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Abstract: Beyşehir Lake is the largest freshwater lake in the Mediterranean region of Turkey that is used for drinking 
and irrigation purposes. The aim of this paper is to examine the potential for data-driven methods to predict long-term 
lake levels. The surface water level variability was forecast using conventional machine learning models, including 
autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA), and seasonal 
autoregressive integrated moving average (SARIMA). Based on the monthly water levels of Beyşehir Lake from 
1992 to 2016, future water levels were predicted up to 24 months in advance. Water level predictions were obtained 
using conventional time series stochastic models, including autoregressive moving average, autoregressive integrated 
moving average, and seasonal autoregressive integrated moving average. Using historical records from the same period, 
prediction models for precipitation and evaporation were also developed. In order to assess the model’s accuracy, 
statistical performance metrics were applied. The results indicated that the seasonal autoregressive integrated moving 
average model outperformed all other models for lake level, precipitation, and evaporation prediction. The obtained 
results suggested the importance of incorporating the seasonality component for climate predictions in the region. The 
findings of this study demonstrated that simple stochastic models are effective in predicting the temporal evolution of 
hydrometeorological variables and fluctuations in lake water levels.  
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INTRODUCTION 

Lake water level fluctuations play a crucial role in various aspects 
of human life, such as water supply, agriculture, and hydropower 
generation (Gownaris et al., 2018). Accurate predictions of lake 
water level fluctuations are therefore essential for effective water 
resource management. In recent years, data-driven methods have 
emerged as powerful tools for hydrometeorological predictions, 
including the prediction of lake water levels. In this article, we will 
explore the use of data-driven methods for the prediction of lake 
water level fluctuations, including a discussion of the advantages 

and limitations of these methods and a comparison to traditional 
methods, such as stochastic models. We will also provide a case 
study demonstrating the application of these methods to real- 
world data. This article aims to provide a comprehensive 
overview of the state-of-the-art data-driven methods for the 
prediction of lake water level fluctuations and to highlight their 
potential for improving our understanding of these important 
water resources. 

The assessment of surface water variability is a crucial aspect 
of regional water resource management, as it has implications for 
both economic and environmental policies. In light of this, the 
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prediction of hydrometeorological variables and lake water level 
fluctuations is of utmost importance for informed decision- 
making and the mitigation of water scarcity. In this study, a data- 
driven approach is proposed for the prediction of the temporal 
evolution of hydrometeorological variables and lake water level 
fluctuations. The data-driven model developed in this study aims 
to provide a simplified understanding of regional climate system 
variability. In recent years, data-driven models have become 
a topic of significant interest in hydrometeorological research, 
with an increasing number of studies utilising these models for 
the prediction of climate variables. The use of stochastic methods 
in the prediction of hydrometeorological conditions provides an 
accurate representation of uncertainty, reduces bias, and 
improves the representation of long-term climate variability. 
Previous research on stochastic models for hydrometeorological 
prediction has demonstrated the robustness of such data-driven 
models. In this study, stochastic methods were employed to 
predict the temporal evolution of hydrometeorological variables 
and lake water level fluctuations at Beyşehir Lake in Turkey. 

Beyşehir Lake is one of the most important water resources 
for domestic and irrigation purposes. Additionally, Beyşehir Lake, 
which is surrounded by two national parks, is a site of ecological 
importance that has been designated a national site by the 
Turkish Ministry of Culture since 1991 (Nas et al., 2009). Thus, 
several studies have been conducted to evaluate the water quality 
and quantity in Beyşehir Lake (Nas et al., 2009; Aktumsek and 
Gezgin, 2011; Özparlak, Arslan and Arslan, 2012; Bucak et al., 
2018; Sanli et al., 2021; Sanli et al., 2022). Predicting water levels 
is also crucial to ecological sustainability and resilience planning. 
Prediction of lake water levels has always been a challenging task 
for hydrologists and water resource managers. There are 
numerous studies regarding lake water levels in the literature 
determining the water spread area of lakes (Deoli et al., 2021; 
Kumar and Kuriqi, 2022). 

The water surface level of a lake can be significantly 
impacted by human activities and climate change. Changes in 
precipitation, flow, evaporation, drinking water supply, and 
irrigation water usage can result in a decrease in water levels, 
leading to economic losses and irreversible changes in the lake 
environment (Cengiz and Kahya, 2006). In light of this, the 
prediction of lake water levels using statistical methods and 
machine learning-based algorithms has received significant 
attention. Accurate prediction of the mean monthly lake water 
level is particularly important for the planning of multiple water 
uses, including hydropower plants, commercial navigation, 
recreational boating, water quality, and the aquatic ecosystem. 
This study aims to demonstrate the use of data-driven methods 
for lake water level prediction and to analyse its variability in 
relation to hydrometeorological variables. The stochastic models 
employed in this study were developed for predicting monthly 
water levels up to 24 months in advance for Beyşehir Lake. 

