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Abstract. PID controllers are crucial for industrial control because of their simple structure and good robustness. In order to further improve
the accuracy of PID controllers, this paper proposes an improved sparrow search algorithm (ISSA) to prevent the problem of the algorithm being
prone to falling into the local optimum at the late stage of iteration. Based on the standard sparrow search algorithm, the position update formula
and the step size control parameter are optimized to help quickly jump out of the local, and to obtain the optimal solution in the whole domain.
Finally, to verify the accuracy and stability of the improved algorithm, nine standard test functions are first simulated. Then, the PID parameter
optimization tests are finished with the chilled water and battery charging systems, where the lifting load and applying perturbation are carried
out. Both the simulation and test results show that ISSA improves the convergence speed and accuracy, and performs better in terms of stability.
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1. INTRODUCTION

In recent years, with the rapid development of artificial intel-
ligence, group intelligence algorithms have also received more
and more attention from scholars [1]. These algorithms, with
fewer parameters, relatively simple evolutionary processes, fast
computing speed and strong global search capability, have been
widely used in research and engineering. The simplicity, trans-
parency, reliability, efficiency and robustness of PID controllers
is one of the reasons for their high popularity and acceptance in
the process industries around the world today.

The advantages of PID controllers are welcomed and ac-
cepted in industrial process control [2]. However, the conven-
tional PID parameter optimization method has not been able
to fully adapt to the requirements of the development of intelli-
gent control, thus many researchers, through the introduction of
group intelligence algorithms, optimize the parameters of PID
to improve its control performance. Literature [3] used a genetic
algorithm to optimize the parameters of nonlinear PID for a 6-
degree-of-freedom UAV quadrotor system. Literature [4] also
optimized the parameters of PID for a continuously stirred re-
actor by the modified hybrid artificial bee colony algorithm with
good results. In another study, literature [5] used the moth flame
optimization algorithm for variable range optimization of PID
controller parameters for fractional range control schemes to
regulate the temperature of the mixing process. The controller
parameters were optimized using the Ziegler–Nichols method
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and the moth flame optimization algorithm for different tem-
perature setpoints, and it was found that the moth flame op-
timization algorithm optimization method provided significant
improvements by analyzing the performance at a single tem-
perature setpoint. For optimizing the best parameters of PID
speed and current for switched reluctance motors, literature [6]
presented a smart bacterial foraging optimization algorithm.
The results show that when the parameters of the PID con-
troller are optimized using this algorithm, the maximum dy-
namic response increased average torque and minimized cur-
rent pulsations are obtained. In order to improve the response
characteristics of the magnetorheological fluid brake and to re-
duce the braking fluctuation rate, an enhanced grey wolf opti-
mization algorithm named EGWOA is proposed in the litera-
ture [7] for tuning the parameters of the PID controller. It is
shown through simulations and experiments that the EGWOA
has a faster response output and better overall performance.
Based on an improved particle swarm algorithm, literature [8]
demonstrated that the parameter optimization of fractional or-
der PID controller has a faster search speed and better solution
than a genetic algorithm. In order to achieve the speed control
of a permanent magnet synchronous motor, literature [9] opti-
mized the PID control parameters of a permanent magnet syn-
chronous motor with an ant lion optimization algorithm. In an-
other study, literature [10] used the flower pollination algorithm
for PID speed control of brushless DC motors. And the exper-
imental comparisons revealed its superior performance charac-
teristics as compared to traditional methods. For the traditional
air suspension PID controller, existing in too long adjustment
time and experiencing an obvious overshooting phenomenon
in the body height adjustment process, literature [11] designed
a seeker optimization algorithm based on the PID transverse in-
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terconnection of electronic control of the air suspension system
controller. The test results show that this method effectively im-
proves the smoothness and operational stability of the vehicle.
In addition, the seagull optimization algorithm [12] and cuckoo
search algorithm [13] have also been used to optimize the PID
parameters with some success.

