
A R C H I V E O F M E C H A N I C A L E N G I N E E R I N G

DOI: 10.24425/ame.2023.146849 2023, Vol. 70, No. 3, pp. 433–452

Karim BOUAOUICHE 1, Yamina MENASRIA 1 , Dalila KHALFA 1

Detection and diagnosis of bearing defects using vibration
signal processing

Received 15 February 2023, Revised 18 August 2023, Accepted 22 August 2023, Published online 30 September 2023

Keywords: vibration signal, bearing, signal processing, envelope spectrum, fault frequency

This work presents an analysis of vibration signals for bearing defects using
a proposed approach that includes several methods of signal processing. The goal
of the approach is to efficiently divide the signal into two distinct components: a
meticulously organized segment that contains relatively straightforward information,
and an inherently disorganized segment that contains a wealth of intricately complex
data. The separation of the two component is achieved by utilizing the weighted
entropy index (WEI) and the SVMD algorithm. Information about the defects was
extracted from the envelope spectrum of the ordered and disordered parts of the
vibration signal. Upon applying the proposed approach to the bearing fault signals
available in the Paderborn university database, a high amplitude peak can be observed
in the outer ring fault frequency (45.9 Hz). Likewise, for the signals available in
XJTU-SY, a peak is observed at the fault frequency (108.6 Hz).

1. Introduction

Rotating machines rely on bearings to support dynamic loads and transmit
movements between components, making the bearing a critical component [1].
The structure of the bearing generally includes an outer ring, an inner ring, a cage,
and a rolling element [1]. Incorrect assembly or overload can lead to defects in
bearings, manifested as wear, fatigue, corrosion, deformation, and a combination
of these defects causing undesirable vibrations and a reduction in the lifespan [2].
Defect detection is carried out through various failure detection techniques such as
acoustic emission measurements, thermography, and vibration analysis [3]. Among
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all the detection techniques, vibration analysis is widely used as a monitoring and
control technique for rotating equipment [4].

The vibration signal is measured by a measurement chain comprising sensors
and a data system [4]. The choice of sensors depends on the frequency range, with
displacement sensors used in the low-frequency range, velocity sensors in the mid-
frequency range, and the accelerometers in the high-frequency range [4]. Vibration
signal analysis methods for defect detection are classified into two categories: one
is based on the design and analysis of a model associated with the system or the
rotating machine, such as Markov chains and artificial neural networks [5]. The
second category of methods focuses on feature extraction from vibration signals,
whether in the time domain, frequency domain, or time-frequency domain [5].
Signal analysis in the time domain is based on the calculation and comparison of
values of statistical indicators to distinguish between healthy and faulty states of
the bearing [6]. Several statistical parameters are used, such as root mean square
(RMS), kurtosis, and standard deviation [6]. Signal processing in the frequency
domain involves spectral analysis, which includes the Fourier transformation to
convert the signal from the time domain to the frequency domain [7]. The wavelet
transform, the Wigner-Ville distribution, and the Hilbert-Huang transform are the
tools used in the time-frequency domain [8].

Methods for detecting bearing faults from vibration signals have been devel-
oped with the aim of improving diagnostic accuracy. This has led to the use of
algorithms for decomposing complex signals into several simple components, such
as variational mode decomposition (VMD) [9] and successive variational mode
decomposition (SVMD) [10]. Thus, the vibration signal can be considered as a
convolution product between the fault impulse and the transfer function of the path
between the fault source and the sensor [11]. In this context, signal deconvolution
methods are used in diagnostics, such as minimum entropy deconvolution [12].
Moreover, the Kurtogram [13] and the Autogram [14] are important methods for
the efficient selection of frequency bands in the vibration signal, containing in-
formation about faults. Additionally, deep learning techniques are applied in the
bearing fault diagnosis, such as Convolutional Neural Networks (CNN) and Deep
Belief Networks (DBN) [15].

