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Abstract. Variation in powertrain parameters caused by dimensioning, manufacturing and assembly inaccuracies may prevent model-based
virtual sensors from representing physical powertrains accurately. Data-driven virtual sensors employing machine learning models offer a
solution for including variations in the powertrain parameters. These variations can be efficiently included in the training of the virtual sensor
through simulation. The trained model can then be theoretically applied to real systems via transfer learning, allowing a data-driven virtual sensor
to be trained without the notoriously labour-intensive step of gathering data from a real powertrain. This research presents a training procedure
for a data-driven virtual sensor. The virtual sensor was made for a powertrain consisting of multiple shafts, couplings and gears. The training
procedure generalizes the virtual sensor for a single powertrain with variations corresponding to the aforementioned inaccuracies. The training
procedure includes parameter randomization and random excitation. That is, the data-driven virtual sensor was trained using data from multiple
different powertrain instances, representing roughly the same powertrain. The virtual sensor trained using multiple instances of a simulated
powertrain was accurate at estimating rotating speeds and torque of the loaded shaft of multiple simulated test powertrains. The estimates were
computed from the rotating speeds and torque at the motor shaft of the powertrain. This research gives excellent grounds for further studies
towards simulation-to-reality transfer learning, in which a virtual sensor is trained with simulated data and then applied to a real system.
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1. INTRODUCTION
Accurate monitoring and control are essential for lifetime op-
timization of different powertrains across multiple industries.
To monitor and control powertrains accurately, many measure-
ments are needed from all over the powertrain to have as much
information as possible. Typical physical sensors employed to
monitor powertrains include accelerometers, rotary encoders
and torque transducers. With such sensors, torques and ro-
tating speeds of different parts of the powertrain can be em-
ployed, for example to perform an analysis of powertrain load-
ing dynamic characteristics and fatigue damage [1]. Apply-
ing such analysis results, timely maintenance actions can be
taken. However, measurements of this scope on powertrains re-
quire large amounts of physical sensors, naturally reducing the
cost-effectiveness of powertrain engineering. Large simultane-
ous use of sensors also increases the risk of sensor malfunction.
Furthermore, physical measurements of these wanted quantities
may be prevented for many reasons. For example, the wanted
quantity can be difficult to measure during operation because of
geometrical limitations of the powertrain or the operating envi-
ronment.

Virtual sensors, also known as soft sensors, appear as a
promising branch of solutions well suited for machine moni-
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toring. Virtual sensors are computational models that estimate
physical quantities from other available information about the
system, for example secondary measurements or known phys-
ical quantities. Virtual sensors have attracted much attention
across multiple research fields, including process monitoring
and process fault diagnosis. Additionally, virtual sensors have
recently gained some attention in mechanical application fields,
for example in machine condition monitoring [2]. Virtual sen-
sors are often classified either as model-based virtual sensors,
or as data-driven virtual sensors [3]. Model-based virtual sen-
sors apply given system dynamics and domain knowledge, for
example in the form of a physics model that simulates the sys-
tem dynamics, to determine the wanted output quantity. Data-
driven virtual sensors on the other hand apply machine learning
(ML) techniques to learn patterns directly from historical data
without any domain knowledge.

Commonly known model-based virtual sensor implementa-
tions include methods such as state estimators [4], Kalman fil-
ters [5], extended or augmented Kalman filters [6–8] and in-
verse models [9,10]. However, the functionality of model-based
virtual sensors is limited to the system they are built around.
For example, slight differences in the powertrain due to manu-
facturing or assembly inaccuracies may hinder the accuracy of
model based virtual sensors. That is, a virtual sensor might esti-
mate the desired measures of a powertrain inaccurately if prop-
erties such as stiffness, damping, loads, excitations or contacts
have been modelled inaccurately. Furthermore, classical model
based implementations may struggle with non-linear dynamics
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in these conditions. For example, extended Kalman filters are
known to be suboptimal. Therefore, creating a general model-
based virtual sensor for a certain type of powertrain can prove
difficult and inaccurate.

