
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 71(6), 2023, Article number: e147924
DOI: 10.24425/bpasts.2023.147924

ARTIFICIAL AND COMPUTATIONAL INTELLIGENCE

A hybrid model of heuristic algorithm and gradient
descent to optimize neural networks

Amer MIRKHAN1∗∗∗ and Numan ÇELEBI2

1 Sakarya University, Computer Engineering Department
2 Sakarya University, Information Systems Engineering Department

Abstract. Training a neural network can be a challenging task, particularly when working with complex models and large amounts of training
data, as it consumes significant time and resources. This research proposes a hybrid model that combines population-based heuristic algorithms
with traditional gradient-based techniques to enhance the training process. The proposed approach involves using a dynamic population-based
heuristic algorithm to identify good initial values for the neural network weight vector. This is done as an alternative to the traditional technique
of starting with random weights. After several cycles of distributing search agents across the search domain, the training process continues using
a gradient-based technique that starts with the best initial weight vector identified by the heuristic algorithm. Experimental analysis confirms that
exploring the search domain during the training process decreases the number of cycles needed for gradient descent to train a neural network.
Furthermore, a dynamic population strategy is applied during the heuristic search, with objects added and removed dynamically based on their
progress. This approach yields better results compared to traditional heuristic algorithms that use the same population members throughout the
search process.

Key words: optimization; heuristic algorithms; neural networks; dynamic population.

1. INTRODUCTION

Neural networks (NN) can be considered the best method for
solving artificial intelligence problems including image classifi-
cation, object detection, voice recognition, etc. However, train-
ing an NN is a long process and requires a considerable amount
of time and computing resources. During the training process,
which is an iterative process, an optimizer function should be
used in each training cycle to update the model parameters,
which can be called a weight vector. In the literature, the most
common way to train neural networks is using gradient-based
optimizers. Those optimizers simply perform steps within the
solution space in order to improve the current parameters. This
process of updating the weights is critical for NN training and
keeps a considerable place in the literature. The main chal-
lenge of traditional optimization techniques is time complex-
ity because, in each iteration, the algorithm computes gradients
(derivatives) of the loss (objective) function with respect to each
model parameter.

Heuristic algorithms [1, 2] are used to find an approximate
solution when traditional algorithms fail to find the exact one
within time and computing resource constraints. Swarm-based
optimization, also called swarm intelligence or population-
based techniques, is the most popular heuristic algorithm. The
behavior of those algorithms is inspired by nature where ele-
ments of the swarm, which can also be called objects or search

∗∗∗e-mail: amermir@gmail.com

© 2023 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Manuscript submitted 2023-04-27, revised 2023-10-09, initially
accepted for publication 2023-10-16, published in December 2023.

agents, are first distributed randomly in the search space, then
iteratively will be moving trying to find the optimal solution in-
side the domain of solutions, which is usually very wide or even
infinite. The population-based heuristic algorithms are static in
terms of individuals of the population which means equal op-
portunity will be given to each member to find the solution re-
gardless of its performance during the search process. In other
words, objects that perform well and are close to a good so-
lution will be given the same chance as the ones searching in
areas far from a good solution.

Swarm-based heuristic algorithms usually have three compo-
nents in common (local search, global search, and objective/fit-
ness function). The implementation of each component varies
from one algorithm to another. The local search is the effort
of each element to find a better solution in its neighborhood
while the global search is a kind of communication among the
swarm members after each cycle where all members have com-
pleted their own local search, then members will be moving
toward the best solution obtained so far with different strate-
gies to avoid trapping in local optimum. An objective function
is a function that can evaluate a solution and return a value to be
minimized or maximized. For instance, when training a neural
network, the fitness function could be the training accuracy that
we need to maximize, or could be the loss function that should
be minimized.

2. BACKGROUND AND RELATED WORK
In this section, we give details about the gradient descent-based
learning algorithms since we compare the performance of our
algorithm with them in addition to some alternatives to the gra-

Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 6, p. e147924, 2023 1

https://orcid.org/0000-0001-7489-9053
mailto:amermir@gmail.com


A. Mirkhan and N. Çelebi

dient descent such as random and grid search. Additionally,
we give place to heuristic algorithms, which are derivative-free
techniques as we are proposing to combine both techniques in
this research.