There are several nonlinear processes that contribute to the 
temporal variation of lake water level, including precipitation, 
evaporation, discharge from tributaries, interbasin water transfer, 
groundwater fluxes, and topography. The water level variations of 
a lake become even more complex when it interacts with 
neighbouring basins. There have been numerous forecasting 
techniques developed over the past few decades, including 
hydrodynamic models and data-driven models that are based 
on historical data. Physically based models require detailed input 

data, such as terrain information, and complex boundary 
conditions, and are computationally expensive. A data-driven 
model, on the other hand, is easier to implement and relies solely 
on the availability of climate data. In this study, stochastic 
methods, a hydrometeorological time series-based method, were 
used for predicting evaporation, precipitation, and lake water 
levels. 

Stochastic methods are widely used in water resources 
engineering. For instance, a study by Kurunç, Yürekli and Çevik 
(2005) evaluated autoregressive integrated moving average 
(ARIMA) and Thomas–Fiering (T–F) models regarding forecast-
ing performance for selected water quality and streamflow 
parameters of the Yeşilirmak River in Turkey. The study revealed 
that the variables evaluated had seasonal patterns, but none of 
them showed a significant trend over the study period. 
Additionally, it was found that the T–F model provided a slightly 
better prediction than the ARIMA model. Domenico De et al. 
(2013) compared the chaos theory with the ARIMA model in 
estimating sea water level on daily, weekly, 10-day, and monthly 
time scales at Cocos Islands based on measurement data from 
1992 to 2001. The results of the study showed that the ARIMA 
model performed better for daily and weekly averaged time series, 
while the nonlinear local prediction method performed better for 
10-day and monthly averaged time series. 

Stochastic models like ARIMA, seasonal autoregressive 
integrated moving average (SARIMA), and autoregressive moving 
average (ARMA) are widely used for predicting hydro-meteor-
ological data due to their several advantages. These models are 
flexible and can handle a variety of trends, seasonality, and 
autocorrelation structures in the data. They also use a parametric 
approach, making it easy to interpret and identify underlying 
patterns in the data. Furthermore, they are easy to use with 
a simple structure and can be fit to the data using standard 
statistical software packages and have well-established methods 
for model selection and validation. Stochastic models have been 
shown to perform well in a variety of applications, including the 
prediction of hydro-meteorological data, and can handle missing 
data. Additionally, they can be adapted to handle different types 
of data such as daily, weekly, or monthly data. 

On the other hand, a variety of data-driven models can be 
applied to predict hydrological variables. For instance, Buyukyil-
diz and Tezel (2017) estimated monthly changes in the level of 
Beyşehir Lake using the generalised regression neural network 
(GRNN) method, which is an iterative training procedure. The 
model was constructed with five different input combinations of 
inflow-lost flow, precipitation, evaporation, and outflow data, 
with monthly water level change as the output. Further, Dimri, 
Ahmad and Sharif (2020) investigated the seasonal variation of 
temperature and precipitation in the Bhagirathi River basin in 
India. The study evaluated 100 years of precipitation data and 
concluded that the results obtained from the SARIMA model 
provide more accurate estimates for flood prediction, urban 
planning, and environmental planning. 

It is pertinent to note that the reliability of forecast models 
relies on the accuracy and precision of the model output. Thus, 
comparing model results to real measurements is a critical step 
for model validation. For example, Coban et al. (2021) 
investigated precipitation prediction (between 2020–2024) in 
the Marmara region of Turkey using the ARMA, ARIMA, and 
SARIMA models for agricultural planning, flood control, and the 
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management of drinking water resources. In order to assess the 
models, statistical metrics such as mean absolute scaled error 
(MASE), mean absolute error (MAE), and root mean squared 
error (RMSE) were computed. Based on the corresponding 
metrics for the ARMA, ARIMA, and SARIMA models, the 
ARIMA model performed better than the other methods. The 
primary objective of this study is to develop a data-driven model 
for estimating future changes in lake water levels. Towards this 
end, water level forecasting of Beyşehir Lake, located in 
the southwest of Turkey, was studied as a case study based on 
24 years of time series (1992–2016). Furthermore, the perform-
ance of each modelling approach was compared by using a variety 
of descriptive statistics. 

MATERIALS AND METHODS 

STUDY AREA 

In the Mediterranean Sea region, Beyşehir Lake is one of the 
largest and most important freshwater lakes. The study area is 
located in the southern part of the Konya Closed Basin, Turkey, 
(the largest basin in Anatolia) and is approximately 90 km away 
from the city of Konya, at the longitude of 31°17'–31°44' E and the 
latitude of 37°34'–37°59' N (Fig. 1). 

