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Abstract
One of the parameters characterizing the quality of the gaseous fuel transported in gas pipeline network to
consumers and being the basis for the classification of gaseous fuels is the heat of combustion. The main
research hypothesis of this paper is the analysis of the possibility of using MLP 18-yi -1 neural network
model to forecast the natural gas heat of combustion with a forecast error smaller than in case it calculates
the heat of combustion based on the composition of natural gas predicted using the MLP 18-65-5 (Szoplik
and Muchel, 2023). The training of the models was carried out on the basis of 8760 real data, presenting
the hourly heat of natural gas combustion at one of the measurement points of this parameter in the
pipeline network. The model takes into account the influence of calendar factors (month, day of the
month, day of the week and hour of the day) and weather factors (ambient temperature) on the amount
of heat of natural gas combustion in a given location of the gas network. Many MLP 18-yi -1 models were
trained, differing in the number of neurons in the hidden layer and activation functions of neurons in the
hidden and output layers.
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1. INTRODUCTION

One of the classification parameters of gaseous fuels and de-
termining the usefulness of a given fuel in industry or house-
hold is the heat of combustion. Natural gas transported to
consumers via pipeline network is a mixture of natural gas
extracted in the country, delivered from other countries by
land, or regasified LNG gas transported to the country by sea
from various suppliers. The natural gas composition depends
on the location of extraction and the degree of purification
before transport, as well as the dynamics of the gas flow in
the network due to the variable distribution of gas from the
network. The detailed composition and heat of combustion
of natural gas are monitored on an ongoing basis at many
points of the gas network throughout the country with a fre-
quency of several minutes. The analysis of such data showed
that at a given point of measurement of natural gas parame-
ters in the gas network, the variability of the heat of natural
gas combustion in time is observed, depending mainly on the
gas composition (direct factor) and network load (indirect
factor) (Szoplik and Muchel, 2023). Based on the composi-
tion of natural gas, the exact value of the heat of combustion
of the gas Hv [MJ/m3] can be determined from Eqs. (1) and
(2) from the PN-EN ISO 6976:2016-11 standard:

Hv (t1; t2; p2) =

XN

j=1

“
xj
ˆ
(Hc)

o
G

˜
j
(t1)
”

V

=

XN

j=1

“
xj
ˆ
(Hc)

o
G

˜
j
(t1)
”

Z(t2;p2)RT2

p2

(1)

Z(t2;p2) = 1−
„
p2
p0

«24 NX
j=1

xjsj(t2; p0)

352

(2)

where: [(Hc)oG ]j (t1) – ideal gross molar-basis calorific value
of component j , kJ/mol, V – real-gas molar volume of the
mixture, m3/mol, xj – mole fraction of component j of
natural gas, N – number of components in a mixture, R –
molar gas constant, J/molK, T – thermodynamic tempera-
ture, K, t – Celsius temperature, ◦C, p – pressure, kPa, p0
– atmospheric pressure, kPa, Z(t2;p2) – compression factor
at the metering reference conditions, sj – summation factor.

The knowledge of the heat of combustion of the fuel in the
gas network is necessary for the correct transport of gaseous
fuel through the network and for the settlement and balanc-
ing of the system. In addition to time-consuming and costly
laboratory testing of natural gas composition using gas chro-
matography, simulations of the flow of gas mixtures in net-
work pipelines are frequently used methods for tracking the
composition of natural gas. This method, however, requires
a detailed description of the operations taking place in the
system (compression, jet pressure reduction) and the network
topology. In (Alves Jr. and Fontes, 2022), a model was pro-
posed to simulate the dynamics of changes in the composi-
tion and heat of combustion of gas being a mixture of gases
supplied by several suppliers to the Brazilian gas network.
Studies have shown that knowledge of gas composition and
analysis of its changes can lead to a reduction in gas distribu-
tion costs. Models for simulating the flow of gas mixtures in
the network can be used to analyze changes in gas composi-
tion depending on the network load (Bermúdez and Shabani,
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2022; Chaczykowski and Zarodkiewicz, 2017; Chaczykowski
et al., 2018; Fan et al., 2021; Osiadacz and Chaczykowski,
2020) or in the case of adding alternative fuels to the net-
work, such as hydrogen (Saedi et al., 2021; Zhang et al.,
2022). The authors of the study (Chaczykowski et al., 2018)
indicate the need to monitor changes in the composition of
natural gas in the gas network, especially in the conditions
of introducing energy from unconventional sources into the
pipelines, performed under short-term contracts.