Traditionally, data-driven virtual sensors are optimized with
historical data from the system [3], thus requiring measured
data for training. They however require little prior knowledge
of the system dynamics. Traditional ML-based implementa-
tions of data-driven virtual sensors include models such as mul-
tilayer perceptrons (MLP) [11] and support vector machines
(SVM) [12]. A disadvantage of traditional ML-based virtual
sensors is the necessity for complex feature extraction and
manual feature selection from the training data. Deep learning
has been outperforming traditional ML methods in applications
such as natural language processing [13] and image classifi-
cation [14] and it has become popular in mechanical applica-
tions such as rotating machinery diagnosis [15]. Unsurprisingly,
many current data-driven virtual sensors are based on better-
performing deep learning architectures [16].

While there has been an increase in popularity of data-driven
virtual sensors [17] and some proposed applications in the field
of rotating machinery [18], data-driven virtual sensors for pow-
ertrains are few. Furthermore, slight differences between dif-
ferent powertrain instances of the same powertrain design give
rise to a demand for a generalized virtual sensor, that can take
these differences into account and function within the required
accuracy range without the need for further training. Potential
techniques useful for generalization can be found in transfer
learning, where patterns from a source domain are learned and
then applied in the target domain. Depending on the use case,
the different domains can vary largely, or be almost identical.
For example, transfer learning techniques can be used to train a
deep reinforcement learning-based autonomous robot entirely
with simulated data, so that it can function in a real environ-
ment.

This research presents a training procedure for a data-driven
virtual sensor, which generalizes the virtual sensor to work
with powertrains with variations. The variations introduced in
this research were drawn from a continuous uniform distribu-
tion with minimum and maximum values 0.5 and 1.5 times
the nominal value. The proposed training procedure includes
a technique commonly known as domain randomization. The
randomized data domains are the parameters for the power-
train model and the excitations applied to the rotating power-
train. In contrast, model-based estimation with unknown input-
excitations requires models of the input excitations [7]. Gen-
erating the training data with a simulated model simply al-
lows us to simulate a variety of excitations. Additionally, pa-
rameter uncertainty has classically been handled by robust-
estimation methods. Such approaches, although robust to un-
certainty, may often lead to conservative estimates. The data-
driven approach provides alternative methods to these. The pre-
sented data-driven virtual sensor is based on long short-term
memory (LSTM), which is a type of recurrent neural network
(RNN), capable of learning patterns from sequential data over
a period of time.

The contributions of this paper are the following:

• We propose an LSTM-based data-driven virtual sensor es-
timating rotating speeds and torque from the lower parts of
the powertrain, accurately given rotating speeds and torque
from the upper parts of the powertrain, which has been gen-
eralized to work with different powertrain parameter con-
figurations.

• We showcase the use of the transfer learning technique do-
main randomization in the form of parameter randomization
and random excitation and their separate and combined ef-
fect on the virtual sensor performance.

2. THEORY AND WORKING PRINCIPLES
This section presents theoretical background for understanding
the later presented virtual sensor architecture and the two trans-
fer learning techniques applied.

2.1. Long-short-term memory
RNNs have become popular for working with time-series data
due to their ability to learn temporal patterns [19]. RNNs learn
temporal patterns by processing each sampled time-instant sep-
arately and taking into account information from the previ-
ous time instants sequentially. LSTM [20] is an RNN architec-
ture popularly applied to long time-series data samples. LSTM
structure and functioning principles are based on two signals
called the cell state and the hidden state. These signals allow
the LSTM to store historical data and make further predictions
based on the data. This is controlled by a gating mechanism
consisting of four gates that control the information flow to and
from the cell and hidden state. These four gates are commonly
known as the Input, Output, Forget and Update gates. At every
time step t, the hidden state is updated by adding data from the
same time step, from the aforementioned gates, the cell state
and the hidden state of the last step before the current one.
Equations that describe the gates of a LSTM cell over a single
time step are shown in the following equations (1)–(6),

ft = σ(Wf · [ht−1,xt ]+b f ), (1)