Since 1914, Beyşehir Lake has been used for drinking water, 
irrigation, fishing, commercial activities, and tourism (Buyukyil-
diz and Tezel, 2017). In addition to serving as a reservoir for 
irrigation in the Cumra Plain, the lake is also used for navigation 
purposes (Nas et al., 2009). The lake has an average water depth 

of 5 m (the maximum water depth of 6.4 m was recorded in 
August 2006) and an area of 656 km2 with a drainage area of 
4,086.4 km2. Tectonic Beyşehir Lake is mainly nourished by 
groundwater, water from the Western Taurus Mountains, and 
10 small streams. 

The lake water loss is mainly driven by evaporation, 
underground leaking, and water usage (irrigation, drinking water 
supply, etc.). It is pertinent to note that the Western Taurus 
Mountains is the most important karstic region in Turkey. As 
a result of the karstic ponors and dolines formations, the lake is 
also interconnected with the Manavgat River in the south. 
Therefore, the lake is either supplied with groundwater or loses 
water during the rainy and dry seasons (Özdemir and Özkan, 
2007). 

The interbasin water transfer is a man-made project that 
transfers water from a lake to a basin where water is less abundant 
or could be better utilised for social and economic development. 
Such schemes can be designed to alleviate water shortages in the 
receiving basin, generate electricity, or both (Mansouri et al., 
2017). Gembos derivation tunnel, which has a length of 15.5 km, 
is a good example of an interbasin water transfer. Before the 
interbasin water transfer, it is believed that the Gembos closed 
basin supplied water to the Manavgat River in the south (Fig. 1). 

Beyşehir Lake is placed in a karst-tectonic depression, and it 
loses water through the sinkholes in its southwest. Doğan et al. 
(2013) developed numerical water to study the groundwater 
fluxes in the region and showed a significant relation between 
groundwater outflows and the lake water level. Therefore, the 
sinkholes on the lake’s western shore are above this elevation, it is 
accepted that there is no loss from these sinkholes at median 

Fig. 1. The geographical location of the study area and illustration of the Gembos derivation tunnel (phot.: H. Agaccioglu); source: own elaboration 
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water levels. This situation develops depending on the water level 
of the leaks that will occur in the lake. The volume of water 
transferred to Beyşehir Lake directly affects the amount of land 
that can be irrigated. 

Based on meteorological data, it has been observed that 
precipitation has decreased and average temperatures have 
increased in recent years. Karst formations on the surface and 
underground can cause unexpected water connections that are 
subject to change over time, and it is possible for water transfer in 
karst areas to affect the hydrological regimes of adjacent basins. 
There is a possibility that it may have positive or negative effects 
on water resources, which can be revealed through data-driven 
approaches. This comprehensive relationship should be investi-
gated in future studies using an interdisciplinary approach, as well 
as extending the evaluation to other adjacent basins. 

STUDY METHODS 

In this study, linear stochastic models referred to as Box–Jenkins, 
were used to forecasting the time series of Beyşehir Lake’s water 
level using historical records. The datasets were split into 
a calibration and validation period and stochastic models such 
as autoregressive moving average (ARMA), autoregressive 
integrated moving average (ARIMA), and seasonal autoregressive 
integrated moving average (SARIMA) were trained and validated 
(Srivastava, 2015). The framework data-driven modelling frame-
work employed in this study is presented in Figure 2. 

According to Mwenda, Kuznetsov and Mirau’s (2015) 
recommendations regarding the minimum number of observa-
tions required to build an effective ARIMA model (40–50 
observations), in the current study a total of 9000 observations 
were used to construct the model. It is important to note that the 
dataset consists of daily precipitation, evaporation, and water 
level measurements covering the period from January 1992 to 
October 2016. ARIMA models developed by Box and Jenkins 
(1976) are classified into two categories as seasonal and non- 
seasonal models. Seasonal ARIMA models are denoted by 
ARIMA (p, d, q)∙(P, D, Q)S. Where, s is period, P, D and Q are 
the degrees of the seasonal autoregressive operator (SAR), 

seasonal differencing, and seasonal moving average operator 
(SMA), respectively. Non-seasonal models are denoted by the 
notation ARIMA (p, d, q). Where, p, d, and q are the degrees of 
the autoregressive operator (AR), differencing, and moving 
average operator (MA), respectively. Non-seasonal models are 
used in three different models such as autoregressive model 
AR (p), moving average model MA (q), and autoregressive 
moving average model ARMA (p, q). 

Selecting appropriate values for p, d, and q can be difficult. 
However, the ARIMA function from the fable package will do it 
for you automatically. The ARIMA model is an important 
statistical approach to forecasting and analysing time-series data 
related to precipitation (Wang et al., 2014). 

An AR (p), MA (q), ARMA (p, q), and ARIMA (p, d, q) 
models can also be represented in Equations (1), (2), (3), and (4) 
respectively (Hannan, 1970; Mirzavand and Ghazavi, 2015; 
Dastorani et al., 2016).  

yt ¼ cþ ’1yt� 1 þ � � � þ ’pyt� p þ "t ð1Þ

yt ¼ cþ "t þ �1"t� 1 þ �2"t� 2 þ � � � þ �p"t� q ð2Þ

where: yt = actual time series, εt = white noise, et = white noise 
(error term), t = periodic time, p = order of autoregressive term, 
q = order of moving average term, φ1, ..., φp and θ1, ..., θq = model 
parameters and coefficients, c = constant term. 

