 +

( f1V1)
2

2

)]
×
[

1− e− f2V2

(
1+ f2V2 +

( f2V2)
2

2

)]
. (23)

In Table 1 calculations of steady–state number of customers
distribution, and in Table 2 calculations of loss probability (on

Table 1
Number of customers distribution for M/M/2/(1,V1,V2) system,

a = 1, µ1 = 0.25, µ2 = 0.2, f1 = 2, f2 = 4 (indications independent)

V1 V2 p0 p{1} p{2} p{1,2} p3

1 1 0.0637 0.1082 0.1353 0.3439 0.3489

1 2 0.0559 0.0966 0.1207 0.3309 0.3959

1 3 0.0555 0.0960 0.1200 0.3298 0.3987

1 4 0.0555 0.0960 0.1200 0.3297 0.3988

2 1 0.0378 0.0728 0.0910 0.3115 0.4870

2 2 0.0321 0.0630 0.0787 0.2906 0.5357

2 3 0.0318 0.0625 0.0781 0.2891 0.5385

2 4 0.0318 0.0625 0.0781 0.2890 0.5386

3 1 0.0331 0.0648 0.0810 0.2954 0.5256

3 2 0.0279 0.0556 0.0696 0.2733 0.5736

3 3 0.0277 0.0552 0.0690 0.2718 0.5763

3 4 0.0277 0.0552 0.0690 0.2717 0.5765

4 1 0.0321 0.0630 0.0787 0.2906 0.5357

4 2 0.0270 0.0539 0.0674 0.2683 0.5834

4 3 0.0268 0.0535 0.0669 0.2667 0.5861

4 4 0.0267 0.0535 0.0669 0.2667 0.5862

the base of (19) formula) are presented. In all calculations we
assume that a = 1, µ1 = 0.25, µ2 = 0.2, f1 = 2, f2 = 4 and the
values of V1 and V2 are changing from 1 to 4 (in the case of
number of customers distribution), and from 0.1 to 5.1 (in the
case of loss probability).

Table 2
Loss probability values for M/M/2/(1,V1,V2) system,
a = 1, µ1 = 0.25, µ2 = 0.2, f1 = 2, f2 = 4 (indications

independent)

PLOSS V2 =0.1 V2 =1.1 V2 =2.1 V2 =3.1 V2 =4.1 V2 =5.1

V1 =0.1 0.9494 0.8683 0.8654 0.8653 0.8653 0.8653

V1 =1.1 0.8197 0.6258 0.6190 0.6186 0.6186 0.6186

V1 =2.1 0.7971 0.6012 0.5956 0.5953 0.5953 0.5953

V1 =3.1 0.7919 0.5960 0.5907 0.5905 0.5905 0.5905

V1 =4.1 0.7908 0.5948 0.5896 0.5894 0.5894 0.5894

V1 =5.1 0.7906 0.5945 0.5894 0.5892 0.5892 0.5892

The graph presenting values of loss probability is shown in
Fig. 2. It is clear that PLOSS does not converge to 0 (when
V1,V2 → ∞). Of course, if we take into consideration that we
have here limited number of servers and waiting positions, we
have obvious relation PLOSS → r3, where r3 is the probability
that in classical version of this system (without assumption that
customers have random volumes) all servers and waiting posi-
tions are busy. In analyzed model we have:

r3 =
a3

a3 +a2(µ1 +µ2)+a(µ1 +µ2)2 +2µ1µ2(µ1 +µ2)
.

Substituting fixed values of a = 1, µ1 = 0.25 and µ2 = 0.2, we
obtain r3 ≈ 0.589102 and it is the limitation of loss probability
in this case (see again Table 2 and Fig. 2).