The sparrow search algorithm (SSA) [14] is a new type of an
intelligent optimization algorithm and it has been successfully
applied to several engineering fields. Literature [15] applied
ISSA to entropy-based image segmentation and verified the ef-
fectiveness of the method with classical and medical images.
Based on SSA, literature [16] proposed a bio-inspired path-
planning method for mobile robots and verified that the method
could plan more straightforward routes. For the UAV route
planning problem, literature [17] proposed a modified sparrow
search algorithm called CASSA for solving the problem. The
results show that CASSA can solve the UAV path planning
problem more efficiently in the same environment. In another
study, literature [18] proposed a hybrid improved SSA for dis-
solved oxygen prediction and control in aquaculture by modify-
ing the position update strategy and introducing the Cauchy mu-
tation strategy and greedy rule in SSA (HISSA). The simulation
results show that the proposed HISSA has strong effectiveness
and practicality for engineering parameter optimization. Com-
bining tent chaotic mapping, quantum behavioral strategy and
Gaussian variation, literature [19] proposed a chaotic quantum
sparrow search algorithm, in which the proposed high accuracy
and good adaptability of the algorithm were verified and the
parameters of the FOM battery model were identified. Litera-
ture [20] fused Kent chaotic mapping, t-distribution and Lévy
flight strategy to obtain an improved chaotic sparrow search al-
gorithm (ICSSA). It is used to identify the parameters of the
robotic arm with an unknown load and shows that ICSSA pro-
vides more competitive results as compared to other classical
algorithms.

However, SSA produces a large number of invalid sparrows
in engineering applications [21] as well as a tendency to fall into
local optimality when searching close to the global optimum,
and a decrease in population diversity in the later stages of the
algorithm [22]. These have not been well solved so far, thus af-
fecting PID controller accuracy. To this end, this paper proposes
an improved sparrow search algorithm (ISSA) by optimizing
the position update formula and the step control parameter for-
mula. To verify the effectiveness of ISSA, it is tested with nine
standard functions and PID controller parameters, respectively.
The results show that the optimization performance of ISSA is
better, and there is a significant improvement in optimizing PID
parameters.

2. IMPROVED SPARROW SEARCH ALGORITHM
2.1. Standard sparrow search algorithm
SSA is a novel algorithm obtained by simulating the forag-
ing behavior of sparrows in nature. According to its role in
the population, a sparrow can be categorized into a discoverer,
scrounger or a vigilante, and each position of the sparrow cor-
responds to a solution. The optimal solution of the algorithm is

found by constantly updating the position and fitness function
of the discoverer, scrounger and vigilante, respectively. Their
positions corresponding to the updating formulas are respec-
tively expressed as:
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where t represents the current number of iterations; Xi, j is the
position information of the i-th sparrow in the j-th dimension;
iterm is the maximum number of iterations; α is a random num-
ber of [0,1]; Q is a random number obeying normal distribu-
tion; L is a 1× n matrix, and each element of the matrix is
one and n is the number of populations; R2 (R2 ∈ [0, 1]) and
ST (ST∈ [0.5, 1]) denote the warning and safety values, respec-
tively; Xw is the current global worst position; Xp is the opti-
mal position currently occupied by the discoverer; A is a 1×n
matrix with each element randomly assigned to 1 or –1 and
A+ = AT (AAT )−1; Xb is the current global optimal position;
β is a random number that follows a normal distribution with
mean 0 and variance 1; K ∈ [−1,1] is a random number; fi is the
current sparrow fitness value; fg and fw are the current global
best and worst fitness values, respectively; and ε is the smallest
constant allowing to avoid a zero denominator.

Except for the discoverers, the rest of the sparrows are all
scroungers. In the case of scroungers i > n/2, the i-th scrounger
does not get food and needs to fly to other places to feed. Be-
tween 10% and 20% of the discoverers and scroungers are ran-
domly selected as vigilantes.

2.2. Improved sparrow search algorithm (ISSA)
The discoverer position at the next moment in the SSA itera-
tion process depends on where it was at the previous moment.
From equation (1), it can be seen that when R2 < ST, if there
are no predators around the environment where the population
is searching, the discoverer will have a comprehensive search
range. A broad search is performed over the entire search space,
and if the position of Xi at moment t is poor, the correspond-
ing position at moment t + 1 is also poor, which may produce
invalid individuals. To do this, the discoverer position equa-
tion (1) is modified and updated as follows:
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The modified discoverer position equation (4) shows that
when R2 < ST, the discoverer performs a random search within
the range of its position and the current global optimal location,
and thus, its global search capability is enhanced.