If statistical parameters of a time series such as mean, 
variance, and autocorrelation remain constant versus time, the 
time series data is considered stationary and modelled by using 
ARMA (p, q) which is the combination of AR and MA models 
(Eq. 3) (Parvaze et al., 2021). 

yt ¼ � þ
Xp

i¼1

’iyt� i þ et �
Xp

j¼1

�jyt� j ð3Þ

where: φi = ith autoregressive coefficient, θj = jth moving average 
coefficient, δ = stationary part of the autoregressive moving 
average model. 

ARIMA (p, d, q) model is a combination of differencing 
with the ARMA model, which allows transforming a nonsta-
tionary series to a stationary series as expressed in Equation (4). 

ARIMA model has three main components such as 
autoregressive (AR), integrated (I), and moving average (MA). 
AR component signifies the autocorrelation between present and 
past observations, while the MA component gives how the new 
forecasts fit the prior forecast errors and the integrated 
component (I) represents the degree of difference required to 
transform a nonstationary series into a stationary series 
(Asadollahfardi, Rahbar and Fatemiaghda, 2012).  

1 � ’1B � � � � � ’pB
p

� �
1 � Bð Þ

d
yt ¼ cþ 1þ �1Bþ � � � þ �qB

q
� �

"t ð4Þ

where: p, d, q = order of the ARIMA model, B = backward shift 
operator, (1 – B)d = dth order difference operation. 

The development of an ARIMA (p, d, q) model for 
forecasting typically encompasses four distinct stages, as delin-
eated below. 

Fig. 2. Flow chart of the data-driven modelling framework; ACF = 
autocorrelation function, PACF = partial autocorrelation function, 
ARIMA = autoregressive integrated moving average; source: own 
elaboration 
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– Model identification. The selection of optimal values for p, d, 
and q in the ARIMA model is facilitated by employing graphi-
cal techniques, such as plotting the time series and examining 
the autocorrelation function (ACF) and partial autocorrelation 
function (PACF) plots. 

– Parameter estimation. Utilising the available data to estimate 
the parameters of the identified model. 

– Diagnostic testing. Model residuals are examined for indepen-
dence, homoscedasticity, and normality to ensure the model’s 
validity. 

– Series comparison and forecasting. The synthetic series gen-
erated by the best-performing model is contrasted with the 
original time series. The predictive capacity of hydrological 
models is evaluated using the Nash–Sutcliffe efficiency coeffi-
cient (Nash and Sutcliffe, 1970). Figure 3 illustrates the flow-
chart for identifying the best-fit model through iterative 
estimation of model identification and parameters until a satis-
factory model is achieved (Parvaze et al., 2021). 

The SARIMA model is designed to capture the character-
istics of seasonal variations in time series data (Wang, Feng and 
Liu, 2013). Consequently, numerous researchers, including Han 
et al. (2013), Wang, Feng and Liu (2013), and Park, Onof and 
Kim (2019), have conducted investigations to estimate precipita-
tion while taking seasonality into account. 

In some cases, there is more than one model appropriate for 
a time series representation. Thus, some criteria should be 
considered for selecting an appropriate model for time series 
representation (Yerdelen et al., 2021). Performance efficiency of 
prediction models may be evaluated by using such descriptive 

statistic parameters as root mean squared error (RMSE), mean 
absolute scaled error (MASE), mean absolute error (MAE), and 
Akaike’s information criterion (AIC) (Mohanasundaram, Nara-
simhan and Kumar, 2017). 

For the selection of the best-fit model, recommendations 
from Kurunç, Yürekli and Çevik (2005), Valipour (2015), and 
Sirisha, Belavagi and Attigeri (2022) were employed to identify 
the most suitable model. It is evident that the values of p, d, and q 
were varied within the range of 0 to 10 to ascertain the optimal 
ARIMA models. Subsequently, these models were categorised 
based on their AIC performance metrics. Upon determining the 
p, d, and q values that represent the best ARIMA models, the top 
SARIMA models were selected in a similar fashion, considering 
the seasonality of the input values. In essence, the outcomes of the 
best ARIMA models informed the development of SARIMA 
models, which entailed adjustments to the p, d, and q values. 
Ultimately, the performance of the most proficient prediction 
models was assessed utilising descriptive indicators, including 
MAE, RMSE, and MASE. Furthermore, the AIC was employed to 
gauge prediction error and the relative quality of statistical 
models for the given data. 