2.1. Gradient descent
Gradient descent [3] is the most common way of training NNs,
which simply aims to minimize the objective (loss) function
by updating the parameters of an NN in the opposite direction
of the objective function, through making steps -which is the
learning rate – in order to reach the (local) minimum. Choos-
ing a small learning rate will result in obtaining accurate results
but learning time will be longer due to small steps, especially
when dealing with complicated models and a high amount of
training data. On the other hand, increasing the learning rate
will lead to faster learning but might cause a loss of the opti-
mal result due to bigger jumps. In the literature, several papers
were written in this regard to specify the optimum learning rate.
Kingma et al. [4], introduced Adam, an algorithm for first-order
gradient-based optimization of stochastic objective functions,
based on adaptive estimates of lower-order moments. Adam
became the most popular gradient-based optimizer for training
NNs, and in our experiments, we will be using Adam to repre-
sent the gradient-based optimizers. Nesterov [5] proposed the
Nesterov accelerated gradient, which is also known as NAG,
as a way to give the momentum term a kind of prescience.
Dozat [6] combined Adam and NAG within a new tech-
nique called Nesterov-accelerated Adaptive Moment Estima-
tion (Nadam). Duchi [7] proposed Adagrad, another stochastic
gradient descent (SGD) based algorithm by adapting the learn-
ing rates to the parameters which showed good performance
with sparse data. Adagrad was extended by Adadelta [8] search-
ing to update the learning rate more smoothly than Adagrad.

To overcome the limitations of gradient optimizations,
mainly slow convergence and the need for long training cycles,
a considerable amount of literature has explored other tech-
niques to replace gradient descent or even hybrid models along
with gradient descent. Liashchynskyi et al. [9], compared op-
timizing the parameters using three techniques, depending on
the number of parameters to be optimized, for small NNs grid
search (brute force) can be used where the entire search space
will be scanned. However, this might not be possible for bigger
networks, where random search can perform better but without
a guarantee of finding the optimal solution, and for even bigger
networks, where random algorithms are not able to find (guess)
the solution, genetic algorithms were evaluated as we can con-
trol the number of generations and the population length. So ac-
cording to the given time/computing constraints, those parame-
ters can be set. Similar research [10,11] also proved that random
search can perform better than grid and sequential search while
the performance is not affected much by increasing the number
of NN layers/parameters. The restart technique was evaluated
by [12–15] using similar algorithms, with minor differences, by
evaluating the performance of the NN after a few gradient steps
and terminating the process when poor performance is detected
and starting over. This technique showed six to seven times
better performance than grid/random search. In [16] a new

derivative-free parallel optimization of hyperparameters was
proposed and showed satisfactory results in terms of the needed
computational cost. Similarly, [17] using an NN with 5 mil-
lion parameters could train the FashionMNIST dataset using
a derivative-free optimizer and obtained 100% training accu-
racy and 84% validation accuracy which outperformed SGD.

2.2. Population-based heuristic algorithms
Population-based heuristic algorithms are biologically inspired
and make no assumptions on the optimization landscape.
These methods can be also called black-box optimization
methods and can also be considered as derivative-free opti-
mization [18]. Additionally, they are powerful techniques to be
used in solving complex and non-linear optimization problems.
Because many starting points (candidate solutions) are used,
the chances of converging on the global minima are signifi-
cantly increased [3]. Furthermore, there are several studies,
which used heuristic algorithms to train NNs and possibly
outperform gradient-based optimizers in several cases. Results
were summarized by [19] where the most common heuristic
algorithms were evaluated in training NN with a summary of
the advantages and drawbacks of each used algorithm. Authors
of [20–23] proposed using the particle swarm optimization
(PSO) algorithm as an alternative for gradient optimization in
solving real engineering applications and got promising results
when hardware resources are limited. Similar research [24]
showed consistent improvement in accuracy, training time, and
stability when using population-based training techniques to
solve several classifications and reinforcement learning prob-
lems. Evolutionary algorithms were evaluated in [25] for the
same purpose which utilized the past results abilities of genetic
algorithms in narrowing the search space in future cycles. The
researcher in [26] proposed a method using the ant colony
algorithm to train feed-forward NNs to avoid trapping in local
optima with gradient descent. Moreover, [27] combines tradi-
tional SGD with a population-based evolutionary strategy in
a framework named ESGD. Additionally, [28] proved that sim-
ple, gradient-free, population-based genetic algorithms (GA)
can perform well on hard deep-learning problems. In [29],
using evolutionary algorithms instead of gradient descent to
train neural networks is criticized. Hybrid models combining
two heuristic algorithms were also evaluated; [30] HACPSO
proposed a combination of the cuckoo search (CS) algorithm
with PSO which resulted in improving the convergence rate.