From equation (2), SSA has a direction of only 1 or –1 when
the scrounger immediately follows the discoverer during the it-
eration process. When the scrounger competes with the discov-
erer for food and wins, the scrounger becomes the discoverer,
which makes the later iterations of the algorithm prone to local
optimization and poor population diversity. For this, a normally
distributed random number Q is introduced at i ≤ n/2 to en-
hance the multiplicity of the search directions of the scroungers
in order to improve search accuracy. The formula for updating
the position of scroungers is as follows:
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Accordingly, the vigilante position update formula is:
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And the step control parameter K is calculated as follows:

K = exp
(
−2 · tan

(
i

iterm

))
· (2 · γ−1), (7)

where γ is a random number in the range of [0,1].
K with the number of iterations change rule is shown in

Fig. 1. Its positive and negative values indicate the direction
of the search, and tend to zero throughout the search process,
which helps to improve the convergence speed of the algorithm.
The ISSA equation (4)–(7) show that if the vigilante is in the
optimal position, it jumps to a random position between its cur-
rent and the global worst to search for an optimum. Otherwise,
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Fig. 1. Schematic of the variation of the random number K
with the number of iterations

it jumps to a random position between its current and global
optimum to find an optimum. And thus, the probability of algo-
rithm falling into the local optimum is reduced.

The flowchart of the improved sparrow search algorithm is
shown in Fig. 2.

Fig. 2. ISSA algorithm optimization flowchart

3. STANDARD TEST FUNCTION VALIDATION
3.1. Test algorithm
In order to verify the feasibility and advancement of ISSA,
the particle swarm optimization algorithm£šPSO£©, grey wolf
optimization algorithm (GWO), whale optimization algorithm
(WOA) and SSA are selected to perform a comprehensive com-
parison under nine standard test functions, which are shown in
Table 1. After simulation verification in Matlab, the optimal
setup parameters for each algorithm are obtained as follows for
all of them: PSO: the learning factors c1 and c2 are 1.5 and the
inertia weights ω = 0.9; GWO: algorithm convergence factor
a= [2,0]; WOA: a= [2,0], r1, r2 both belong to [0,1]; SSA and
ISSA: discoverers as a proportion of population size PD = 0.2,
vigilantes as a proportion of population size SD = 0.2, safety
value ST = 0.8.

The simulation tests are performed using Windows 10 Home
Chinese edition, an Intel(R) Core (TM) i5-8300 H processor
running at 2.30 GHz, a 64-bit operating system, and 16 GB of
RAM. The population size of all algorithms is set to 30, and the
maximum number of iterations is 500.

3.2. Experimental results and analysis
The average and standard deviation (Std) for 30 runs of each
algorithm is computed for each of the nine test functions to
increase the credibility of the simulation findings. Each algo-
rithm is independently performed 30 times on each benchmark
test function. The average value reflects the convergence ac-
curacy that each algorithm can achieve, and standard deviation
reflects the stability of each algorithm. The statistical results are
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Table 1
Benchmark test function

Types Function expressions Dimensional
Value
range
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solution
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n

∑
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shown in Table 2, where bold is the optimal value. In order to
compare the convergence speed of ISSA in solving benchmark
test functions, the average convergence curves of the five al-
gorithms in solving nine benchmark test functions are given in
Fig. 3; the y-axis is logarithmic to render the data fluctuations
precise.

From the experimental results in Table 2, it can be found that
for the uni-modal test functions F1 to F3, the average values
of each standardized test function solved by ISSA are the clos-
est to the optimal solution given in Table 1, and the standard

deviations are all smaller than those of the remaining four al-
gorithms. Also, from the average convergence graph in Fig. 3,
it can be seen that the convergence speed of ISSA on the F1,
F2 and F3 benchmark test functions is also distinctly better
than the remaining four algorithms. The above show that ISSA
performs overall better than the remaining four algorithms re-
garding convergence accuracy, stability and convergence speed
on the uni-modal test function. For the multi-modal test func-
tions, it can be seen from Table 2 and the average convergence
curves in Fig. 3 that ISSA is better than the remaining four al-
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(d) F4 (e) F5 (f) F6
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Fig. 3. Average convergence curves of five algorithms under nine test functions