RESULTS AND DISCUSSION 

In this section, the potential of the stochastic methods in the long- 
term prediction of precipitation, evaporation, and lake water 
levels was assessed. Monthly time series were employed to 
develop the different forecast models. Further, various modelling 
accuracy assessment tools were computed to evaluate the 
prediction efficiency of autoregressive moving average (ARMA), 
autoregressive integrated moving average (ARIMA), and seasonal 
autoregressive integrated moving average (SARIMA) models. 

First, the temporal evolution of the time series was 
investigated (Fig. 4). The blue lines in Fig. 4 represent the 
variables’ temporal trend after signal decomposition. Statistical 
features of evaporation, precipitation, and water level time series 
including average, median, minimum, and maximum values and 
standard deviation were computed for the 24-year records 
(Tab. 1). The computed statistics reported that precipitation 

Fig. 3. Flow chart of autoregressive integrated moving average (ARIMA) 
model application procedure; source: own elaboration based on Box and 
Jenkins (1976) 

Fig. 4. Time series of evaporation (mm), precipitation (mm), and lake level (m a.m.s.l.); source: own study 
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and evaporation values could be null. The recorded null 
precipitation and evaporation were mainly observed during dry 
and wet seasons, respectively. In other words, during summer 
seasons precipitation rates decrease significantly and reach zero. 

Results reported in Figure 4 indicated an increasing trend of 
evaporation over the lake basin. It is important to note that the 
increasing trend has been more significant since 2012. Further, 
the graphical representation of the temporal evolution of the 
evaporation series revealed a change in the mean value where 
fluctuation occurs. To the knowledge of the authors, there was no 
modification of the evaporation measurements procedure that 
could result in a change point in the reported observation. Thus, 
the observed change can be attributed to a significant increase in 
evaporation rates in the region. On the other hand, precipitation 
data did not reveal clear long-term trends. 

The data distribution was determined using the violin plot 
(Fig. 5). The results for the standardised data show that the most 
prevalent evaporation rates fall below the first quantile or around 
the third quantile value, suggesting a seasonal variation of 
evaporation with low evaporation during the wet season and high 
evaporation during the dry season. As with precipitation, the 
probability density function shows that extreme and high 
precipitation rates are less frequent than the first quantile. 
However, the most frequent water level was observed at values 
near the median. According to the results obtained, the lake water 
level appears to have remained more stable during the observa-
tion period. 

The information presented in Figure 4 and Figure 5 is 
insufficient to thoroughly examine the seasonality effect of the 
investigated variables. To address this limitation, two statistical 
measures were evaluated: the autocorrelation coefficients (ACF) 
and partial autocorrelation coefficients (PACF) for each of the 
evaporation, precipitation, and water level datasets (Fig. 6). An 
ACF plot is instrumental in discerning the presence or absence of 
a trend in the data. When a significant trend is evident, ACF 
tends to exhibit large and positive autocorrelations for small lags. 
Consequently, time series with pronounced trends display 
positive ACF values that gradually diminish as lags increase. 

When data exhibit both a trend and seasonality, a combination of 
these effects is observed. The gradual decline in ACF is 
attributable to the trend, while the “scalloped” shape results from 
seasonality. 

As depicted in Figure 5, both trend and seasonality were 
apparent in the ACF plots for lake water levels. To eliminate 
trends from the data, the first-order differential process was 
employed. Consequently, the seasonality effect in ACF plots was 
further investigated. Based on the first-order differentiated ACF 
plots, the data were found to be both stationary and seasonal. 
A seasonal plot resembles a time series plot, with the distinction 
that data are plotted against the individual “seasons” during 
which they were collected. Seasonal plots facilitate a clearer 
visualisation of the underlying seasonal pattern and are 
particularly valuable for identifying years characterised by pattern 
changes. 

The seasonality variation of the hydrometeorological 
variables and lake water levels were examined in Figure 7. For 
each measurement year, the colours represent the average value of 
the monthly observation. It has been observed that the water level 
rises during March, April, May, and June, and reaches its lowest 
point in November each year. A seasonal pattern of precipitation 
is also evident in Figure 7. More precipitation occurs in April, 
October, November, and December than during the rest of the 
year. Evaporation rates increase dramatically in the months 
between May and October, with maximum evaporation occurring 
between June and August. The obtained results suggest that the 
relative increase in the lake water level rates during the months of 
March–June is associated with a decrease in evaporation rates and 
an increase in precipitation rates. On the other hand, the observed 
decrease in the lake water levels during September–November is 
associated with a significant increase in evaporation rates and 
a decrease in precipitation rates. However, it should be noted that 
a lag of one month was observed between the increase–decrease 
in the hydrometeorological variables and the increase–decrease in 
the lake water level. In other words, changes in the lake water 
level do not occur in the same month as the hydrometeorological 
variables suggesting a late response of lake dynamics to the 
regional climate variability. 