Another method of obtaining information on the composi-
tion and heat of combustion of natural gas at a given point in
the network of pipelines distributing gas to consumers can be
forecasting using an artificial neural network (ANN) model.
ANN models make it possible to take into account the in-
fluence of many factors on the forecast value without the
need to describe these relationships in detail. Numerous stud-
ies confirm the usefulness of artificial neural network models
for forecasting demand for natural gas in a given produc-
tion process (Androjić and Dolaček-Alduk, 2018), for a given
city (Szoplik, 2015), for a given country (Merkel et al., 2018),
continent or world (Hafezi et al., 2019). The models took into
account various factors (calendar, economic, demographic or
meteorological) having a significant impact on gas demand.
ANN models have also been used to monitor the safe trans-
port of natural gas through the pipeline, taking into account
corrosion (Wen et al., 2019) or cracking (Wang et al., 2022)
of the pipeline walls. The transport of natural gas through the
pipeline is accompanied by changes in the temperature and
pressure of the gas stream, which affect the change of impor-
tant physical parameters of the gas. ANN models were also
used to predict the compressibility factor (Farzaneh-Gord et
al., 2021; Okoro et al., 2022; Sanjari and Nemati Lay, 2012),
which is a measure of the deviation of a real gas from an
ideal gas. Chu et al. (2021) predicted the compressibility fac-
tor (Z-factor), speed of sound and viscosity of natural gas,
while Farzaneh-Gord et al. (2018) predicted the compress-
ibility factor and speed of sound of the natural gas as pa-
rameters necessary for the correct calibration of flowmeters
using sonic nozzles. ANN models were also used to predict
the viscosity (AlQuraishi and Shokir, 2011; Nemati Lay et al.,
2012) and natural gas density (AlQuraishi and Shokir, 2011;
Wood and Choubineh, 2020) depending on the composition,
pressure and temperature of the gas stream. The number of
natural gas components included in the ANN models as in-
put data varied from 10 to 21, and the gas composition was
expressed as molar fractions. On the other hand, in (Szop-
lik and Muchel, 2023), an MLP model of a neural network
was proposed for forecasting five key components of natu-
ral gas depending on selected calendar factors and ambient
temperature. The number of neurons in the hidden layer of
the network and the activation functions of neurons in the
hidden and output layers were selected experimentally.

Depending on the complexity of the analyzed problem, vari-
ous ANN models were used. Forecasting one or more output
parameters was the most often performed using the MLP or

RBF model of a neural network (Bagheri et al., 2019; Mo-
handes et al., 2000; Okoro et al., 2022; Wang et al., 2018;
Szoplik and Muchel, 2023; Yang et al., 2020; Zhang et al.,
2016). In the case of forecasting many parameters, two dif-
ferent approaches were used simultaneously: many identical
ANN network models were designed to forecast each param-
eter individually (AlQuraishi and Shokir, 2011; Chu et al.,
2021; Farzaneh-Gord et al., 2018; Kharitonova et al., 2019;
Piotrowski et al., 2003; Postawa et al., 2022; Sharifi et al.,
2020; Shenbagaraj et al., 2021) or one network model with
multiple outputs was designed (George et al., 2018; Park et
al., 2020; Postawa et al., 2022; Singh et al., 2007; Szoplik and
Muchel, 2023). Models with multiple neurons in the output
layer of the network have been used to predict the composi-
tion of mixtures when interdependence between the compo-
nents of the mixture is observed. However, in the case where
there is no relationship between the forecasted parameters,
several forecasting models were used and a smaller forecast
error of individual parameters was obtained compared to the
forecast error made using one model with multiple outputs.

However, regardless of the ANN model adopted in the re-
search, in each case many network models were trained
and models with the highest correlation coefficients and the
smallest forecast errors (MAPE, MSE, RMSE) were selected
experimentally. Various network learning algorithms (LM,
SDRP, BFGS and others) were used in the research, various
activation functions of neurons (logistic, linear, exponential
and others), and training of models was carried out on dif-
ferent sizes of real or theoretical data sets.

The use of the MLP model of a neural network for forecasting
selected parameters is particularly useful when the forecasted
value depends on many factors, and their influence is difficult
to describe with known dependencies. The value of the gas
heat combustion directly depends on the composition of the
gas, while in the case of transporting gas through a network
of pipelines fed by different suppliers and delivered to cus-
tomers who consume gas in different quantities, it is difficult
to predict the heat of combustion using simple forecasting
models. The choice of the MLP model for forecasting the
heat of combustion of gas transported through a network of
pipelines supplying gas to customers allows taking into ac-
count the influence of factors directly (gas composition) and
indirectly (ambient temperature, month, day of the week or
hour of the day) affecting its value.