Table 2
Optimization result of each algorithm in benchmark test function

Function code Statistic PSO GWO WOA SSA ISSA

F1
Average 19.9 1.54e–27 5.37e–74 5.22e–35 0

Std 7.30 2.63e–27 2.09e–73 2.81e–34 0

F2
Average 9.78e4 1.18e–05 4.43e4 1.27e–12 0

Std 1.28e5 2.18e–05 1.38e4 6.77e–12 0

F3
Average 17.0 1.84e–3 2.90e–3 3.02e–3 7.24e–4

Std 32.2 0.939e–3 4.31e–3 3.16e–3 0.658e–3

F4
Average –6.92e3 –5.93e3 –1.02e4 –1.24e4 –1.09e4

Std 1.32e3 1.03e3 1.83e3 0.774e3 0.603e3

F5
Average 15.9 1.02e–13 4.20e–15 2.19e–15 8.88e–16

Std 6.62 1.82e–14 2.23e–15 2.51e–15 0

F6
Average 11.3 2.17e–3 6.69e–3 0 0

Std 26.9 0.574e–2 3.60e–2 0 0

F7
Average 1.43e–3 3.73e–3 0.784e–3 0.376e–3 0.335e–3

Std 2.97e–4 7.44e–3 4.76e–4 1.49e–4 8.00e–05

F8
Average –3.86 –3.86 –3.85 –3.86 –3.86

Std 9.04e–06 2.41e–3 2.15e–2 9.13e–3 2.24e–15

F9
Average –5.62 –10.1 –7.64 –6.86 –10.1

Std 1.59 1.32 2.94 2.51 1.31
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gorithms in terms of average, standard deviation, and conver-
gence speed for solvingF5 and F6; for function F4, although
ISSA does not perform as well as SSA in terms of average and
convergence speed, its standard deviation is the smallest of the
five algorithms. The above show that the overall performance
of ISSA in the multi-modal test function is also better. For the
fixed-dimensional multimodal test function, ISSA outperforms
the remaining four algorithms in terms of average, standard de-
viation, and convergence speed in solving functions F7 and F9;
for function F8, all five algorithms can search for the optimal
value efficiently, and the comparison of average values reveals
that ISSA and PSO are the closest to the optimal solution, while
the average value of WOA is the worst; the standard deviation
of ISSA is improved by more than ten orders of magnitude as
compared to the remaining four algorithms, which is the best in
terms of stability. Also, the convergence graph in Fig. 3 shows
that ISSA has the fastest convergence rate. The above show that
ISSA also performs better in convergence accuracy, stability
and convergence speed in fixed dimensional multi-modal test
functions.

4. PID CONTROLLER PARAMETER OPTIMIZATION
PID controllers have been widely used in the industrial field
for their advantages of precise structure and good robustness.
Parameters setting in PID controllers will significantly affect
the quality of the controllers. Thus, the optimization of PID pa-
rameters with ISSA is essentially to determine a set of suitable
values of Kp, Ki and Kd , within a limited range to make the
indicators of the system reach their optimums. The schematic
diagram of ISSA-optimized PID parameters is shown in Fig. 4.

where r(t) is a given value; u(t) is the output of the PID controller; y(t)
is an actual output value and e(t) is the system deviation.

Fig. 4. ISSA optimization of PID parameters – schematic diagram

The continuous form of a PID controller is described as fol-
lows:

u(t) = Kpe(t)+Ki

t∫
0

e(t)dt +Kd
de(t)

dt
, (8)

where e(t) means:

e(t) = r(t)− y(t).

Letting the sampling instant replace continuous time and dis-
cretizing the integral and differential terms [22], the discrete

form of a PID controller is written as:

u(k) = Kpe(t)+Ki

k

∑
0

e(k)+Kd [e(k)− e(k−1)], (9)

where k is the sampling sequence; u(k) is the controller output
at the kth sampling moment; e(k) is the deviation value of the
input at the kth sampling moment; and e(k−1) is the deviation
of the input at the (k−1) sampling moment.

Three types of gains can be seen in equation (9), that is, pro-
portional gain (Kp), integral gain (Ki) and differential gain (Kd),
and the magnitude of these three gains directly affects stability
of the system.

The fitness function is used to measure the control effective-
ness of a PID control system. Its selection directly affects over-
all performance of the system. The smaller the value of the fit-
ness function, the more suitable the Kp, Ki and Kd found by
the intelligent algorithm, and the better the overall performance
of the control system. In order to obtain more satisfactory per-
formance of the system, the absolute value of the error time-
integrated performance index is utilized as the minimum objec-
tive function for parameter selection. Meanwhile, to avoid the
output u(t) of the PID controller becoming too large, the square
term of u(t) is added to the objective function, and the fitness
function used is [24]:

J(t) =
∞∫

0

(ω1 |e(t)|+ω2u2(t))dt, (10)

Noticeably, if an overshooting is generated, a overshooting
term ω |e(t)| is essentially introduced into the fitness func-
tion J(t). At this point, the fitness function is shown in equa-
tion (11):

J(t) =
∞∫

0

(ω1 |e(t)|+ω2u2(t))dt +ω3 |e(t)| , (11)

where ω1, ω2, ω3 are the weights, ω1, ω2 ∈ [0,1] and ω1� ω3,
and in general, ω1 = 0.999, ω2 = 0.001, ω3 = 100; u(t) is the
output of the PID controller.