In article [5], we present an approach for detecting anomalies within rotating
machines. This approach is based on reconstructing a signal containing impulses
by leveraging both kurtosis and the Feature Mode Decomposition (FMD) method.
Regarding the FMD method, we propose an innovative criterion for identifying in-
put parameters. Once the parameters of the FMD method are determined, the signal
is decomposed into multiple components. The components with kurtosis values
greater than three are summed to create a new signal, from which defect-related
information is extracted by applying the Kurtogram. Furthermore, the presence of
a high-amplitude peak in the spectrum allows for the detection of the defect.

Furthermore, within article [16], we examine an approach for anomaly detec-
tion. This strategy is based on the principle of comparing information from the
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normal state and the faulty state of the bearing. In this approach, a criterion based
on the maximum correlation value, as well as a kurtosis value greater than three,
is proposed for selecting a single component obtained after signal decomposition.
The fault detection approach is divided into two parts: the first one indicates the
presence of a fault, and once the presence is indicated, the second part engages
in locating the fault. The localization is accomplished by comparing the frequen-
cies of the peaks obtained through envelope analysis with the spectra of a single
component selected after signal decomposition.

In this study, we analyze the complexity of the signals. Typically, signal com-
plexity is expressed as a single, simple number, but in this paper, we introduce an
indicator called the WKI that allows distinguishing between two signal components
that vary over time: one ordered and the other disordered. Moreover, we highlight
an algorithm aimed at optimizing the input parameters of the SVMD method. The
combination of peaks in the envelope spectra of the ordered and disordered compo-
nents enables the detection and localization of defects. Moreover, it is discovered
that the original vibration signal is complex, making data interpretation impossi-
ble. However, after evaluating the complexity of the data, it becomes possible to
interpret the data in a simpler manner.

2. Methods

The MATLAB code of the proposed approach incorporates a series of orga-
nized methods, as illustrated in Fig. 1, for analyzing vibratory signals.

2.1. Noise removal of the signal

To eliminate noise in vibration signals, it is necessary to use the Donoho
algorithm, which involves the following steps [17]:

• Discretization of the continuous signal.
• Decomposition of the signal will be achieved via the discrete wavelet trans-

form (DWT), and the resultant DWT coefficients will be calculated using
the following formula [18]:

𝑊 𝑗 ,𝑘 = 2− 𝑗/2
+∞∫
−∞

𝑥(𝑡)𝜓(2− 𝑗 𝑡 − 𝑘)d𝑡 , (1)

𝜓 is conjugate complex of 𝜓.
• Applying the threshold (_) to the wavelet coefficients:

_ =
√︁

2𝜎 log(𝑛), (2)

where: 𝑛 is length of signal, 𝜎 is variance of noise.
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Fig. 1. Proposed approach

• Performing the inverse discrete wavelet transform (IDWT) is necessary to
obtain the signal without noise, and the subsequent formula must use to
compute the IDWT [18]:

𝑥(𝑡) =
+∞∑︁
𝑖=−∞

+∞∑︁
𝑘=−∞

𝑊 𝑗 ,𝑘𝜓 𝑗 ,𝑘 (𝑡). (3)

The mother wavelet 𝜓(𝑡) undergoes scaling or shifting to produce 𝜓 𝑗 ,𝑘 (𝑡).
Donoho de-noising algorithm requires two input parameters, namely the mother

wavelet type and the decomposition level. For our study, the chosen mother wavelet
is Daubechies of order three (db3), and the decomposition level selected is 𝐿 = 2.
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2.2. SVMD method

The successive application of the variational mode extraction (VME) algorithm
constitutes the implementation of the successive variational mode decomposition
(SVMD) method [10]. SVMD method decomposes a signal 𝑓 (𝑡) into several modes
(𝑢) with an unprocessed part 𝑓 𝑢(𝑡) [10]:

𝑓 (𝑡) = 𝑓 𝑢(𝑡) +
𝐿∑︁
𝑖=1

𝑢𝑖 (𝑡). (4)

The SVMD algorithm is defined by the equations and steps presented below [10]:
Input 𝑓 (𝑡), Set 𝑎, 𝑒1, 𝑒2
Initialize 𝐿 ←− 0
Repeat
𝐿 ←− 𝐿 + 1
Initialize �̂�1