Data from time series may exhibit a variety of patterns, and it 
is often helpful to separate a time series into several components 
(Yerdelen and Abdelkader, 2021). A time series consists of three 
main components namely, the trend-cycle component, the seasonal 
component, and a residual (remainder) component. Seasonally 
adjusted series include both the remainder component and the 
trend cycle. Therefore, they are not “smooth”, and “downturns” or 
“upturns” may be misconstrued. In cases where seasonal variation 
is not of primary interest, the seasonally adjusted series can be 
useful (Hyndman and Athanasopoulos, 2018). 

Table 1. Statistical parameters of the time series data 

Data Sample size Mean Median Minimum value Maximum value Standard deviation 

Evaporation (mm) 9040 3.39 2.8 0 13.8 3.5 

Precipitation (mm) 9040 1.34 0 0 90.5 4.8 

Water level (m) 9040 1122.60 1122.4 1121 1124.6 0.8  

Source: own study. 

Fig. 5. Violin plot of the data used in this study; source: own study 
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The precipitation, evaporation, and water level time series 
were decomposed to determine their seasonal, trend, and 
remainder components. In addition, the decomposition of the 
considered series was employed to understand their character-
istics to meet the assumptions of the ARIMA models. Figure 
8 illustrates the three components of the analysed data separately. 
The trend is evident in the decomposed water level and 
evaporation data, but not in the precipitation data. The series 

presented in Figure 8 suggests that the seasonal component 
changes over time and any two consecutive years have similar 
patterns for evaporation, precipitation, and water level. Further, 
the residuals component represents what remains after the 
seasonal and trend-cycle components have been subtracted. 

Once the ACF plots, PACF plots, and additive components 
of the data have been determined, ARIMA models for evapora-
tion, precipitation, and water level were manually defined. Using 

Fig. 6. Autocorrelation coefficients (ACF) and partial autocorrelation coefficients (PACF) plots of monthly: a) evaporation, 
b) precipitation, c) water level time series; source: own study 
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the ACF and PACF, it is possible to determine the initial values of 
p and q. Therefore, different ARMA models were used with p and 
q values ranging from 0 to 4. The results of these models were 
then compared using the AIC. P values were determined by 
considering the significant relationships of the first lag time of 
PACF, whereas q values were determined by using ACF. Table S1 
which is demonstrated in the Supplementary materials includes 
the AIC values for the alternative ARMA (p, q) models. It can be 
stated that the ARIMA model does not respond to the assumption 
that the residuals are independent. 

According to the findings presented in Table S1, the 
statistical evaluation provided the lowest Akaike’s information 
criterion (AICc) values of –132.4292, 936.7424, and 933.7558 for 
the best fit ARMA (0, 3), ARMA (2, 4), and ARMA (2, 3), 
respectively, for lake level, precipitation, and evaporation data. In 
Figure 8, it is shown that the series is non-stationary. Therefore, 
series are transformed into stationary series by taking differentia-
tion. In addition, the best fit ARIMA model was also found by 
taking the d value as 1 and testing p and q values between 0 and 4. 
Table S1 presents different ARIMA (p, d, q) models with their 
AICc values. Table S2 shows that the statistical evaluation 
provided the lowest AICc values as –201.8619, 966.4469, and 
867.1585 for the best fit ARIMA (0, 1, 0), ARIMA (1, 1, 4) and 

ARIMA (2, 1, 4) model for lake level, precipitation, and 
evaporation data, respectively. 

Since the ARIMA model limit is not taking into account 
time series with seasonality, the SARIMA model was utilised by 
using (p, d, q) (P, D, Q)S model where s is the seasonal frequency. 
Parameters d and D were selected as 1, 2 for the determination of 
appropriate SARIMA models which can be tested. The tested 
(p, d, q) (P, D, Q)S models were evaluated according to the lowest 
Akaike’s information criterion (AICc) value. 

An ARIMA model can be automatically parameterised and 
calibrated utilising the Auto ARIMA function (Bouznad et al., 
2020). The forecast package for R recommends selecting the 
parameters d and D as 1, employing the ndiffs() and nsdiffs() 
functions (Hyndman and Khandakar, 2008). AICc values for 
various tested SARIMA (p, d, q) (P, D, Q)S models are 
summarised in Table S3. The final row in Table S3 represents 
the model suggested by the ARIMA model, which is also obtained 
using the auto.arima() function. 

Table S3 shows that the statistical evaluation provided the 
lowest AICc value for lake water level as –320.6726 for the best-fit 
SARIMA (0, 1, 0) (0, 1, 0)12 model. The values of AICc 944.7547 
and 674.5960 for SARIMA (0, 1, 1) (0, 1, 2)12 and SARIMA (2, 1, 1) 
(1, 1, 1)12 model obtained for precipitation and evaporation data, 
respectively. 