ISSA is used to optimize the parameters of the PID con-
troller, and the position of each sparrow can be denoted as Kp,
Ki, Kd , respectively. The optimal fitness value is searched for
in the population through the initialization of the population by
ISSA, the calculation of fitness value, and the iterative search
for the optimal number. And then, the solutions correspond-
ing to the optimal fitness value are assigned to Kp, Ki, Kd ,
respectively, and the fitness function curve as well as the unit
step response curve are drawn at last. The flow chart of ISSA-
optimized PID controller parameters is shown in Fig. 5.

ISSA is used to optimize the PID controller parameters with
equation (11) as the fitness function, and its objective is to find
a set of PID values that minimizes the J(t) error by correcting
Kp, Ki and Kd .

6 Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 6, p. e147344, 2023



Research on improved sparrow search algorithm for PID controller parameter optimization

Fig. 5. Optimization of PID controller parameters by ISSA

5. EXAMPLES AND SIMULATION RESULTS
In process control, many systems are often approximated as first
or second order systems. In order to further test the effect of
ISSA optimization on PID parameters, the chilled water con-
trol system and battery charging system are used to establish
the conventional PID controller (PID), differential evolutionary
algorithm PID controller (DE-PID), particle swarm optimiza-
tion algorithm PID controller (PSO-PID), ant lion optimization
algorithm PID controller (ALO-PID) and the improved sparrow
search algorithm PID controller (ISSA-PID) for the compari-
son of parameter optimization. The conventional PID controller
parameters are derived from the Ziegler–Nichols (Z–N) tuning
method.

In order to better measure the strengths and weaknesses of
ISSA in optimizing the PID parameters, here four dynamic per-
formance metrics of the unit step response of the closed-loop
system were selected [25]: maximum overshoot σ (%), peak
time tp, rise time tr and stable time ts (minimum time to stabi-
lize within ±2% error).

Moreover, the four intelligent algorithms have a population
size of 50, a maximum number of iterations of 50, and a dimen-
sion of 3 dimensions. After simulation verification in Matlab,
the optimal setup parameters for each algorithm are obtained
as follows for all of them: DE: threshold yz = 10−6, crossover
operator CR = 0.1, and initial variation operator F0 = 0.4; PSO:
inertia weight ω = 0.9 and learning factors c1 = c2 = 1.5; ISSA:
discoverers as a proportion of population size PD = 0.2, vigi-
lantes as a proportion of population size SD = 0.2 and safety
value ST = 0.8.

In practical application environments, different perturbations
are often encountered, and the cause of the perturbations may
be caused by human control requirements or uncertain [26].
Therefore, ISSA is tested for lift loads and perturbations to ver-
ify the robustness of this algorithm.

5.1. Chilled water control system
Chilled water control system, due to the end of the cold load,
is always in dynamic change, so it has a large hysteresis and
multi-interference, and shows other characteristics of the con-
ventional PID control effect rather poorly. The mathematical
model can be simplified to a second order model with a time
lag. The mathematical model of the chilled water system is as
follows:

G(s) =
Ke−τs

(T1s+1)(T2s+1)
, (12)

T1 and T2 are inertia time coefficients; K is the amplification
factor, and τ is the pure lag time parameter of the chilled water
system.

For the value of the coefficients in equation (12), the chilled
water system model values in the literature [27] are used, along
with the transfer function of the chilled water system with nu-
merical values in equation (13).

G(s) =
12

50s2 +51s+1
e−30s, (13)

The Z–N tuning method is used to adjust the chilled wa-
ter system PID controller parameters after several tests to get
the conventional PID parameters: Kp = 0.1105, Ki = 0.001 and
Kd = 0.012. When the four intelligent algorithms are used for
system PID control, the sampling time is 5 seconds(s); the sim-
ulation time is 1000 s, and Kp, Ki, Kd ∈ [0,1]. The unit step re-
sponse curves of the five PID controllers for this chilled water
control system are output and use the unit step signal as input.

Table 3 shows the PID parameters of the five controllers. Fig-
ure 6 compares the control effects. The convergence curve is
shown in Fig. 7. The Bode curve is shown in Fig. 8. The perfor-
mance index of each algorithm is shown in Table 4.