it = σ(Wi · [ht−1,xt ]+bi), (2)

ot = σ(Wo · [ht−1,xt ]+bo), (3)

c̃t = tanh(Wc · [ht−1,xt ]+bc), (4)

ct = ft � ct−1 + it � c̃t , (5)

ht = ot � tanh(ct), (6)

where ft is the forget gate, it is the input gate, ot is the output
gate, ct is the cell state ht is the current hidden state and ht−1
is the last time step. Possibly, bias terms marked with a b may
also be added to each gate value. W corresponds to the weight
of each gate and [ht−1,xt ] corresponds to the concatenation of
the input xt and the previous hidden state ht−1. Tanh represents
a hyperbolic tangent, � the element-wise product and σ the
activation function.

Figure 1 shows these four gates in green with the correspond-
ing activation functions labelled on top of each block. The cir-
cles and ellipses highlighted in orange correspond to point-wise
operations shown in equations (5) and (6), where X means mul-
tiplication and + summation.
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Fig. 1. Computation graph of an unfolded LSTM cell over a single
time step. Tanh represents the hyperbolic tangent, X the element-wise
product, σ the sigmoid function and + the element-wise sum. Xt rep-
resents the input features of this time step, ft is the forget gate, it is the
input gate, ot is the output gate, ct is the cell state, ct−1 is the cell state
from the last time step, ht is the current hidden state and ht−1 is the

hidden state brought from last time step

2.2. LSTM as a virtual sensor
LSTM architectures have seen a rise in popularity in data-driven
virtual sensor applications [21]. This may be due to their ability
to process large sequences of data at a time, process tempo-
ral data and find temporal patterns from the sequences of data.
Many industrial applications for virtual sensors take in mea-
sured sensory data, either raw or modified, as input for the sen-
sor. Raw sensory data is typically a time-series signal, suggest-
ing the use of an RNN architecture such as the LSTM. For ex-
ample, the LSTM architecture has been used in virtual sensors
conducting quality prediction of industrial processes [21] and
helicopter gearbox monitoring [22]. Furthermore, even simpler
RNN architectures have been popularly used as a virtual sensor.
Some use cases include estimating the contact area that tires of
a car are making with the ground [23] and estimating the melt-
flow-length in an injection moulding process [24].

2.3. Domain randomization
Domain randomization is a set of methods commonly used in
simulation-to-reality transfer learning for deep reinforcement
learning. Reinforcement learning is a subsection of machine
learning, where the goal is to learn an optimal policy, or a set
of actions, that will lead to the highest reward [25]. Deep rein-
forcement learning applies deep neural networks to accomplish
this task.

The goal of domain randomization is to expose the ML
model in training to randomized variation in its properties, so
that it is able to generalize to the target domain despite the bias
between the source and target domains [26, 27]. In sim-to-real
in the field of robotics, it can be seen as a form of regularization
that prevents the agent from basing its policy solely on the pa-
rameters of an individual simulated instance [28]. For example,
one application in robotics is to add visual randomization to the
simulation, so that the neural network learns to accomplish its
task in different lighting conditions [29]. Furthermore, domain
randomization can be applied in principle to any property [30].

For example, it can be applied directly to physical quantities,
possibly making the trained virtual sensor more generalized to
some variation in the system physical properties.

3. METHODS
This section presents the methods used in this study. First,
the data acquisition is explained. Second, the presented virtual
sensor architecture and the training algorithm are introduced.
Lastly, the testing procedure is explained.