Fig. 7. Beyşehir Lake temporal variation of monthly: a) evaporation (mm), b) precipitation (mm), c) lake 
level (mm); source: own study 
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Table S1, Table S2, and Table S3 illustrate comparisons of 
best-fit models according to AICs values in the Supplementary 
materials. However, for choosing the best forecasting model 
statistical descriptive indicators of correlation coefficient (R), 
MAE, RMSE, and MASE values should be evaluated. In order to 
evaluate the accuracy of the models and to compare the different 
best-fit model approaches, four accuracy measures (R, RMSE, 
MAE, and MASE) were defined as illustrated in Table S4 which is 
given in the Supplementary materials. Moreover, these accuracy 
parameters were also presented according to the test and train 
data of these models. 

In summary, the first best ARIMA models were evaluated by 
altering the values of p, d, and q between 0 and 10 in the 
presented study. These models were listed according to AIC 
performance criteria in Table S4. In this table, it can be shown 
that the best models were calculated when p, d, q ∈ ⟨0–4⟩. The 
second, according to the seasonality of the input values, best 
SARIMA models were also determined similarly. Due to the 
results of the best ARIMA models, SARIMA models were created 
by changing p, d, q ∈ ⟨0–4⟩. They were also demonstrated in 
Table S3. Then, the best ARIMA and SARIMA models found in 
Table S3 were listed according to performance criteria such as R, 
MAE, RMSE, and MASE in Table S4. 

Fig. 8. Three additive components as seasonal, trend cycle, and the remainder for: a) evaporation (mm), 
b) precipitation (mm), c) lake level (m); source: own study 
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These indicators are expected to have lower values for the 
validation of the model. Thus, all models were compared and the 
auto SARIMA (3, 0, 1) (0, 1, 1)12, auto SARIMA (2, 0, 2) (2, 0, 0)12, 
and auto SARIMA (2, 0, 0) (0, 1, 2)12 models were found to be the 
best-fit forecast models for the study area. According to the 
obtained values in Table S4, the SARIMA models can be evaluated 
as the best model in terms of MAE, RMSE, and MASE criteria. The 
obtained results suggest that the seasonality component integrated 
within the SARIMA model reflects the interseason variability of the 
studied hydroclimatological variables. For the SARIMA model, 
a high agreement was found between the observed and predicted 
data in terms of correlation, suggesting the high capability of the 
model to capture the temporal evolution of the predicted data. In 
terms of error metrics, the SIRMA model showed lower error 
values suggesting the model’s capability to simulate low and peak 
values of the predicted variables. 

Figure 9 shows the testing period between 2016 and 2018 for 
Beyşehir Lake water level, precipitation, and evaporation. The best- 
fit SARIMA models were used for the forecasting. In Figure 9, the 
time series are shown in black colour, and forecasted values are 
shown in blue colour while the dark grey and light grey bands 
represent the 80% and 95% confidence intervals of forecasts 
respectively. For the testing period, the SARIMA model showed 
high agreement with the observed data (Tab. 5). The obtained 
results suggest the capability of the SARIMA model to predict 
hydrometeorological variability and fluctuations in lake water levels. 

Inland lakes are one of the most influential factors for each 
environment, and they have a profound impact on its surround-
ings. In addition to protecting humans and wildlife, they play an 
essential role in preserving the environment. In between, 
freshwater lakes are used directly for drinking water supply or 
crop irrigation, providing many environmental, economic, and 
ecological benefits. Both the environment and humans are 
threatened by the depletion and destruction of some of these 
lakes. Therefore, it is of the utmost importance to analyse and 
forecast the future levels of freshwater lakes. This study examined 
the monthly time series of Beyşehir Lake level, precipitation, and 
evaporation using various pre-processing methods and data- 
driven models, including ARMA, ARIMA, and SARIMA models. 

A comparison of the results of the different stochastic 
models indicated that hydrometeorological variability and 
fluctuations in lake water can be modelled by using an 
appropriate method that provides accurate information on the 
entailing terms in time series. The SARIMA model performs 
better in terms of accuracy than the ARMA and ARIMA models 
when forecasting monthly series. This can be explained by the 
well representation of the seasonality component in the SRIMA 
models. It is suggested that linear methods should be employed in 
conceptual hydrological modelling, particularly lake water level 
modelling. In this study, it has been demonstrated that by 
properly understanding the components of a time series and 
defining the appropriate methodology, it is possible to develop an 
accurate and simple model based on data-driven methods. 
Overall, the SARIMA model definitely outperforms the other 
stochastic methods in short-term plans such as exploitation and 
consumption management, and in long-term plans such as 
designing and constructing hydraulic structures. The finding of 
this study indicated that stochastic models have the ability to 
portray various potential future scenarios. This helps prevent 

substantial shortcomings found in deterministic models, giving 
stochastic models an advantage. 