Fig. 2. Graph presenting the values of loss probability in the
M/M/2/(1,V1,V2) queueing system (indications independent)
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If we investigate second situation, we have the following
relations (using (21)):

L(V1,V2) = 1+ e−
fV2
c [H(V2− cV1)−1]− e− fV1H(V2− cV1),

L2(V1,V2) =
e− f

(
V2
c +V1

)
c

{
e fV1(c+ fV2) [H(V2− cV1)−1]

+ ce
fV2
c
(
e fV1 − ( fV1 +1)H(V2− cV1)

)}
,

L3(V1,V2) =
e− f

(
V2
c +V1

)
2c2

×
{

e fV1
(
2c2 +2c fV2 + f 2V 2

2
)
[H(V2− cV1)−1]

+ c2e
fV2
c
(
2e fV1 − [ fV1( fV1 +2)+2]H(V2− cV1)

)}
, (24)

where H(x) is left–continuous Heaviside’s unitstep function
(H(x) = 0 if x≤ 0 and H(x) = 1, otherwise).

In Table 3 we analogously present calculations of steady–
state number of customers distribution, and in Table 4 calcula-
tions of loss probability. This time we make the following sub-
stitutions: a = 1, µ1 = 0.25, µ2 = 0.2, f = 4, c = 2 and the
values of V1 and V2 are changing in the same way as in previ-
ously analyzed situation, whereas Fig. 3 presents graph of loss
probability values.

Table 3
Number of customers distribution for M/M/2/(1,V1,V2) system, a =
1, µ1 = 0.25, µ2 = 0.2, f = 4, c = 2 (second indication proportional

to the first)

V1 V2 p0 p{1} p{2} p{1,2} p3

1 1 0.0555 0.0960 0.1200 0.3297 0.3988

1 2 0.0318 0.0625 0.0781 0.2890 0.5386

1 3 0.0318 0.0625 0.0781 0.2890 0.5386

1 4 0.0318 0.0625 0.0781 0.2890 0.5386

2 1 0.0555 0.0960 0.1200 0.3297 0.3988

2 2 0.0318 0.0625 0.0781 0.2890 0.5386

2 3 0.0277 0.0552 0.0690 0.2717 0.5765

2 4 0.0267 0.0535 0.0668 0.2667 0.5862

3 1 0.0555 0.0960 0.1200 0.3297 0.3988

3 2 0.0318 0.0625 0.0781 0.2890 0.5386

3 3 0.0277 0.0552 0.0690 0.2717 0.5765

3 4 0.0267 0.0535 0.0668 0.2667 0.5862

4 1 0.0555 0.0960 0.1200 0.3297 0.3988

4 2 0.0318 0.0625 0.0781 0.2890 0.5386

4 3 0.0277 0.0552 0.0690 0.2717 0.5765

4 4 0.0267 0.0535 0.0668 0.2667 0.5862

Table 4
Loss probability values for M/M/2/(1,V1,V2) system, a = 1,
µ1 = 0.25, µ2 = 0.2, f = 4, c = 2 (second indication propor-

tional to the first)

PLOSS V2 =0.1 V2 =1.1 V2 =2.1 V2 =3.1 V2 =4.1 V2 =5.1

V1 =0.1 0.8653 0.7906 0.7906 0.7906 0.7906 0.7906

V1 =1.1 0.8653 0.6186 0.5953 0.5945 0.5945 0.5945

V1 =2.1 0.8653 0.6186 0.5953 0.5905 0.5894 0.5894

V1 =3.1 0.8653 0.6186 0.5953 0.5905 0.5894 0.5892

V1 =4.1 0.8653 0.6186 0.5953 0.5905 0.5894 0.5892

V1 =5.1 0.8653 0.6186 0.5953 0.5905 0.5894 0.5892

Fig. 3. Graph presenting the values of loss probability in the
M/M/2/(1,V1,V2) queueing system (second indication propor-

tional to the first)

4.2.2. Memory buffer contains three sectors

Assume now that customer volume vector contains three indi-
cations. We will show numerical results in two practical situa-
tions:

• indications of customer volume vector are independent and
have uniform distribution on the intervals [0,b1], [0,b2] and
[0,b3], respectively,

• first two indications of a customer volume vector are inde-
pendent, have uniform distribution on the intervals [0,b1]
and [0,b2], respectively, and the third indication is propor-
tional to their sum: ζ3 = c(ζ1 +ζ2), c > 0.