𝐿 , _̂
1, 𝜔1

𝐿 , 𝑛←− 0
Repeat
𝑛←− 𝑛 + 1
1. Update �̂�𝐿 for all 𝜔 ≥ 0:

�̂�𝑛+1𝐿 (𝜔) =
𝑓 (𝜔) + 𝑎2 (𝜔 − 𝜔𝑛

𝐿

)4
�̂�𝑛
𝐿
(𝜔) + _̂(𝜔)2[

1 + 𝑎2(𝜔 − 𝜔𝑛
𝐿
)4
] [

1 + 2𝑎(𝜔 − 𝜔𝑛
𝐿
)2 +∑𝐿−1

𝑖=1
1

𝑎2 (𝜔−𝜔𝑖 )4

]
2. Update 𝜔𝐿:

𝜔𝑛+1𝐿 =

∫ ∞
0 𝜔 |�̂�𝑛+1

𝐿
(𝜔) |2𝑑𝜔∫ ∞

0 |�̂�
𝑛+1
𝐿
(𝜔) |2𝑑𝜔

3. Dual ascent for all 𝜔 ≥ 0:

_̂𝑛+1 = _̂𝑛 + 𝜏
[
𝑓 (𝜔) − �̂�𝑛+1𝐿 +

𝑎2(𝜔−𝜔𝑛+1
𝐿
)4

(
𝑓 (𝜔) − �̂�𝑛+1

𝐿
(𝜔)−∑𝐿−1

𝑖=1 �̂�𝑖 (𝜔)+
_̂(𝜔)

2

)
−∑𝐿−1

𝑖=1 �̂�𝑖 (𝜔)

1 + 𝑎2(𝜔 − 𝜔𝑛+1
𝐿
)4

+
𝐿−1∑︁
𝑖=1

𝑢𝑛+1𝑖 (𝜔)
]

Until convergence:

�̂�𝑛+1
𝐿
− �̂�𝑛

𝐿

2
2

∥ �̂�𝑛
𝐿
∥22

< 𝑒1

Until convergence:

�����𝜎2 − 1
𝑇

 𝑓 (𝑡) − 𝐿∑︁
𝑖=1

𝑢𝐿 (𝑡)
2

2

����� /𝜎2 < 𝑒2

The SVMD algorithm takes (𝑎) and (𝑒1, 𝑒2) as input parameters. The param-
eter (𝑎) is typically set to a large value for balancing constraints [10].

The stop convergence value (𝑒1, 𝑒2) is typically set to 10−6 [10]. The SVMD
algorithm addresses the issue of optimizing the number of modes and continues the
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search for new modes until the power of the remaining signal becomes nearly equal
to that of the white noise (𝜎2) [10]. The stopping criterion of the SVMD algorithm
is the sensitivity of the power of the final mode with respect to the frequency (𝜔)
[10]. (_): denotes the Lagrange multiplier [10].

2.2.1. Optimization of parameters

An algorithm based on feedback and cross-correlation value (𝐶) between the
original signal and the sum of modes obtained after decomposition must be used
to optimize the constraint balancing parameter (𝑎). Fig. 2 depicts the flowchart of
the algorithm.

Fig. 2. Flowchart of the algorithm

The formula below defines the cross correlation function [19], which must be
utilized to measure the similarity between two signals [20]:

𝐶𝑥,𝑦 (𝜏) = 𝐸 [𝑥(𝑡)𝑠(𝑡 + 𝜏)], (5)

where: 𝐸 [.] – esperance, 𝜏 – time shift parameter.
Initial and final values (𝑎𝑖 , 𝑎 𝑓 ) are randomly assigned to the parameter (𝑎) in

order to introduce variation. The desired value of 𝑎chosen is determined by the highest
values of cross correlation between the noise-free original signal and the sum of
(𝑢𝑘) obtained during the implementation of the SVMD algorithm on 𝑎 ∈ [𝑎𝑖 , 𝑎 𝑓 ].
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2.3. Weighted entropy index (WEI)