The main research hypothesis of this paper is the analy-
sis of the possibility of using the feed-forward model of the
MLP 18-yi -1 neural network to forecast the heat of natural
gas combustion with a forecast error smaller than in case it
calculates the heat of combustion based on the composition
of natural gas predicted using the MLP 18-65-5. The train-
ing of the neural network models was carried out on the basis
of 8760 real data, presenting the hourly heat of combustion
of natural gas at one of the measurement points of this pa-
rameter in the pipeline network distributing gas in Poland.
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The model takes into account the influence of calendar fac-
tors (month, day of the month, day of the week and hour of
the day) and weather factors (ambient temperature) on the
amount of heat of natural gas combustion in a given loca-
tion of the gas pipeline network. Many MLP 18-yi -1 models
were trained, differing in the number of neurons in the hidden
layer of the network and the activation functions of neurons
in the hidden and output layers. The evaluation of the qual-
ity of the trained models and the selection of the model for
forecasting the heat of combustion of natural gas were made
on the basis of the correlation coefficient of the test set and
the calculated MAPE error of the forecast. It was assumed
that the best quality model is characterized by the smallest
MAPE forecast error. The trained MLP model can be used
to forecast the heat of combustion value of natural gas at
a given measurement point in the gas network for any day
of the month and week, as well as ambient temperature and
hour of day. On the other hand, the analysis of the risk of
incorrect forecast was used to estimate the probability of ob-
taining a forecast with error greater than the average MAPE
forecast error.

2. RESEARCH METHODOLOGY

The research methodology and the scope of analyses of
the heat of combustion forecasting results are schematically
shown in Fig. 1. The first stage of the research included the
selection of factors influencing the variability of the natural
gas heat of combustion Hv . On the basis of 8760 data pre-
senting the variability of the heat of combustion value over
time, resulting from the variability of the natural gas compo-
sition and the load on the pipeline network, five parameters
influencing the heat of combustion at a given time were se-
lected. A set of 8760 (data for 2018) results of the heat

of combustion of natural gas calculated on the basis of the
real composition of natural gas (example data provided by
the GAZ-SYSTEM S.A. – Gas Transmission Operator of the
Polish natural gas network) or heat of combustion value cal-
culated on the basis of the gas composition predicted using
the MLP 18-65-5 model (Szoplik and Muchel, 2023) was pre-
pared. These values were used to assess the quality of heat of
combustion predictions obtained with the new trained MLP
models.

The second stage consisted in training MLP models with
a different number of neurons in the hidden layer or dif-
ferent activation functions of neurons for forecasting natural
gas heat of combustion. The MLP 18-65-1 model (activation
functions: logistic-logistic) had the same number of neurons
in the hidden network layer and activation functions as in the
model used to predict the composition of natural gas (Szop-
lik and Muchel, 2023). Subsequent models differed from the
previous ones in the number of neurons in the hidden layer or
in the assumed activation functions of MLP 18-yi -1 neurons.
The selection of the best quality MLP model from among
the trained ones was made on the basis of the correlation
coefficient R and the MAPE error of the forecast, defined
by Eq. (3):

MAPE =
1

N

NX
i=1

˛̨̨̨
HV (real) −HV (MLP)

HV (real)

˛̨̨̨
(3)

where: HV (real) – real natural gas heat of combustion
[MJ/m3], HV (MLP) – forecasting natural gas heat of com-
bustion [MJ/m3], N – number of all cases in new data set
for forecasting (N = 8760).

The best quality MLP 18-yi -1 models were used to prepare
forecasts of natural gas heat of combustion value for the new
input data set (N = 8760 data for 2019). In the third stage

Figure 1. Research methodology.
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of the research, the obtained results of the forecasts were
subjected to a statistical analysis of the significance of differ-
ences between the average values of the heat of combustion
of gas, forecasted by the best quality MLP models. The ob-
tained results of the heat of combustion forecasts were also
compared with the values of the heat of combustion calcu-
lated on the basis of the composition of natural gas predicted
by the MLP 18-65-5 model (Szoplik and Muchel, 2023). The
quality of the results of the heat of combustion forecasted
and calculated on the basis of the forecasted composition
was assessed according to the probability (risk analysis) of
obtaining a forecast with a MAPE error > 1:3932%.

2.1. Analysis of heat of combustion variability
over time

The value of the natural gas heat of combustion depends
on the composition of the gas, i.e. the content of the most
abundant component (methane) and the content of the com-
ponent with the highest heat of combustion value (ethane).
The contents of other gas components have a smaller im-
pact on the heat of combustion of natural gas transported
through the pipeline network. Fig. 2 shows the variability of
the methane and ethane content and the heat of combustion
Hv of natural gas in subsequent hours in 2018 at one of the
measurement points for the properties of natural gas. There
is a clear impact of the content of these components in the
gas on the heat of combustion value, which decreases with

the increase in the methane content and increases with the
increase in the ethane content. A detailed statistical analysis
of the variability of natural gas composition over time is in-
cluded in the paper (Szoplik and Muchel, 2023), where it was
shown that this variability results from supplying the network
with gas of different composition and additionally depends on
the dynamics of gas in the network (gas consumption from
the network by consumers).