3.1. Data acquisition
Data-driven virtual sensors require data from the system to be
trained. The variation required for this study was introduced in a
simulated environment, but the underlying function of the intro-
duced virtual sensor was not model-based. That is, all the used
data for this study was gathered from a simulated environment,
but the virtual sensor had no domain knowledge in itself, and
only learned patterns directly from the training data. Data for
the training and testing were generated with a simulation model
applying a lumped mass model of a powertrain introduced in
an earlier study, which had been parameterised to resemble a
test bench of a miniature-sized azimuth thruster as its nomi-
nal values preceding variation [31]. The underlying topology of
the simulation model was not changed in this study: only the
parameters experienced variation. The test bench, and thus the
simulation model, were built to emulate and simulate a thruster
operated in ice-load conditions [32]. While the simulation mod-
elled the physical test bench, actual measurements from it were
not used. By using a simulation model modelled after a real test
bench, this work is more likely to function with future work
on sim-to-real applications. The lumped-mass model is show-
cased in Fig. 2 and nominal values of the lumped-mass model
are shown in Table 1. A graphical representation of the minia-
ture sized thruster test bench is shown in Fig. 3. The simulated
model had been used in Kalman filter-based torque estimation
of the test bench, which yielded promising results, motivating
its use in data-driven applications as the source for the training
data as well [31].

The dataset consisted of continuous time domain simulation
data from 61 powertrain instances with domain-randomized
physical parameters for the modelled powertrain. For each pow-
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Fig. 2. Lumped-mass model [31] used in the simulation of the test
bench
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Fig. 3. Block diagram of the topology used in a miniature sized test
bench of a full-scale azimuth thruster [32]. The simulated model of
the powertrain matches the test bench topology, including the place-
ment of sensors. That is, encoder and torque data were generated in
corresponding places from the simulation compared to the physical
test bench sensor placement seen in the topology: places marked blue
correspond to the input values of the virtual sensor and places marked

orange to the estimated quantities

ertrain instance, the simulation randomized physical properties
of the components of the powertrain and added predetermined
and randomized excitation during data acquisition, making ac-
quired data from each powertrain instance unique. Random-
ized physical properties included the mass moment of inertias,
damping parameters, and stiffnesses present in the powertrain
model. Each randomized property was sampled from a contin-
uous uniform distribution with minimum and maximum values
0.5 and 1.5 times the nominal value. The nominal values are
shown in Table 1.

During data generation, excitation was presented in the gen-
erated measurement data. There were three types of excita-
tion: acceleration, ice excitation and random excitation. Ac-
celeration was introduced by accelerating the simulated pow-
ertrain instances with a constant acceleration to different ro-
tating speeds. The rotating speeds of the simulated instances
started at 500 rpm, rising in 500 rpm increments, until reach-
ing 3500 rpm. Ice excitation was introduced according to pro-
peller loads typical in ice conditions [33]. Ice excitations were
introduced in each rpm range. Random excitation was gener-
ated with a pseudorandom binary sequence, and added for each
rpm range introduced. Examples of how excitation was visible

Table 1
Nominal powertrain parameters used in the simulated powertrain instances. Parameters belonging to the mass moment of inertia (Ii), damping (ci)
and stiffness (ki) for each powertrain instance were drawn from a uniform distribution between 0.5 and 1.5 times each nominal value separately

Component Index Ii ci ki di
i (kgm2) (Nm/(rad/s)) (Nm/rad) (Nm/(rad/s)