A novel metric called the weighted entropy index WEI is proposed, which
aims to partition the signal into two segments, one being orderly and the other
being disorderly. The construction of WEI involves combining kurtosis (𝐾𝑢) with
Shannon entropy (𝐻) and the Hjorth complexity parameter (𝐶𝑚):

WEI = 𝐶𝑚 × |𝐻 | × 𝐾𝑢. (6)

The selection of the three preceding parameters for building WEI must base on the
intricacy of the signal, as indicated in the definition of each parameter:

• Information entropy is a concept of thermodynamic origin and is used to
measure the complexity of the system, if the entropy value is lower, the system
considered more organized, while in the contrary scenario, it suggests a
greater degree of disorder. The Shannon formula is used for the computation
of information entropy [21]:

𝐻 (𝑥) = −
𝑛∑︁
𝑖=1

𝑃(𝑥𝑖) log 𝑃(𝑥𝑖), (7)

where 𝑃(𝑥𝑖) represents the probability of 𝑥𝑖 in the system.
• The Hjorth parameter is a statistical characteristic of a signal in the time

domain and comprises three types: activity, mobility, and complexity [22].
This paper focuses on the Hjorth complexity parameter, which is computed
using the following formula [22]:

𝐶𝑚 =
𝜎𝑑𝑑𝜎𝑥

𝜎2
𝑑

, (8)

where: 𝜎𝑥 is standard deviation of the signal (𝑥), 𝜎𝑑 is standard deviation of
the first derivative of (𝑥), 𝜎𝑑𝑑 is standard deviation of the second derivative
of (𝑥).
The Hjorth complexity parameter quantifies the resemblance between a
signal and a pure sine wave, as the parameter value approaches one, the
signal form becomes increasingly similar to that of a sine wave [23].

• Kurtosis is employed in diagnosis and is particularly responsive to impulse
signals, such as in the case of bearings [24]. A healthy bearing has a kurtosis
value lower than three, while a faulty one exhibits a substantial increase in
kurtosis value [24]. The following equation defines kurtosis [25]:

𝐾𝑢 =

1
𝑁

∑𝑁
𝑖=1(𝑥𝑖 − 𝑥)4(

1
𝑁

∑𝑁
𝑖=1(𝑥𝑖 − 𝑥)2

)2 , (9)

where: 𝑁 – sample size, 𝑥𝑖 – samples, 𝑥 – mean.
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As per the concept of the weighted entropy index (WEI), the signal 𝑥(𝑡) can
be divided into two parts, separated by a threshold.

After decomposing the vibration signal using SVMD, the proposed threshold
(𝑆𝑖𝑒) is equivalent to the WEI mean.

𝑆𝑖𝑒 =

∑𝐾
𝑘=1 WEI𝑘
𝐾

, (10)

where: 𝐾 – total number of modes, WEI𝑘 – weighted entropy index of each mode.
The ordered part (𝑂𝑃) corresponds to the total of modes (𝑢𝑘), which display

WEI values below 𝑆𝑖𝑒, while the disordered part (𝐷𝑃) is the sum of (𝑢𝑘), which
denotes the values of WEI greater than 𝑆𝑖𝑒.

𝑂𝑃(𝑡) =
𝐾∑︁
𝑘=1

𝑢𝑘 (𝑡) with WKI for each (𝑢); WEI𝑘 ≤ 𝑆𝑒𝑖 ,

𝐷𝑃(𝑡) =
𝐾∑︁
𝑘=1

𝑢𝑘 (𝑡) with WKI for each (𝑢); WEI𝑘 > 𝑆𝑒𝑖,
(11)

𝑥(𝑡) = 𝑂𝑃(𝑡) + 𝐷𝑃(𝑡). (12)

In addition, both parts are defined as follows:
• The disordered part comprises a pulse train with intricate information and

is dissimilar to sine waves.
• The ordered part contains a few pulses with relatively complex information,

which are similar to sine waves.

2.4. Envelope spectrum

The envelope spectrum is the final diagnostic step used to extract fault frequen-
cies from bearing components, it is determined through the Hilbert and Fourier
transformations [26].