Based on the analysis of real data on the demand for gas by
consumers, an analysis of the variability of the load of the
sample network pipeline was carried out and it was shown
that the ambient temperature, time of day and day of the
week and month have the greatest impact on gas consump-
tion.

Figure 3 shows the results presenting the differences between
the average values of the monthly, daily or hourly gas flow
and the average values of the annual, monthly or daily gas
pipeline load, respectively. Figure 3a shows the variability of
the gas pipeline load in relation to the average annual value
in subsequent months of the year and the average tempera-
ture of the month. There are clear differences in the monthly
variation of the gas pipeline load, which depend on the am-
bient temperature (Fig. 3b). In addition, the load on the
pipeline transporting gas depends on the hour of the day
and day of the week (Fig. 3c). On days with low ambient
temperatures (winter months) and during the morning rush
hours (7 am on weekdays or 10 am on holidays), the load

(a)

(b)

Figure 2. Variability of the content of two selected components and the heat of combustion value of natural gas over time;
(a) results for methane; (b) results for ethane.
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(a)

(b)

(c)

Figure 3. Natural gas pipeline load variation; (a) monthly, (b) daily, (c) hourly.

on the network pipeline is clearly higher than the average.
On the other hand, in the months of the summer season
(high ambient temperatures), the load on the network’s gas
pipelines is much lower than the average. A clear influence of
the ambient temperature on the load on the gas pipelines of
the network is particularly visible on the days of the winter
months (low ambient temperatures). Based on the analysis
of the results (Fig. 3) of the variation of the gas network
load, resulting from the changing demand for gas by con-
sumers taking gas from the network, calendar factors (day of
the week, day of the month, month and hour of the day) and
meteorological factors (ambient temperature) were selected.

Therefore, these factors affect the change in the load on the
gas network in subsequent hours of the year. The variabil-
ity of gas demand by consumers and the load on network
pipelines were also analyzed elsewhere (Szoplik and Muchel,
2023; Szoplik and Stelmasińska, 2019; Szoplik, 2015).

2.2. Training the MLP network model

The MLP (MultiLayer Perceptron) model is one of the most
frequently used artificial neural network models in forecast-
ing. The model is built of many neurons arranged in at least
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three layers (Fig. 4), and the flow of signals takes place only
in one direction from the input layer (X) to the output layer
(Z). The number of neurons in the hidden layer (Y ) of the
network depends on the number of variables included in the
model that affect the predicted value. In the case of train-
ing the MLP model of the artificial neural network with one
hidden layer (Fig. 4) for forecasting the heat of combus-
tion of natural gas 15 qualitative variables (3 types of the
day of the week D1, D2, D3 and 12 months M1, . . . , M12)
were taken into account in the input layer and 3 quantita-
tive variables (air temperature T , hour of the day h and day
of the month DM), while the output layer contained only 1
quantitative variable (heat of combustion of gas HV ). The
number of neurons in the hidden layer of the MLP model,
which depends on the number of neurons in the input layer,
was determined experimentally. Fig. 4 shows a diagram of
a neural network model built of an input layer X containing
18 neurons, one hidden layer Y containing yi neurons and 1
neuron in the output layer Z. Signals received in neurons of
the input layer in the form of information about the month,
day of the month, the type of the day of the week, the hour
of the day and ambient temperature are subject to weighting
(wi ), and then they are sent to all neurons of the hidden layer,
where their weighted summation takes place and the output
signal is activated. Then, after assigning successive weights
(wj), the signals from the neurons of the hidden layer are
sent to the neuron of the output layer Z. In the neurons of
the output layer, the weighted signals are added up, and after
activation, they constitute the predicted value of the heat of
combustion of natural gas HV .

The training of the MLP model was carried out on a set
of 8760 cases, which were randomly divided into 3 subsets:
training – 70%, test – 20% and validation – 10% of the en-
tire data set. The learning process was carried out using the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) variable metric
method. The study tested various functions of neurons ac-
tivation in the hidden and output layers: linear, logistic, hy-
perbolic tangent and exponential. A total of several hun-
dred different structures of the MLP 18-yi -1 network were
trained, changing the number of neurons in the hidden layer
yj in the range from 5 to 65, of which several dozen were
selected to prepare forecasts of natural gas heat of combus-
tion for the new set of input data. Data for training the
network in the form of real example heat of combustion of
gas recorded every hour in the period from 1 January 2018
to 31 December 2018 were made available by the operator of
the Polish natural gas transmission network GAZ-SYSTEM
S.A., while weather data were read from the meteorological
database.