However, the problem is that the employed method is 
currently designed using an assumed stationarity of the data with 
a constant mean and variance. This limitation should be 
addressed in future studies by incorporating a non-linear method 
under the assumption of a changing climate and a non-stationary 
framework. It is also important to note that data-driven models 
are demanding in terms of training and calibration data and their 
application is limited to gauged sites. Thus, the method cannot be 
applied to ungauged sites and unobserved regions. In addition, 
the findings of the investigation suggest that other stakeholders 
should be involved in the management of Beyşehir Lake in 
a cooperative and prudent manner. Consequently, anthropogenic 
activities will have a reduced impact on the lake’s water quality, 
water level, aquatic ecosystems, and adjacent terrestrial ecosys-
tems. The lake will be more resilient to the effects of climate 
change as a result of these measures. 

Future studies should consider the fact that stochastic 
models, such as ARIMA, SARIMA, and ARMA, have several 
limitations and disadvantages to be aware of when using them for 
hydro-meteorological data predictions. These models make 
certain assumptions about the underlying structure of the data, 
including stationarity and linearity, which can lead to inaccurate 
predictions if not met. Additionally, they have limited complexity 
and may not be able to effectively capture more complex 
relationships in the data, such as non-linear relationships or 
multiple seasonality. The quality of the data is also a factor, as 
outliers, missing values, and measurement errors can all impact 
the accuracy of the model predictions. Choosing the correct 
model can be challenging, as there are many models to choose 
from, each with its own strengths and weaknesses. Furthermore, 
these models have a limited ability to account for external factors 
that may affect hydro-meteorological data, such as changes in 
land use, climate change, and human interventions. To ensure 
accurate predictions, it's important to carefully consider the 
limitations and underlying assumptions of each model when 
selecting the appropriate model for a given dataset. 

Each of the alternative methods for hydro-meteorological 
data prediction, including artificial neural networks (ANNs), 
support vector machines (SVMs), ensemble methods, hybrid 
models, and physical models, has its own advantages compared to 
stochastic models like ARIMA, SARIMA, and ARMA. ANNs are 
capable of modelling complex non-linear relationships in the data 
and handling large amounts of data, making them well-suited for 
prediction problems involving large datasets. SVMs are advant-
ageous in that they can handle both linear and non-linear 
relationships in the data, and can be used for both classification 
and regression problems. Ensemble methods combine the 
strengths of multiple models, leading to more robust predictions, 
and can account for model uncertainty. Hybrid models combine 
the strengths of multiple modelling approaches, resulting in more 
accurate predictions and can handle complex relationships in the 
data and large amounts of data. Physical models are based on the 
underlying physical processes that control hydro-meteorological 
variables and can lead to more accurate predictions, as well as 
being used for long-term predictions. The choice of method will 
depend on the specific characteristics of the data and the desired 
outcome, and in some cases, a combination of methods may be 
necessary to achieve the best results. 
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CONCLUSIONS 

Beyşehir Lake is the largest freshwater lake in Turkey that acts 
a key role in the centre of the interbasin water transfer. Many 
surface and underground karst forms in karst regions especially 
located in a lake basin result in unexpected water connections 
that change with time, and it is highly possible to change the 
hydrological regime of neighbouring basins due to the interbasin 
water transfer. Therefore, significant effects on water resources 
such as Beyşehir Lake also result in significant hydrometeor-
ological variability and variations in lake levels. In brief, the 
presented study recommends forecasting and predicting the lake 
water level fluctuations with considering hydrometeorological 
parameters. 

The present study also evaluates the temporal evolution of 
hydro-meteorological data and uses the ARMA, ARIMA, and 
SARIMA methods to predict precipitation, evaporation, and the                 

level of Beyşehir Lake in the Mediterranean Sea region of Turkey. 
Forecasts were made for a two-year time period based on 24 years 
of historical data for model tuning. 

In this study, MAE, RMSE, and MASE metrics were 
computed to assess the models’ performance. The SARIMA 
model performed better than the other models in terms of 
forecast accuracy, where the model performance criteria and 
AICc provided the lowest values. 

Among the three methods, ARMA, ARIMA, and SARIMA, 
ARIMA achieved the most favourable results. The SARIMA 
model is determined to be the most suitable water level forecast 
model based on model evaluation criteria. The ARIMA model is 
one of the time series models that take seasonality into account as 
an integral part of the modelling process. This approach models 
seasonality by taking into account the statistical properties of the 
data. In future studies, besides the precipitation parameter, 
a study can incorporate other variables such as solar radiation, air 

Fig. 9. Seasonal autoregressive integrated moving average (SARIMA) model forecasts of a) lake level (m); SARIMA 
(3, 0, 1) (0, 1, 1)12, b) precipitation (mm); SARIMA (2, 0, 2) (2, 0, 0)12 with non-zero mean, c) evaporation (mm); 
SARIMA (2, 0, 0) (0, 1, 2)12 with drift; source: own study 
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pollution, snowfall, and climate indices. Various machine 
learning methods can be used to estimate the relationships 
between hydro-meteorological variables. Forecasting approaches 
can be combined, and various model evaluation criteria can be 
proposed for the forecasting model’s success. 
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