Table 3
PID parameters

Algorithm Kp Ki Kd J(t)

PID 0.1105 0.001 0.012 –

DE-PID 0.0591 0.00122 0.312 16.2699

PSO-PID 0.0591 0.00079 0.00001 21.2074

ALO-PID 0.0467 0.00096 0.4232 18.3232

ISSA-PID 0.08912 0.001537 0.7815 10.8591

Table 4
Performance index

Algorithm σ (%) tp (s) tr (s) ts (s)

PID 3.356 100.5 78 466.3

DE-PID 1.8466 205 120 140

PSO-PID 0 1200 235 435

ALO-PID 0.5658 325 165 220

ISSA-PID 0.0107 230 85 110

Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 6, p. e147344, 2023 7



M. Zhang, C. Xu, D. Xu, G. Ma, H. Han, and X. Zong

0 100 200 300 400 500 600 700 800 900 1000

time/s

0

0.2

0.4

0.6

0.8

1

1.2

P
ID

 c
on

tr
ol

 o
ut

pu
t

rin
PID

DE-PID
PSO-PID

ALO-PID
ISSA-PID
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The data in Fig. 6 is analyzed to obtain the performance met-
rics for each algorithmic curve, as shown in Table 4. ISSA-PID,
compared with PID, DE-PID, PSO-PID and ALO-PID, in terms
of maximum overshoot σ , produces 0.0107% overshooting, but
is 3.3453%, 1.8366% and 0.5558% less than PID, DE-PID and
ALO-PID; in terms of peak time tp, it is slower than PID and
DE-PID, but is reduced by 970 s and 95 s in comparison with
PSO-PID and ALO-PID; in terms of rise time tr, it is slower
than PID, but is still 35 s, 150 s and 80 s less than DE-PID,
PSO-PID and ALO-PID; regarding stable time ts, ISSA takes
the least time, with a reduction of 356.3 s, 30 s, 225 s and 110 s
as compared to PID, DE-PID, PSO-PID and ALO-PID. Also, as
seen from the convergence graph in Fig. 7, ISSA has the fastest
convergence rate. Therefore, ISSA-PID is superior in overall
performance.

The comparative Bode plots of the chilled water control sys-
tem with different controllers are shown in Fig. 8. The compar-
ative frequency response performance analysis results such as
gain margin (in decibel), phase margin (in degrees) and band-
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Fig. 8. Comparison of Bode plots between different controllers (where
(a) is the Bode plot without any controller, and (b) is the Bode curve

of each PID controller)

width (in Hertz) are presented in Table 5, respectively. It is ob-
served from the table that the bandwidth of ISSA-PID is larger
than that of other controllers. This shows that ISSA-PID also
performs better in terms of stability regarding the frequency re-
sponse criterion.

Table 5
Comparative frequency response performance analysis results

Controller
type

Gain margin
(dB)

Phase margin
(deg.)

Bandwidth
(Hz)

PID ∞ 180 (0, 0.0362]

DE-PID ∞ 180 (0, 0.0484]

PSO-PID ∞ 180 (0, 0.0279]

ALO-PID ∞ 180 (0, 0.0363]

ISSA-PID ∞ 180 (0, 0.0607]
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5.1.1. Lifting load test
After the system response curve is stabilized, the set value of the
step response is increased from 1 to 1.4 at 1250 s, and the sim-
ulation time is 2500 s. The response curve is shown in Fig. 9.
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Fig. 9. Lifting load response curve

The maximum overshoot σ , peak time tp, rise time tr and
stable time ts (minimum time to stabilize within ±2% error)
after increasing the load are obtained in the analysis of Fig. 9.
The data are shown in Table 6.

Table 6
Performance index

Algorithm σ (%) tp(s) tr (s) ts(s)

PID 1.335 100 62 233.5

DE-PID 0 520 65 142.5

PSO-PID 2.12 365 165 241

ALO-PID 0 540 85 131.5

ISSA-PID 0.1 230 60 121

Table 6 is analyzed to compare the performance metrics of
each controller after 1250 s of increased load. Under the condi-
tion that each PID controller parameter is kept constant, ISSA-
PID produces 0.1% overshoot; but in terms of peak time, it
is reduced by 290 s, 80 s, 310 s as compared with DE-PID,
PSO-PID, ALO-PID, respectively. In terms of rise time, it is
reduced by 2 s, 5 s, 95 s and 85 s as compared with PID, DE-
PID, PSO-PID and ALO-PID, respectively; in terms of stable
time, ISSA-PID is reduced by 112.5 s, 21.5 s, 321 s and 10.5 s
as compared with PID, DE-PID, PSO-PID and ALO-PID, re-
spectively. The transient response speed of ISSA-PID is supe-
rior to the rest of the algorithms. The above show the superiority
of ISSA-PID in control accuracy and response speed in lifting
loads.

5.1.2. Perturbation test
After the system is stabilized, a 25 s perturbation is applied at
1250 s to test the immunity of the algorithm. And the simula-
tion time is 2500 s. To minimize its effect on the system per-
formance, the designed controller must suppress it quickly. The
system response curve is shown in Fig. 10.