In first situation we obtain the following formulae:

L(V1,V2,V3) =
1

b1b2b3

3

∏
i=1

[Vi +(bi−Vi)H(Vi−bi)] ,

L2(V1,V2,V3) =
1

8b2
1b2

2b2
3

3

∏
i=1

[
V 2

i +(Vi−2bi)
2H(Vi−2bi)

− 2(Vi−bi)
2H(Vi−bi)

]
,
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L3(V1,V2,V3) =
1

216b3
1b3

2b3
3

3

∏
i=1

[
V 3

i +(3bi−Vi)
3H(Vi−3bi)

− 3(2bi−Vi)
3H(Vi−2bi)

+ 3(bi−Vi)
3H(Vi−bi)

]
. (25)

Numerical calculations of number of customers distribution and
loss probability are presented in Tables 5–6. We make here the
following substitutions: a = 1, µ1 = 0.25, µ2 = 0.2, b1 = 1,
b2 = 2 and b3 = 5, whereas values of V1,V2 and V3 equal 1
or 3 (in the case of customers distribution) and 0.1 or 10.1 or
20.1 (in case of loss probability). Notice that the value of loss
probability is also limited by the same value r3 discussed in the
previous subsection.

Table 5
Number of customers distribution for M/M/2/(1,V1,V2,V3) system,
a = 1, µ1 = 0.25, µ2 = 0.2, b1 = 1, b2 = 2, b3 = 5 (indications inde-

pendent)

V1 V2 V3 p0 p{1} p{2} p{1,2} p3

1 1 1 0.6837 0.1367 0.1709 0.0085 0.0001

1 1 3 0.4056 0.2434 0.3042 0.0456 0.0011

1 3 1 0.5025 0.2010 0.2513 0.0440 0.0012

1 3 3 0.2196 0.2635 0.3294 0.1729 0.0146

3 1 1 0.6777 0.1355 0.1694 0.0169 0.0004

3 1 3 0.3859 0.2315 0.2894 0.0868 0.0064

3 3 1 0.4785 0.1914 0.2393 0.0837 0.0071

3 3 3 0.1762 0.2115 0.2643 0.2775 0.0705

Table 6
Loss probability values for M/M/2/(1,V1,V2,V3) system,

a = 1, µ1 = 0.25, µ2 = 0.2, b1 = 1, b2 = 2, b3 = 5
(indications independent)

PLOSS V3 = 0.1 V3 = 10.1 V3 = 20.1

V1 = 0.1,V2 = 0.1 0.9999 0.9951 0.9951

V1 = 0.1,V2 = 10.1 0.9980 0.9176 0.9174

V1 = 0.1,V2 = 20.1 0.9980 0.9176 0.9174

V1 = 10.1,V2 = 0.1 0.9990 0.9549 0.9549

V1 = 10.1,V2 = 10.1 0.9808 0.5931 0.5891

V1 = 10.1,V2 = 20.1 0.9808 0.5931 0.5891

V1 = 20.1,V2 = 0.1 0.9990 0.9549 0.9549

V1 = 20.1,V2 = 10.1 0.9808 0.5931 0.5891

V1 = 20.1,V2 = 20.1 0.9808 0.5931 0.5891

In second situation, exact formulae for Lk(V1,V2,V3) are
possible to obtain using Mathematica environment but they are

very long and complex, we inverse here the following, compli-
cated function:

L (s1,s2,s3) =

(
1− e−b1(s1+cs3)

)k(
1− e−b2(s2+cs3)

)k

bk
1bk

2s1s2s3(s1 + cs3)k(s2 + cs3)k
,

k = 1,3. (26)

So we will not present exact relations but only some numerical
computations with following substitutions: a = 1, µ1 = 0.25,
µ2 = 0.2, b1 = 1, b2 = 2 and c = 2 (see Tables 7–8).