Driving motor, coupling 1 7.94×10−4 8.08 1.90×105 0.0030

Shaft 2 3.79×10−6 0.29 6.95×103 0

Elastomer coupling hub 3 3.00×10−6 0.24 90.0 0

Elastomer coupling middle piece 4 2.00×10−6 0.24 90.0 0

Elastomer coupling hubs & shaft 5 7.81×10−3 0.24 90.0 0

Elastomer coupling middle piece 6 2.00×10−6 0.24 90.0 0

Elastomer, coupling hub, encoder & shaft 7 3.17×10−6 0.00 30.13 0

Shaft, encoder & coupling 8 5.01×10−5 1.78 4.19×104 0

Torque transducer 9 6.50×10−6 0.23 5.40×103 0

Torque transducer & coupling 10 5.65×10−5 1.78 4.19×104 0

Shaft 11 4.27×10−6 0.52 1.22×103 0

Shaft & gear 12 3.25×10−4 1.84 4.33×104 0.0031

Coupling 13 1.20×10−4 1.32 3.10×104 0

Shaft 14 1.15×10−5 0.05 1.14×103 0

Shaft & coupling 15 1.32×10−4 1.32 3.10×104 0

Shaft 16 4.27×10−6 0.52 1.22×104 0

Shaft & gear 17 2.69×10−4 1.88 4.43×104 0.0031

Coupling 18 1.80×10−4 5.86 1.38×105 0

Torque transducer 19 2.00×10−5 0.85 2.00×104 0

Torque transducer & coupling 20 2.00×10−4 5.86 1.38×105 0

Shaft 21 4.27×10−6 0.52 1.22×104 0

Shaft, mass & loading motor 22 4.95×10−2 – – 0.2400
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in the generated data can be seen in Fig. 5. Training and testing
data consisted only of parts of the data that were acquired while
the system experienced one of the aforementioned excitations:
time spent running the system at constant rotating speeds was
cut out.

From each randomized powertrain instance, 210 seconds of
continuously generated measurement data was acquired at a
sampling rate of 3 kHz. This cycle was similar to the prede-
termined test cycle for the real test bench, allowing for future
use of this data in sim-to-real scenarios. Each time sample con-
sisted of generated measurement for five rotary encoders mea-
suring angular speeds and two torque transducers measuring
torque at the given time sample from the propeller and the mo-
tor. The data from two simulated rotary encoders measuring an-
gular speed near the motor, and a simulated torque transducer
measuring the motor torque were used as input, in other words
as features for the virtual sensor. The virtual sensors goal was
to estimate three angular speeds measured closer to the pro-
peller and the propeller torque. Three simulated rotary encoders
and one simulated torque transducer were used as the target

Fig. 4. Visualized data acquisition and the form of data. A single
powertrain instance consists of 210 seconds of continuously generated
data. A data point consists of 1.67 seconds of continuously generated
data, or 5000 measured time samples, which each include a single
measurement from five simulated encoders and two torque transduc-
ers. The amount of non-overlapping data points depends on whether
random excitation parts of the simulated data are included in the in-
stance (59 if yes, 32 if not). Blue values are given as input and orange

as output
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Fig. 5. Parts of generated data, where the simulation models an excita-
tion. Highlighted blue areas correspond to realistic excitations: accel-
eration and ice excitations. Excitation highlighted in red corresponds

to random excitation only included in parts of training and testing

output for the virtual sensor being trained as seen in Fig. 3.
Generated measurements were cut into 5000 time sample sized
data points, or approximately 1.67 seconds of generated mea-
surement. Each time sample included the aforementioned seven
generated measurement data samples. The dataset has been vi-
sualized in Fig. 4. To increase the size of the training set, a
stride of 250 measured samples was used for the powertrain
instances used in training. This increased the amount of data
points obtained from a single powertrain instance from 59 to
1008 if random excitation was present and from 32 to 552 if
random excitation was not present.

3.2. Training algorithm and presented virtual sensor
architecture

A virtual sensor architecture consisting of four layers of LSTM
followed by a fully connected layer was employed. The sug-
gested virtual sensor takes generated data points as input.
Model parameters are listed in Table 2.

The training procedure for the data-driven virtual sensor was
conducted with supervised learning. During training, rotating
speeds and torque near the propeller end of the powertrain were
estimated from rotating speeds and torque near the motor end
of the powertrain, and an error term was established using a
loss function. The loss was calculated using mean squared er-
ror (MSE) defined in equation (7), where n corresponds to the
number of samples, Yi to the target value to be estimated and
Ŷi to the estimated value for each estimation i. The loss terms
shown in Results have been expressed in MSE. The loss is ap-
plied via Stochastic Gradient Decent (SGD) [34] to improve the
weights of the model after every training epoch. More precisely,
the model was optimized using Adam [35], which is a widely
used optimizer for neural networks trained with SGD. Specific
training parameters are shown in Table 2.