1300 1350 1400

1

1.05

1.1

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

time/s

0

0.2

0.4

0.6

0.8

1

1.2

P
ID

 c
on

tr
ol

 o
ut

pu
t

PID

DE-PID
PSO-PID

ALO-PID
ISSA-PID

1300 1400 1500

1

1.05

1.1

Fig. 10. Response curve of the applied disturbance

A 1.4-step signal is applied at 1250 s and supplied for 25 s.
Under the condition that the parameters of each PID controller
remain constant, the time needed for various controllers to re-
cover their outputs to within a 2% error after being disturbed by
the step signal is compared, as shown in Table 7.

Table 7
Recovery time

Algorithm Recovery time (s)

PID 215

DE-PID 201

PSO-PID 183.5

ALO-PID 235

ISSA-PID 147.5

ISSA-PID keeps the output of PID within the 2% error in the
shortest time, 67.5 s faster than PID, 53 s faster than DE-PID,
36 s faster than PSO-PID, and 87.5 s faster than ALO-PID. It
is further verified that the ISSA-PID controller is characterized
by more anti-interference than other controllers.

5.2. Battery charging systems
The battery charging process has the characteristics of non-
linearity and hysteresis, and it is difficult for the conventional
PID parameter tuning method to give the appropriate parame-
ters and thus, the charging efficiency of the battery is affected
inevitably. The equivalent model of its charging system can be
expressed in Fig. 11.
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where Rr is the internal resistance of the rectifier module; Ra is the
internal resistance of the battery; Ui is the ideal voltage of the rectifier

device and Uc is the charging voltage of the battery

Fig. 11. Battery charging system equivalent circuit

In thyristor rectifier modules, the dynamically triggered rec-
tifier portion is a purely delayed amplification section, which is
mainly due to the uncontrolled timing of the rectifier module.
In a certain range of work, using linear transformation for the
rectifier output UI and control voltage Uc, UI lags behind by
KS = ∆UI/∆Uc namely [28]:

UI(s)
Uc(s)

= Kse−Tss . (14)

Thus, equation (15) is the transfer function of the battery
charging system.

G(s) =
Ra

Rr +Ra +Ls+RrRaCs
Kse−T s, (15)

Bringing L = 50 mH, C = 5 F, Rr ≈ 0.8, Ra ≈ 0.2 Ω, Ks = 5,
Ts = 0.067 s, T1 = 0.028 s, T = T1 + Ts = 0.095 s into equa-
tion (15), the final controlled transfer function [28] is given by
equation (16).

G(s) =
e−0.095s

0.8s+1
. (16)

The validation is done against PID, DE-PID, PSO-PID and
ALO-PID with time as a variable and unit step signal as input.
The sampling period of each algorithm is 0.095 s, and the sim-
ulation time is 6 s. The PID controller parameters of the battery
charging system are calibrated by the Z–N tuning method, and
the conventional PID parameters are Kp = 1.9, Ki = 2.2 and
Kd = 0.25 after several trials. Then, the parameters of the five
PID controllers are shown in Table 8, the control effect compar-
ison graph is shown in Fig. 12, the convergence curve is shown
in Fig. 13, the Bode curve is shown in Fig. 14, and the perfor-
mance index of each algorithm is shown in Table 9.

The data in Fig. 12 are analyzed to obtain the performance
metrics of each algorithmic curve, as shown in Table 9. ISSA-
PID showed a reduction of 1.591 s, 2.539 s, 3.336 s and 1.269 s
in peak time tp as compared to PID, DE-PID, PSO-PID and
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Table 8
PID parameters

Algorithm Kp Ki Kd J(t)

PID 1.9 2.2 0.25 —

DE-PID 2.5123 3.2202 0.037682 0.43405

PSO-PID 2.1539 2.7742 0 0.47887

ALO-PID 2.6242 3.2949 0.10058 0.4304

ISSA-PID 2.9129 3.7281 0.076291 0.39879

ALO-PID, respectively; in terms of rise time tr, ISSA was re-
duced by 0.661 s, 0.13 s, 0.224 s and 0.111 s as compared to
PID, DE-PID, PSO-PID and ALO-PID, respectively; regarding
stable time ts, ISSA-PID decreased by 1.305 s, 0.23 s, 0.306 s
and 0.43 s as compared to PID, DE-PID, PSO-PID and ALO-
PID, respectively. Also, it can be seen from Fig. 13 that ISSA
has the fastest convergence rate.
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PID controller

Table 9
Performance index

Algorithm σ (%) tp(s) tr (s) ts (s)