The following equation represents the Hilbert transform for a vibration signal
𝑥(𝑡) [27]:

𝐻 [𝑥(𝑡)] = 𝑥(𝑡) ∗ 1
𝜋𝑡
, (13)

where: ∗ denotes convolution product.
The analytical signal is obtained through the following calculation [27]:

𝑧(𝑡) = 𝑥(𝑡) + 𝑗𝐻 [𝑥(𝑡)] ⇔ 𝑧(𝑡) = 𝐸 (𝑡)𝑒 𝑗𝜓 (𝑡 ) . (14)

The envelope of the vibration signal 𝑥(𝑡) can be calculated by taking the absolute
value of the analytical signal, as shown in the following equation [27]:

𝐸 (𝑡) = |𝑧(𝑡) |. (15)
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The envelope spectrum enables the identification of high amplitude peaks at the
theoretical frequencies corresponding to bearing component defects [28].

A peak is the maximum amplitude value of a signal, which can be computed
using the following formula [29]:

Peak = max |𝑥(𝑡) |. (16)

The defect frequencies of the bearing components are determined from the geo-
metrical parameters, as shown in Table 1 [30].

Table 1. Defect frequencies

Components Formulas

Outer race 𝐹𝑜𝑟 =
𝑧 × 𝐹𝑟

2

(
1 − 𝑑

𝐷𝑚
cos(𝑎)

)
Inner race 𝐹𝑖𝑟 =

𝑧 × 𝐹𝑟
2

(
1 + 𝑑

𝐷𝑚
cos(𝑎)

)
Cage 𝐹𝑐 =

𝐹𝑟

2

(
1 − 𝑑

𝐷𝑚
cos(𝑎)

)
Rolling element 𝐹𝑟𝑒 =

𝐹𝑟 × 𝐷𝑚
2𝑑

(
1 − 𝑑2

𝐷𝑚2 cos2 (𝑎)
)

where symbols denote:
𝑧 – number of rolling elements, 𝐷𝑚 – pitch diameter, 𝑎 – angle of
contact, 𝑑 – rolling element diameter, 𝐹𝑟 – operating speed.

3. Experimental study

The proposed approach performance was evaluated by analyzing two vibration
signals of bearing defects from two different databases, namely XJTU-SY and
Paderborn University.

3.1. XJTU-SY bearing database

In the XJTU-SY database, a test strip has been created to measure the vibration
signals of an LDK UER204 type bearing. The test strip contains a set of elements,
as shown in Fig. 3 [31].

The measurement of the vibration amplitude of the bearing is performed using
two accelerometers of the PCB 352C33 type, one mounted on the horizontal axis
and the other on the vertical axis. The signals were sampled at a frequency of
25.6 kHz [31].

By utilizing the geometric parameters of the bearing found in reference [31] and
the formulas presented in Table 1, it is possible to determine the defect frequencies
for the various components of the bearing, as expressed by Table 2.

The provided vibration signal underwent processing using the approach out-
lined in Table 3.
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Fig. 3. Test strip used in the XJTU-SY database

Table 2. The values of frequencies
Parameters Defect frequency

Outer race diameter 39.8 mm 𝐹𝑜𝑟 = 3.0830𝐹𝑟
Inner race diameter 29.3 mm 𝐹𝑖𝑟 = 4.9169𝐹𝑟
Ball diameter 7.92 mm 𝐹𝑐 = 0.3853𝐹𝑟
Pitch diameter 34.55 mm 𝐹𝑟𝑒 = 2.066𝐹𝑟
Number of balls 8
Angle of contact 0°

Table 3. Vibration signal
Operating condition Failed component Fault frequency

Operating speed 35 Hz/Load 12 kN Outer race 107.9 Hz

3.1.1. Results and discussion

• After the signal is de-noised, its spectrum becomes complex due to the
presence of multiple peaks at different frequencies, as illustrated in Figs. 4
and 5.

• By conducting an optimization algorithm on the interval [100; 500], the
optimal value of parameter (𝑎) was determined as 𝑎chosen = 200, which is
depicted in Table 4.

• Signal decomposition using the SVMD algorithm produced six modes for
the horizontal vibration signal and four modes for the vertical vibration
signal, as shown in Figs. 6 and 7.