Table 7
Number of customers distribution for M/M/2/(1,V1,V2,V3) system,
a = 1, µ1 = 0.25, µ2 = 0.2, b1 = 1, b2 = 2, c = 2 (third indication

proportional to the sum of others)

V1 V2 V3 p0 p{1} p{2} p{1,2} p3

1 1 1 0.7765 0.0971 0.1213 0.0051 0.0000

1 1 3 0.2929 0.2563 0.3204 0.1201 0.0103

1 3 1 0.7765 0.0971 0.1213 0.0051 0.0000

1 3 3 0.2661 0.2661 0.3326 0.1247 0.0105

3 1 1 0.7765 0.0971 0.1213 0.0051 0.0000

3 1 3 0.2887 0.2526 0.3158 0.1316 0.0114

3 3 1 0.7765 0.0971 0.1213 0.0051 0.0000

3 3 3 0.2626 0.2626 0.3282 0.1351 0.0115

Table 8
Loss probability values for M/M/2/(1,V1,V2,V3) system, a = 1,
µ1 = 0.25, µ2 = 0.2, b1 = 1, b2 = 2, c = 2 (third indication pro-

portional to the sum of others)

PLOSS V3 = 0.1 V3 = 10.1 V3 = 20.1

V1 = 0.1,V2 = 0.1 0.9994 0.9951 0.9951

V1 = 0.1,V2 = 10.1 0.9994 0.9174 0.9174

V1 = 0.1,V2 = 20.1 0.9994 0.9174 0.9174

V1 = 10.1,V2 = 0.1 0.9994 0.9549 0.9549

V1 = 10.1,V2 = 10.1 0.9994 0.5982 0.5891

V1 = 10.1,V2 = 20.1 0.9994 0.5982 0.5891

V1 = 20.1,V2 = 0.1 0.9994 0.9549 0.9549

V1 = 20.1,V2 = 10.1 0.9994 0.5982 0.5891

V1 = 20.1,V2 = 20.1 0.9994 0.5982 0.5891

All presented symbolic and numerical results were obtained
with the use of Mathematica environment in version 13.0.1.
Times of calculations were not long as the values of k were not
too big. The calculations in this case do not have big computa-
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tional complexity and do not need much size of RAM memory.
It is clear that the most complex operation is Laplace transform
inversion used in the process of obtaining exact form of multi-
dimensional Stieltjes convolution Lk(V) – the time of obtaining
the inversion and needed size of RAM memory increases to-
gether with increasing the k value because then Laplace trans-
form formulae are functions having poles of the higher orders
and the process of inversion demands calculating derivatives of
higher orders (residues method) which is complicated taking
into consideration the form of the numerator of Laplace trans-
form (see e.g. formula (26)) and often needs the use of New-
ton’s binomial theorem or the other complex computational
techniques (e.g. the use of the theory of Laurent series). In such
situations time complexity can increase even exponentially as
well as the size of needed RAM memory and calculations be-
come impossible.

5. CONCLUSIONS AND FINAL REMARKS
In the present paper, we have investigated the model of multi–
server loss queueing system of the M/M/n/m–type in which
servers are assumed to be non–identical and arriving customers
are additionally characterized by non–negative random vectors
that have sense of multidimensional volume, which means that
customers transport information of different types measured in
bytes. Indications of these vectors (i.e. information) are stored
in dedicated sectors of limited memory buffer until customer
ends his service. For the analyzed model, we have proved gen-
eral formulae for the steady–state number of customers distri-
bution and loss probability. We also showed some symbolic and
numerical computations for some special cases of the model
that are the most interesting from the practical point of view.
Moreover, we drew attention to appearing technical problems
connected with calculating multidimensional Stieltjes convolu-
tions, presenting some ideas on how to deal with such compu-
tations with the help of Mathematica environment for the most
common situations. Investigated model can be exemplary ap-
plied in the process of analysis or designing of real–life com-
puter systems storing various types of information in dedicated
for them limited memory buffers or in analysis of magazines
centers working process in the case when we can assume that,
for analyzed models, customer service time is independent of
his volume vector.
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