PID 0.09 3.747 1.182 1.92

DE-PID 0 4.695 0.651 0.845

PSO-PID 0 5.492 0.745 0.921

ALO-PID 0 3.425 0.632 1.045

ISSA-PID 0 2.156 0.521 0.615

The comparative Bode plots of the battery charging system
with different controllers are shown in Fig. 14, respectively.
The comparative frequency response performance analysis re-
sults such as gain margin (in decibel), phase margin (in degrees)
and bandwidth (in Hertz) are presented in Table 10, correspond-
ingly. It can be found from the table that the bandwidth of ISSA-
PID is larger than that of other controllers. This indicates that

Table 10
Comparative frequency response performance analysis results

Controller
type

Gain margin
(dB)

Phase margin
(deg.)

Bandwidth
(Hz)

PID ∞ 180 (0, 6.37]

DE-PID ∞ 180 (0, 9.52]

PSO-PID ∞ 180 (0, 8.50]

ALO-PID ∞ 180 (0, 8.83]

ISSA-PID ∞ 180 (0, 10.5]

the stability of ISSA-PID is also better in terms of the frequency
response standard.

5.2.1. Lifting load test
After the system response curve is stabilized, the set value of
the step response is increased from 1 to 1.4 at 5 s, and the sim-
ulation time is 10 s. The response curve is shown in Fig. 15.
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Fig. 15. Lifting load response curve

The maximum overshoot σ , peak time tp, rise time tr and
stable time ts after 5 s of increased load are obtained in Fig. 15,
and the data are listed in Table 11.

Under the condition that the parameters of each PID con-
troller remain constant, the performance indices of each con-

Table 11
Performance index

Algorithm σ (%) tp (s) tr (s) ts (s)

PID 0 3.265 0.48 1.01

DE-PID 1.45 1.55 0.37 0.69

PSO-PID 0.88 1.84 0.40 0.77

ALO-PID 1.52 1.745 0.32 0.72

ISSA-PID 1.89 1.27 0.30 0.59
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troller are compared after the load increases to 5 s. The maxi-
mum overshoot is maintained within 2% for each algorithm; in
terms of peak time, ISSA-PID was reduced by 1.995 s, 0.28 s,
0.57 s and 0.475 s as compared to PID, DE-PID, PSO-PID and
ALO-PID, respectively; in terms of rise time, it was reduced
by 0.179 s, 0.069 s, 0.101 s and 0.019 s as compared to PID,
DE-PID, PSO-PID and ALO-PID, respectively; regarding sta-
ble time, ISSA-PID is shorter than PID, DE-PID, PSO-PID and
ALO-PID by 0.4225 s, 0.1 s, 0.175 s and 0.13 s, also respec-
tively. And the transient response speed of ISSA-PID is also
superior to the rest of the algorithms. The above show the supe-
riority of ISSA-PID in control accuracy and response speed in
rising loads.

5.2.2. Perturbation test
After the system is stabilized, a perturbation of 0.2 s is applied
at 1250 s to test the immunity of the algorithm. The simulation
time is 2500 s. The system response curve is shown in Fig. 16.
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Fig. 16. Response curve of the applied disturbance

When analyzing Fig. 16, a 1.4-step signal is applied at 5 s
and lasts for 0.2 s, with the parameters of each PID controller
held constant. A comparison of the time needed for various con-
trollers to recover their outputs to within a 2% error after being
disturbed by the step signal is shown in Table 12.

Table 12
Recovery time

Algorithm Recovery time (s)

PID 0.985

DE-PID 0.795

PSO-PID 0.824

ALO-PID 0.813

ISSA-PID 0.712

ISSA-PID keeps the output of the PID controller within the
2% error in the shortest time, of which time is 0.273 s, 0.083 s,
0.112 s and 0.101 s faster than that of PID, DE-PID, PSO-PID
and ALO-PID, respectively. This verifies that the ISSA-PID
controller is characterized by more anti-interference than other
controllers.

6. CONCLUSIONS
This paper proposes an ISSA based on SSA. The ISSA is veri-
fied to have better convergence speed and accuracy by compar-
ison with PSO, GWO, WOA and SSA through nine benchmark
test functions. And to test the optimization performance of PID
controller parameters by ISSA, the chilled water control system
and the battery charging system are used as examples to com-
pare with PID, DE-PID, PSO-PID and ALO-PID for the tests
of lifting the load and applying perturbation. The results show
that ISSA-PID improves the convergence speed, accuracy, anti-
interference ability and robustness as compared to the other four
PID controllers.
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