MSE =
1
n

n

∑
i=1

(
Yi − Ŷi

)2
, (7)

In addition, transfer learning technique domain randomiza-
tion in the form of parameter randomization and random exci-
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Table 2
Model and training parameters used in training and testing. Window
length corresponds to the time sample size, stride corresponds to the
amount of samples between the start of a data point and the start of the
next data point, dimensions correspond to the used array dimensions
as input and output of the virtual sensor, batch size to the amount of
data points given to the model at a time, layers to the amount of LSTM
layers in the model, learning rate to a parameter used in the back prop-
agation algorithm and epochs to the amount of iterations of training

through the training set

Parameter Value

Window length 5000

Training stride 250

Test stride 5000

Model input dimension 5000 × 3

Model output dimension 5000 × 4

Batch size 2

Cell size 81

Number of layers 4

Dropout 0

Learning rate 0.0001

Epochs 15

tation were introduced to the training set as described in Data
acquisition. Since domain randomization can be applied in prin-
ciple to any property, applying it directly to physical quanti-
ties of the powertrain seemed promising. In practice, parameter
randomization implies that the training set should contain data
from multiple powertrain instances with differences in physi-
cal parameters. Random excitation hopes to broaden the fea-
ture space of the data by introducing quantities that are not in-
spired by realistic excitation that the system would experience
in normal use. Otherwise, the domains remained the same: the
sensor placements and types remained identical, the sampling
frequency was constant and so on as stated in Data gathering.

3.3. Testing procedure
The test set included data from 30 separate powertrain in-
stances. For further validation, two test sets were created: one
without random excitations mentioned above, and one with ran-
dom excitation present, labelled respectively as Test set 1 and
Test set 2. While splitting the test sets into 5000 time sample
sized data points, a stride of 5000 time samples was used to en-
sure that the test samples did not possess identical information,
which could have affected the results. Test data only included
data points where the system experienced an excitation, simi-
larly to the training data.

To analyse the performance, a baseline model was created.
The baseline model was trained using a singular powertrain
without random excitation. This was done to give a baseline
for the two domain randomization techniques (parameters and
excitations) and to showcase the differences in results more
clearly.

To even further demonstrate the influence of each transfer
learning technique, three training scenarios were conducted.
The first training scenario focused on finding out if the random
excitation included in the simulated powertrain data would help
the virtual sensor generalize to many powertrains with slight
variations. A virtual sensor was trained using the same pow-
ertrain as the baseline was trained with but with the random
excitation parts of the acquired data present. Notably, this heav-
ily increased the amount of training data for the virtual sensor
compared to the baseline.

The second training scenario focused on slight differences in
the powertrain configurations. A virtual sensor was trained us-
ing 30 separate powertrain instances generated with the simu-
lated model, not including the powertrain involved in the train-
ing of the baseline virtual sensor. Randomized excitation was
not present in the training set.

Lastly, the third training scenario combined both suggested
generalization methods from previous cases. The virtual sensor
was trained with the same 30 powertrain instances that were
used to train the virtual sensor of the second case study, but with
random excitation present similarly to the first case study. This
once again significantly increased the amount of training data in
comparison to the previous scenario. For each presented virtual
sensor, tests with both test sets were conducted and an MSE
score was calculated with the combined MSE of the output, and
for each output sensor separately.

4. RESULTS AND DISCUSSION
Results for each training scenario and the baseline virtual sen-
sor have been shown in Tables 3 and 4 and visualized in Fig. 6.
Based on the results, parameter randomization seems to be an
excellent way to train data-driven virtual sensors that general-
ize for many similar but slightly different powertrains, result-
ing in successful transfer learning between these slight differ-
ences. It seems that the use of multiple parameter randomized
powertrains allowed the neural network to generalize to new
parameter randomized powertrains. Furthermore, adding ran-
domized excitation seems to have a similar improving effect,
though smaller. With these methods combined, a significantly
better generalized virtual sensor for powertrains was obtained.