2.3. Results of natural gas heat of combustion
forecasts

The best quality MLP models of the network (trained on
data specific for 2018) differing in the number of neurons in
the hidden layer and the logistic activation function of the
neurons of the hidden and output layers, and with different
functions of neurons activation were used to prepare forecasts
of the natural gas heat of combustion for the new set of input

Figure 4. MultiLayer Perceptrons (MLP) with eighteen neutrons in input layer X, yi neutrons in hidden layer Y and one neutron in
output layer Z; D1 – workday, D2 – weekday, D3 – holiday, M1 – January, . . . , M12 – December, T – temperature,
h – hour of day, DM – day of Month.
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data (data for 2019). On the basis of the determined MAPE
errors of HV forecasts determined individually for each MLP
model of the network, 10 models with the smallest MAPE
average values were selected.

Figure 5 shows the determined MAPE errors for the predic-
tions obtained using MLP models with different numbers of
neurons in the hidden layer and with the logistic activation
function in the hidden and output layers, and the values of
the correlation coefficient for the RT test set for each net-
work model are additionally marked. Increasing the number
of neurons in the hidden layer of the network increases the
RT coefficient, but does not improve the quality of combus-
tion heat forecasts. This is evidenced by the MAPE error
values of the forecasts made for the new sets of input data.
Among the MLP models tested in the research, the MLP
18-9-1 model was considered the best quality, for which the
MAPE error = 1:3811%.

Figure 5. Summary of coefficients RT (dashed line) and error
MAPE (columns) for different structure of MLP
networks models and logistic activation function of
neurons in the hidden and output layers (results for
2019).

Similar research results, however, obtained using MLP models
with a different number of neurons in the hidden layer and
different activation functions of the neurons of the hidden
and output layers are summarized in Table 1. The change of
the activation function of neurons slightly affects the value of
the MAPE error calculated on the basis of forecasts made for
the new set of input data. Among the network models listed
in Table 1, the MLP 18-6-1 model with the functions of
neuron activation: logistic and linear was considered the best
quality. The forecast error for this model MAPE = 1:3609%
is smaller compared to the MLP 18-9-1 model with logistic
activation functions.

Comparison of the results of HV forecasts obtained using the
best quality MLP 18-9-1 model with the activation functions
(logistic-logistic) with the real values of the heat of combus-
tion of natural gas is shown in Fig. 6.

Figure 6. Comparison of the values predicted by the MLP 18-9-1
model and the real value of heat of combustion of
natural gas.

Table 1. Summary of coefficients R and MAPE error for different structure of MLP networks models and different activation function
of neurons in the hidden and output layers.

Structure of MLP RL RT RV

The function of
activating neurons
in the hidden layer

The function of
activating neurons
in the output layer

MAPE, %

MLP 18-5-1 0.9537 0.9512 0.9486 logistic linear 1.3850

MLP 18-6-1 0.9635 0.9603 0.9602 logistic linear 1.3609

MLP 18-7-1 0.9650 0.9612 0.9604 logistic linear 1.3874

MLP 18-9-1 0.9626 0.9614 0.9618 logistic linear 1.3744

MLP 18-8-1 0.9754 0.9727 0.9708 logistic tanh 1.3787

MLP 18-10-1 0.9716 0.9695 0.9664 logistic tanh 1.3830

MLP 18-17-1 0.9829 0.9806 0.9814 tanh logistic 1.3845

MLP 18-20-1 0.9813 0.9793 0.9792 tanh logistic 1.3820

MLP 18-9-1 0.9703 0.9670 0.9632 tanh linear 1.3829

MLP 18-19-1 0.9775 0.9750 0.9750 tanh linear 1.3869
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3. EVALUATION OF THE QUALITY
OF NATURAL GAS HEAT
OF COMBUSTION FORECASTS

The assessment of the quality of heat of combustion of nat-
ural gas forecasts was made on the basis of a statistical anal-
ysis of the average values of heat of combustion value of
gas forecast using various MLP models and the results of
the probability of obtaining a forecast with an error greater
than the MAPE error = 1:3932% of the heat of combustion
value calculated on the basis of the forecast composition of
natural gas.

3.1. Statistical analysis of the average values
of gas combustion heat forecasts

The results of calculations of the mean values and the stan-
dard deviation of the predicted heat of combustion of natural
gas obtained using the best MLP models differing in the num-
ber of neurons in the hidden layer or activation functions of
neurons in the hidden and output layers are summarized in
Table 2. The statistical significance of differences between
successive pairs of HV means was assessed using t-Student
test or Cochran–Cox test at the significance level ¸ = 5%.
The choice of the test depended on the fulfillment of the
condition of insignificance (t-Student test) or significance
(Cochran–Cox test) of differences between the standard de-
viations of the predicted heat of combustion of gas in the
compared sets of results.