In contrast to most of the population-based heuristic algo-
rithms, like particle swarm optimization (PSO) [31], ant colony
optimization [32], cuckoo search algorithm (CSA) [33], firefly
algorithm (FA) [34], and artificial bee colony (ABC) [35],
dynamic population strategy is used, inspired by the one pro-
posed by polar bear optimization (PBO) [36], where population
members are not fixed. Instead, according to some parameters
iteratively death and re-birth techniques are applied to allow
better performance and faster convergence. The dynamic
population strategy proposed by [36] was utilized in several
optimization research. [38] proposed using the PBO for feature
selection of the rough set. [39] also used the PBO for loading
pattern optimization.

2 Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 6, p. e147924, 2023



A hybrid model of heuristic algorithm and gradient descent to optimize neural networks

3. THE PROPOSED MODEL
To find the optimal values for the model parameters, a hybrid
model of a derivative-free technique based on dynamic popu-
lation optimization (DPO) is proposed in addition to gradient-
based traditional techniques. Those gradient-based techniques
update the weights based on the calculated error, trying to min-
imize this error iteratively. The error is simply the difference
(distance) between the desired output ŷ and the model output y.
Several cost functions can be used to compute the error, for in-
stance, if the mean square function [40] is used then the cost
function will look as follows:

c =
1
n

n

∑
p

m

∑
k

(
ŷpk− ypk

)2
, (1)

where n is the number of training samples and m the number
of output nodes. After calculating the error, weights will be up-
dated by computing the derivative for all network’s parameters:

∆w =−η
dC
dw

, (2)

where η is the learning rate and w represents the weight vector.
Gradient-based techniques are powerful in exploring the neigh-
borhood, but they tend to fall in local optima, according to [40],
local optima can be formally defined as:
• Let c f : S→ R ≥ 0, where S ⊂ Rn is nonempty and [41],

c f is the cost function and S represents a list of possible
solutions.

• A point w∗ ∈ S is called global minima if c f (w∗) ≤ c f (w)
for any w ∈ S holds.

• A point w∗ ∈ S is called local minima if there exists
ε > 0 and ε-neighborhood Bε(w∗,ε) around w∗ such that
c f (w∗)≤ c f (w) for any w ∈ S∩Bε(w∗,ε) holds.

To enhance the use of conventional methods by adding ex-
ploratory capability, our proposal is to train the neural network
in two phases: the initialization phase, and the training phase.
The initialization phase can be simply summarized by quickly
exploring the search space using a heuristic algorithm in order
to find a good starting point for the next training phase. The
gradient-based optimization techniques are sequential based,
searching for the optimal solution iteratively usually starting
from a random point in the search space. The selection of
a starting point might seriously impact the entire performance
and can lead to a trap in a local optimum. To overcome these
challenges, we first explore the search domain trying to find
a good starting point. Each member of the population P will
represent the weight vector of an NN:

P = {p1, p2, p3, . . . , pn} , (3)
w = (w1,w2, . . . ,wm) , (4)

where n and m are the population size and the number of
weights to be tuned, respectively. The initialization phase in our
model starts by randomly distributing the solution set P in the
search space, then each object will have a chance to explore its
neighborhood looking for a better solution. Solutions will be

evaluated according to equation (5)

Fitness =
1

1+ c
. (5)

After completing each cycle, where each object has made or
tried a step toward the target, the dynamic population strategy
mentioned in [36] is applied. The entire population is evaluated
after each cycle and based on a random parameter. An object
is either removed or a new one is created. If the decision was
to remove, then the worst solution is pulled out from the pop-
ulation to avoid investigating more in a hopeless piece of the
search domain. Figure 1 shows an example of solutions, white
dots in the search space looking for the optimal solution (dark
blue). According to our dynamic strategy, the solution on the
most left should be dismissed as it is very far from the target
while the one close to the optimal solution will be duplicated.
The need for this dynamic behavior is that we are dealing with
a high-dimensional search space, and it is nearly impossible to
have objects covering the entire space. So, this strategy allows
covering more areas with fewer search agents, this will be dis-
cussed in detail within the experimental analysis.

Fig. 1. Dynamic population strategy

To avoid trapping in the local optimum the best solution is not
duplicated and the worst at each cycle is not removed. Instead,
a random variable k ∈ {0, 1} is generated after each cycle. If
the parameter value is less than 0.75 then the decision will be
to duplicate otherwise to remove.