The baseline virtual sensor had really poor MSE scores due
to inability to see torque levels beyond the singular powertrain

Table 3
Testing scenario results for Test set 1. Scores are represented in MSE.
Titles match titles used in Fig. 6. Enc 3–5 correspond to the encoder
3–5 outputs described in Fig. 4. Combined MSE is the combined MSE

value of all output values

Model Enc3 Enc4 Enc5 Torque Combined

Baseline 1813.53 1835.86 35.72 126.01 952.78

Random exc 791.79 829.17 19.83 93.11 433.48

Random par 0.33 0.30 0.02 0.17 0.21

Combined 0.28 0.28 0.02 0.05 0.16
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Table 4
Testing scenario results for Test set 2. Scores are represented in MSE.
Titles match titles used in Fig. 6. Enc 3–5 correspond to the encoder
3–5 outputs described in Fig. 4. Combined MSE is the combined MSE

value of all output values

Model Enc3 Enc4 Enc5 Torque Combined

Baseline 2207.46 2233.65 40.66 161.98 1160.94

Random exc 989.95 1035.23 22.68 121.56 542.36

Random par 0.61 0.68 0.07 3.27 1.16

Combined 0.25 0.25 0.02 0.15 0.17

0

20

40

To
rq

u
e
 (

N
m

)

Random parameters

0 200 400 600 800 1000 1200 1400

Time (s)

0

20

40

To
rq

u
e
 (

N
m

)

Combined

0

20

40

To
rq

u
e
 (

N
m

)

Baseline

0

20

40

To
rq

u
e
 (

N
m

)

Random excitations

Fig. 6. A collection of differences between all the training scenario
virtual sensors when estimating the propeller torque from powertrain
instances in Test set 1. The output of the virtual sensor is in orange and
target data is in blue. The virtual sensor for the first training scenario is
titled “Random excitations”, the second is titled “Random parameters”
and the third is titled “Combined”. The baseline virtual sensor is titled

“Baseline”

levels. By introducing random excitation to the training data,
the combined MSE score went down over 40% for both test
sets. This could be due to reduced overfitting of the model to
the data in a singular powertrain instance, since the new excita-
tion type increases the amount of data. By introducing 30 dif-
ferent powertrain instances (Random parameters), the training
set was multiplied by 30, further lowering the chance of over-
fitting. Combining these transfer learning techniques amounted
with the lowest combined MSE score for both test sets. Interest-
ingly, including randomized excitation in the training set where
randomized parameters were already present still increased the
accuracy notably. Adding data from random excitation and ran-
dom parameters to the training data seems to be a significant
way of helping the virtual sensor generalize more to physi-

cal differences of the system. Since the variation introduced in
this study was severe (0.5–1.5 times the nominal values), it is
sufficient to assume that slighter variations, for example stem-
ming from manufacturing inaccuracies or differences in instal-
lations and operation environments, would produce good results
as well.

4.1. Future work
The results obtained from this study suggest that the random
parameter and random excitation approach is valid on train-
ing more general data-driven virtual sensors for powertrains.
That is, by adding randomization into the training data obtained
from a simulated powertrain, the virtual sensor could general-
ize to other simulated powertrains with different physical pa-
rameters. Next steps include combining the method used in this
study with other techniques, such as an improved data genera-
tion model, introducing domain randomization to other proper-
ties, and fine-tuning the model with real data during training, to
implement a simulation trained virtual sensor that could func-
tion on real measured data from the physical test bench. In the
future, this could potentially reduce the amount of real mea-
surement data required to train data-driven virtual sensors.

5. CONCLUSIONS
In the present study, a training procedure for a data-driven
LSTM based virtual sensor for a single powertrain with real-
istic variations was introduced. The trained virtual sensor was
proven to work accurately. In addition, the effect of two domain
randomization methods, parameter randomization and adding
randomization, to the excitation were tested.

The results stated that a virtual sensor with the proposed ar-
chitecture, trained with the combined training procedure, ac-
complished accurate results at estimating torques and rotating
speeds from the drive end of the powertrain. The model accom-
plished fair generalization, despite major variations between
different powertrain configurations.

The results of this study show that the random parameter and
random excitation approach is valid on training more general
virtual sensors for powertrains. However, this study demon-
strated the functionality in a simulation-to-simulation approach
- the test set was naturally different from the training data but
still simulated. The next steps obviously include the replace-
ment of the test set with a measurement from a physical test
bench.
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