Table 2. Calculation results of the standard deviation and mean
heat of combustion value predicted by selected MLP
models.

Model MLP MAPEHV [%]
HV (average)
[MJ/m3]

(sHV )
[MJ/m3]

MLP 18-65-5 1.3932 [log–log] 41.223 0.5419

MLP 18-65-1 1.4507 [log–log] 41.230 0.5658

MLP 18-9-1 1.3811 [log–log] 41.226 0.5399

MLP 18-6-1 1.3609 [log–lin] 41.227 0.5285

The Bartlett test was used to assess the significance of dif-
ferences between the standard deviation values of the heat
of combustion value forecasts, in which the statistic of the
test X2 is described in Eq. (4):

X2 =
2:303

1 +
1

3 (k − 1)

 
kX
i=1

1

ni − 1
− 1

N − k

!

·
"
(N − k) lg

 
1

N − k

kX
i=1

s2i (ni − 1)

!

−
kX
i=1

(ni − 1) lg
`
s2i
´#

(4)

where: k – number of sets compared with each other, ni –
number of cases in i set of results, N – number of all cases
in all sets of results, si – standard deviation for the i set of
results.

The value of X2
kr was read from a dedicated table for the

significance level ¸ = 0:05 and the number of degrees of
freedom f = k − 1. The calculation results in the form of
the test statistics and critical values of the test, presented in
Table 3, indicate that the standard deviations of the predicted
heat of combustion values differ statistically significantly for
the pair of models MLP 18-65-5 and MLP 18-65-1, and then
MLP 18-65-1 and MLP 18-9-1. Therefore, the average heat
of combustion values will be compared using the Cochran–
Cox test. In the case of using the MLP 18-65-5 model, the
heat of combustion of the natural gas was calculated from the
Eq. (1) based on the predicted content of five components
of natural gas, while the use of the MLP 18-65-1 model
enabled direct forecasting of the heat of combustion value.
The lack of a statistically significant difference in the values
of the standard deviation of the heat of combustion value
for the remaining pairs of models (Table 3) made it possible
to use the t-Student test to compare the average values of
the predicted heat of combustion value. In this case, the
significance of differences between standard deviations of HV
predictions obtained using models with a similar number of
neurons in the hidden layer and different activation functions
was compared.

The average values of the predicted heat of combustion were
compared using the Cochran–Cox test, in which the statistics
of the test C and the critical value of the test Ckr were
calculated from Eqs. (5) and (6), respectively:

C =
|xav1 − xav2|s
s21

n1 − 1
+

s22
n2 − 1

(5)

Ckr =

s21
n1 − 1

t1 +
s22

n2 − 1
t2

s21
n1 − 1

+
s22

n2 − 1

(6)

where: xav1, xav2 – average values in sets 1 and 2, s21 , s
2
2 –

variance values in sets 1 and 2, n1, n2 – number of cases in
sets 1 and 2, t1, t2 – critical values read from the t-Student
distribution table for the number of degrees of freedom re-
sulting from the equations: f1 = n1 − 1, f2 = n2 – 1 and for
the adopted significance level ¸ for the set 1 and 2.

In the second case, the significance of the differences between
the average values of the forecast heats of combustion was
assessed on the basis of the t-Student test using Eq. (7):

t =
|xav1 − xav2|p

s21 + s22

√
n (7)

where: n = n1 = n2 – the size of the set. The critical value
tkr was read from the t-Student distribution table for the
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Table 3. Summary of Bartlett’s test results.

Compared MLP models
The value of the
X2 Bartlett test

statistic

Critical value of
the X2

kr Bartlett
test

Significance of differences
between standard

deviations (variances)
H0 : X

2 < X2
kr

H1 : X
2 > X2

kr

MLP 18-65-5 [log–log] MLP 18-65-1 [log–log] 6.9669 3.84 significant

MLP 18-65-1 [log–log] MLP 18-9-1 [log–log] 8.2365 3.84 significant

MLP 18-9-1 [log–log] MLP 18-6-1 [log–lin] 1.6957 3.84 insignificant

MLP 18-9-1 [log–log] MLP 18-9-1 [log–lin] 0.2381 3.84 insignificant

MLP 18-9-1 [log–log] MLP 18-8-1 [log–tan] 0.3687 3.84 insignificant

MLP 18-9-1 [log–log] MLP 18-20-1 [tan–log] 0.8504 3.84 insignificant

H0: the averages for the compared sets do not differ statistically significantly;
H1: the averages for the compared sets differ statistically significantly

significance level ¸ = 0:05 and the number of degrees of
freedom f1 = n1 + n2 − 2.