• Table 5 presents the values for each mode in the weighted entropy index
(WEI). Based on these values and thresholds, the ordered and disordered
segments of the horizontal and vertical vibration signals are defined as
follows:
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Fig. 4. Horizontal vibration signal

Fig. 5. Vertical vibration signal

Table 4. Correlation values
𝑎 Horizontal signal correlation ×105 Vertical signal correlation ×105

100 2.7918 1.4220
200 2.7944 1.4221
300 2.7920 1.4200
400 2.7762 1.4196
500 2.7544 1.4140
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Fig. 6. Vertical signal modes

Fig. 7. Horizontal signal modes

– The thresholds for the horizontal and vertical vibration signals have
been established.

𝑆𝐻𝑖𝑒 = 6.7044 × 105, 𝑆𝑉𝑖𝑒 = 2.85325 × 105. (17)

– The ordered and disordered parts of the horizontal and vertical vibra-
tion signals:

𝐷𝑃𝑉 (𝑡) = 𝐷𝑃𝐻 (𝑡) = 𝑢1(𝑡), (18)

𝑂𝑃𝐻 (𝑡) =
6∑︁
𝑘=2

𝑢𝑘 (𝑡), 𝑂𝑃𝑉 (𝑡) =
4∑︁
𝑘=2

𝑢𝑘 (𝑡), (19)
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Table 5. The values of WEI
Modes WEI of horizontal signal×106 WEI of vertical signal×106

𝑢1 3.3220 1.0454
𝑢2 0.0020 0.0128
𝑢3 0.0318 0.0250
𝑢4 0.0076 0.0581
𝑢5 0.0702
𝑢6 0.5891

• The envelope spectrum (Figs. 8 and 9) of the ordered and disordered seg-
ments of the horizontal and vertical vibration signals display a significant
peak with high amplitude at a frequency of 108.6 Hz, this frequency value is
in close proximity to the fault frequency of the outer ring, which is 107.9 Hz.

Fig. 8. Envelope spectrum of horizontal signal

Fig. 9. Envelope spectrum of vertical signal
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3.2. Paderborn University database

In the Paderborn University database, we find the vibration signals of the 6203-
FAG type ball bearing, obtained from a test bench comprising an electric motor, a
shaft, a bearing test module, a flywheel, and a load motor, as shown in Fig. 10 [32].

Fig. 10. Test bench used in the Paderborn University database

The acceleration of the bearing is captured using a piezoelectric accelerometer
of model No. 336C04 PCB. The vibration signal is recorded in MATLAB files,
with a sampling frequency of 64 kHz [32].

The selected operational condition, in conjunction with the geometric param-
eters, was utilized to ascertain the fault frequencies of the bearing components, as
exemplified in Table 6.

Table 6. Parameters and frequencies of defects
Operating condition Parameters Frequencies

Rotational speed 900 rpm Inner race diameter 24 mm 𝐹𝑖𝑟 = 74.70 Hz
Load torque 0.7 Nm Outer race diameter 31.1 mm 𝐹𝑜𝑟 = 45.29 Hz
Radial force 1000 N Number of rolling element 8 𝐹𝑐 = 5.66 Hz

Rolling element diameter 6.75 mm 𝐹𝑟𝑒 = 28.77 Hz
Angle of contact 0°

When the outer ring fails and the fault frequency is 45.29 Hz, the proposed
approach (Fig. 1) is applied to the vibration signal.

3.2.1. Results

• Fig. 11 illustrates the noise removal from the vibration signal.
• Parameter (𝑎) was optimized by selecting a value of 100, as this resulted in

the highest correlation between the original signal and the observed sum of
modes, as depicted in Table 7.

• The SVMD algorithm produces five modes through signal decomposition,
which are illustrated in Fig. 12.
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Fig. 11. Spectrum of vibration signal

Table 7. Correlation between signal and sum of modes
𝑎 Correlation×103

100 2.9985
200 2.9849
300 2.9558
400 2.9760
500 2.9122

Fig. 12. The modes obtained after the decomposition
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• Equations 20 and 21 are utilized to delineate the disordered and ordered
components of the signal, respectively. These equations are based on the
utilization of a predetermined threshold (denoted as ’𝑆𝑖𝑒’) and the corre-
sponding values of the weighted entropy index WEI, which are sourced from
Table 8.