The results of the Cochran–Cox and t-Student test statistics
calculations and the relevant critical values of the tests are
presented in Table 4. It has been shown that in each an-
alyzed case there are no statistically significant differences
between the compared pairs of average values of the pre-
dicted natural gas heat of combustion. The results of this
stage of research show that simplifying the MLP model (e.g.
reducing the number of neurons in the hidden or output
layer of the network or changing the activation function
of neurons) reduces the MAPE error of the heat of com-
bustion value forecast from 1.3932% (for MLP 18-65-5) to
1.3609% (for MLP 18-6-1). The average heat of combus-
tion forecast by successive MLP models did not differ sta-
tistically significantly, but increasingly simpler MLP mod-

els were obtained without deteriorating the quality of HV
forecasts.

3.2. Risk analysis for incorrect of natural gas heat
of combustion forecast

The MLP forecasting models were also compared accord-
ing to the probability of receiving the heat of combustion
value forecast with a MAPE error > 1:3932%. It was as-
sumed that the factors adopted in the forecasting model as
input data (day of the week, month, temperature or time of
day) influence the probability of incorrect forecast to a differ-
ent extent and partial risk coefficients Rp;¸ were determined
from Eq. (8):

Rp;¸ = P (MAPE ≥ 1:3932%; ¸) =
nMAPE≥1:3932%;¸

n¸
(8)

Table 4. Summary of Cochran–Cox and t-Student test results.

Compared MLP models
The value of the C
Cochran–Cox test

statistic

Critical value of the
Ckr Cochran–Cox

test

Significance of
differences between

averages
H0 : C < Ckr
H1 : C > Ckr

MLP 18-65-5 [log–log] MLP 18-65-1 [log–log] 0.8538 4.0964 insignificant

MLP 18-65-1 [log–log] MLP 18-9-1 [log–log] 0.4572 3.7447 insignificant

The value of the t
t-Student test

statistic

Critical value of the
tkr t-Student test

H0 : t < tkr
H1 : t > tkr

MLP 18-9-1 [log–log] MLP 18-6-1 [log–lin] 0.1352 1.9600 insignificant

MLP 18-9-1 [log–log] MLP 18-9-1 [log–lin] 0.3815 1.9600 insignificant

MLP 18-9-1 [log–log] MLP 18-8-1 [log–tan] 0.6373 1.9600 insignificant

MLP 18-9-1 [log–log] MLP 18-20-1 [tan-log] 0.0017 1.9600 insignificant

H0: the averages for the compared sets do not differ statistically significantly;
H1: the averages for the compared sets differ statistically significantly
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where: ¸ – factor type, nMAPE≥1:3932%;¸ – number of cases
for factor ¸ for which MAPE error ≥ 1:3932%, n¸ – total
number of cases for factor ¸.

Calculations were made for the results obtained for three
models of the MLP network separately for each factor influ-
encing the heat of gas combustion. The partial risk ratios
listed in Table 5 enable the estimation of the cumulative
risk of incorrect forecasting (MAPE error > 1:3932%) of the
heat of combustion of natural gas for any day of the week
and month, as well as ambient temperature and time of day.

The value of the cumulative risk Rtwas estimated on the
basis of Eq. (9):

Rt = P (MAPE ≥ 1:3932%; ¸) =
1

N¸

X
Rp;¸ (9)

where: N¸ – number of factors taken into account in the risk
model.

The results of Rt risk calculations for three models (MLP 18-
65-5, MLP 18-65-1, MLP 18-6-1) for twelve assumed sets
of input data (day of the week, month, ambient tempera-
ture and time of day) are shown in Fig. 7. The MAPE error

Table 5. Values of partial risk Rp;¸ for each factor subset for different MLP models.

No. Factor type Factor subset
Partial risk

[MLP 18-65-5 log–log], %
Partial risk

[MLP 18-65-1 log–log], %
Partial risk

[MLP 18-6-1 log–lin], %

1.
Day of
the week

Working day 42 46 41
2. Weekend day 46 46 43
3. Holiday day 22 17 19

4.

Month

January 71 66 67
5. February 46 51 48
6. March 53 50 46
7. April 27 35 33
8. May 20 23 21
9. June 43 43 43
10. July 42 39 39
11. August 41 44 36
12. September 65 71 68
13. October 44 47 41
14. November 51 51 44
15. December 6 17 3

16.
Hour of
the day

5 am–10 am 42 45 40
17. 11 am–3 pm 42 44 41
18. 4 pm–10 pm 43 45 40
19. 11 pm–4 am 42 45 40

20.
Temperature

–10–5 ◦C 43 45 40
21. 6–18 ◦C 43 46 42
22. 19–37 ◦C 41 41 38

Figure 7. Rt cumulative risk values determined for 12 selected sets of input data (D1 – workday, D2 – weekday, D3 – holiday, M1 –
January, ..., M12 – December) and 3 models of the MLP network used in forecasting the natural gas heat of combustion.
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= 1:3932% was assumed in the calculations, which is charac-
teristic for the heat of combustion calculated on the basis of
the gas composition predicted using the MLP 18-65-5 model.
Lower cumulative risk Rt means lower probability of obtain-
ing a forecast with MAPE error > 1:3932%. The analysis
of the results presented in Fig. 7 showed that among all the
analyzed cases, the lowest risk of obtaining the heat of com-
bustion value of natural gas forecast with the MAPE error
> 1:3932% is for the MLP 18-6-1 model. However, the use
of the MLP 18-65-1 model is the least favorable (out of the
3 compared models).

4. SUMMARY

Based on a set of 8760 real data presenting the natural gas
heat of combustion values and calendar factors (month, day
of the week and month, hour of the day) and weather (am-
bient temperature), many models MLP 18− yi − 1 for fore-
casting natural gas heat of combustion were trained, differing
in the number of neurons in the hidden layer or activation
functions of neurons. The best quality MLP models were
then used to prepare 8760 heat of combustion value fore-
casts (for a new set of 8760 input data) and the MLP 18-6-1
model was selected. MLP 18-6-1 model is characterized by
a smaller forecast error of MAPE = 1:3609% compared to
the heat of combustion forecast error of MAPE = 1:3932%
for MLP 18-65-5 model, which was calculated on the basis of
the predicted natural gas composition. Therefore, the main
goal of the article has been achieved – the MLP forecasting
model has been designed, which directly forecasts the heat of
combustion with a smaller error than in the case of the MLP
model, which forecasts the composition of natural gas, and
the heat of combustion is calculated based on the forecasted
content of individual components in the gas. Based on the
cumulative risk analysis, it was also shown that the probabil-
ity of obtaining a forecast (using the MLP 18-6-1 model) of
the heat of combustion of natural gas HV with the MAPE
error > 1:3932% is much lower compared to the HV value
calculated on the basis of the composition of natural gas
forecasted by the MLP 18-65-5 model.

Taking into account the dynamics of changes in the energy
market (changes of suppliers, replacement of fossil fuels with
other types of fuels or new possibilities of using natural gas),
periodic verification of the model and possible training of
the model with a new set of input data should be taken into
account.
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SYMBOLS

C value of the statistic of the Cochran–Cox test
Ckr critical value of the statistic of the Cochran–

Cox test
D1 workday,
D2 weekday,
D3 holiday,
DM day of Month
f number of degrees of freedom
h hour of day,
H0 null hypothesis
H1 alternative hypothesisˆ
(Hc)

o
G

˜
j
(t1) ideal gross molar-basis calorific value of com-

ponent j , kJ/mol
Hv heat of combustion of the gas, MJ/m3

HV (MLP) forecasting natural gas heat of combustion
HV (real) real natural gas heat of combustion
k number of sets compared with each other
M1, . . . , M12 January, . . . , December
N number of all cases in all sets of results
N number of components in a mixture
ni number of cases in i set of results
p pressure, kPa
p0 atmospheric pressure, kPa
R molar gas constant, J/molK
RL coefficient of learning set
RT coefficient of test set
RV coefficient of validation set
si standard deviation for the i set of results
s2i variance values in i set
sj summation factor
t Celsius temperature, oC
T temperature, K
t value of the statistic of the t-Student test
ti critical values read from the t-Student distribu-

tion table for the number of degrees of freedom
and for the adopted significance level ¸ for the
i set

tkr critical value of the statistic of the t-Student
test

V real-gas molar volume of the mixture, m3/mol
xavi average values in i set
xj mole fraction of component j of natural gas,
Z(t2;p2) compression factor at the metering reference

conditions,
¸ significance level (in statistical analysis)
¸ factor type (in risk analysis)
n¸ total number of cases for factor ¸ (in risk anal-

ysis)
N¸ number of factors taken into account in the risk

model
nMAPE≥1:3932%;¸ number of cases for factor ¸ for which MAPE

error ≥ 1:3932% (in risk analysis)
Rt cumulative risk
Rp partial risk
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X2
kr critical value of the statistic of the Bartlett test

X2 value of the statistic of the Bartlett test

Abbreviations

ANN Artificial Neural Network
BFGS Broyden–Fletcher–Goldfarb–Shanno training

algorithm
LM Levenberg–Marquardt training algorithm
LNG Liquefied Natural Gas
MAPE Mean Absolute Percentage Error
MLP MultiLayer Perceptrons
MSE Mean Squared Error
RMSE Root-Mean-Square Error
SDBP Steepest Descent Back Propagation training al-

gorithm
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