Table 8. WEI values of each mode

Modes 𝑢1 𝑢2 𝑢3 𝑢4 𝑢5

104×WEI 4.2390 0.0033 0.6267 0.1311 0.0538

The threshold: 𝑆𝑖𝑒 = Mean = 1.1933 × 104.

𝐷𝑃(𝑡) = 𝑢1(𝑡) , (20)

𝑂𝑃(𝑡) =
5∑︁
𝑘=2

𝑢𝑘 (𝑡). (21)

• The envelope spectrum (Figs. 13 and 14) displays a prominent peak with
high amplitude at a frequency of 45.9 Hz for both the ordered and disordered
parts, which is in close proximity to the fault frequency of the outer ring
𝐹𝑜𝑟 = 45.29 Hz.

Fig. 13. Envelope spectrum of ordered and disordered parts
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Fig. 14. Envelope spectrum zoom

3.3. Comparative evaluation of the results

Deconvolution, frequently used in the analysis of vibrational signals, involves
an inverse operation of convolution [11]. The vibration signal can be interpreted
as the result of convolution between the impulse component of the signal and the
transfer function of the path between the fault source and the sensor [11]. There
are different deconvolution methods, but we use the MCKD (Maximum Correlated
Kurtosis Deconvolution) algorithm. The detailed steps of the MCKD algorithm are
available in the reference [33].

In this subsection, we perform a comparison between the results obtained by
the deconvolution methods and our proposed approach (Fig. 1).
The detection of defects using deconvolution methods involves two main steps [34]:

• Deconvolution of the vibration signal performed to extract the impulse com-
ponent of the signal, which is related to the defect.

• Calculation of the envelope spectrum.
We apply the deconvolution method to a single vibration signal from the

Paderborn University database, which was previously used in subsection 3.2.
The parameters of the MCKD algorithm are established as follows: number of
iterations (N=10), filter size (T=100), period (P=450), order (M=1).

The envelope spectrum obtained after deconvolution (Fig. 15) shows a sig-
nificant peak at a frequency of 52.73 Hz, which is close to the fault frequency of
the outer ring at 45.29 Hz, but with an absolute error of 7.44 Hz. However, the
proposed approach exhibits a peak at the frequency of 45.9 Hz.
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Fig. 15. Envelope spectrum obtained after the deconvolution

4. Conclusions

In this study, we analyze two vibration signals related to defects in the outer
ring of bearings using a proposed approach that relies on the use of complementary
methods. As a result of this approach, high-amplitude peaks are observed at the
frequencies of defects. Detecting these defects from the spectra of the original
vibration signals is challenging due to the presence of multiple peaks with a
complex distribution in the spectrum. Due to the complexity of the spectrum shape,
it is necessary to apply other methods to simplify its structure. This is how we have
developed an approach based on dividing the signal into two parts using the SVMD
method and a proposed new indicator called the weighted entropy index (WKI).

By combining kurtosis, entropy, and the Hojorth complexity parameter, we are
able to reconstruct the WKI, which is used to evaluate the complexity of the sim-
ple signals obtained after decomposing the original signal. Moreover, the SVMD
decomposition method requires the optimization of input parameters to ensure
an effective decomposition. In this regard, we have developed an optimization
algorithm to determine the input parameters.

A proposed threshold, equal to the average WKI of the simple signals (u), is
used to separate the modes (u) into ordered and disordered states. Then, the sum of
this latter mode can be used to construct two parts of the signal: one ordered and
the other disordered. Through the comparison of the frequencies of the peaks in the
spectrum with the frequencies of the faults in the bearing, which are determined
based on geometric parameters and rotational speed, it becomes possible to detect
faulty components in the bearing. The presence of peaks at different frequencies
compared to the frequencies of defects in the bearing components leads to an
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incorrect diagnosis and localization of the fault, making it challenging to determine
accurately and identify the location of the defect.
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