Reproduction if 0≤ k ≤ 0.75 , (6a)
Remove if 0.75 < k ≤ 1. (6b)

Once the initialization phase finishes, the best solution (high-
est accuracy) found as a starting point for the training pro-
cess will use the traditional gradient-based techniques. Accu-
racy (same as fitness) will be calculated according to equation
(5). Due to very high dimensional search space, the heuristic
algorithm is not expected to find the optimal values for the
weight vector like several studies that tried to fully replace the
gradient-based optimizers with heuristic ones. Instead, we pro-
pose that the heuristic algorithm will explore the search space at

Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 6, p. e147924, 2023 3



A. Mirkhan and N. Çelebi

all speeds and will deliver a good starting point for the gradient-
based optimizer to perform the actual NN training. We also
believe that (and that will be supported later by experiments)
the dynamic population strategy will facilitate exploring a big
search domain using a limited number of search agents.

The algorithm expects three main input parameters, popu-
lation size, cycle count (epochs), and heuristic ratio that will
regulate the distributions of training cycles between heuristic
and traditional techniques. More objects used increase the like-
lihood of finding the optimal values for the weight vector but
might negatively impact the performance. After initialization,
for each potential solution, the algorithm loops through a cer-
tain number of loops. The number of iterations is another in-
put parameter and should also be selected carefully. The higher
number of iterations more likely increases the probability of
moving closer to the optimal solution, i.e. local search. How-
ever, it also increases the runtime of the algorithm. In each
cycle, each object explores to make a step by looking at the
right and left sides, which are represented by positive values in
equation (8) on the right, while negative values are on the left.
Then, both generated possible solutions will be evaluated and
will only move if a better solution is produced. Algorithm-1
and Fig. 2 summarize our dynamic population optimization ap-
proach.

Algorithm 1. Dynamic Population Optimization – DPO

Requirement: Model: Neural Network Model to
Optimize. S, N: Population Size and Max Iterations.
h: heuristic ratio
1: randomly initialize S objects
2: calculate heuristic cycles H according to (9)
3: while Loop Counter < H do

4: for all Population Members do

5: Generate new solutions according to
equations (7), (8)

6: Evaluate a new solution according to
equation (5) and move if better

7: Generate random value φ

8: If φ < 0.75
9: Duplicate the best solution
10: else
11: Remove the worst Solution
12: select the best model M
13: calculate gradient cycles G according to

(10)
14: End While

15: continue the training using gradient descent
with G cycles starting with initial weights M

In each iteration, values of the weight vector are updated ac-
cording to equation (7) and equation (8) as proposed by [36]
a kind of local search starting from the current position explor-
ing the neighborhood.

r = 4acosθ0 sinθ0, (7)

wnew = wactual± [r sin(φk)+ r cos(φ j)] , (8)

where a ∈ {0,0.3} is a random value that regulates the distance

in which an object can see, and θ ∈
{

0,
π

2

}
the angle of the

movement. k and j are the angular values selected at random
for each point ∈ {0,2π}. In this context, the word “Point” rep-
resents the current solution, and moving to a new point means
the trial to generate a better solution, for more details about the
moving function [36] was used.

Start

Initialize the 
population 

Calculate the heuristic 
and gradient cycle count

If heuristic cycle 
count is reached

Increase the iteration 
counter

Each object makes a 

Apply dynamic 
population strategy

Select best model 
found M

Continue the training using gradient 
descent starting with M

Yes

No

End

H
eu

ri
st

ic
 tr

ai
ni

ng
T

ra
di

tio
na

l t
ra

in
in

g

local search

Fig. 2. Procedure of DPO

After completing a cycle where all members find the chance
to enhance their current positions, the dynamic population strat-
egy is applied. In lines 7–11 of Algorithm 1, based on a ran-
domly generated variable, the decision will be made whether
to reproduce or to remove. If the value of the random variable
is less than 0.75, the decision is reproduction or otherwise to
remove. Here, the value 0.75 means randomly the reproduction
rate to be three times of removing decision, this ratio is fixed in
this study but can be an input parameter optionally.

4 Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 6, p. e147924, 2023



A hybrid model of heuristic algorithm and gradient descent to optimize neural networks

The last parameter is the heuristic ratio, this parameter will
distribute the training cycles between the heuristic algorithm H
and the traditional training G:

H =
hratio

100
∗N, (9)

G = N−H. (10)

In other words, this parameter decides how much time will be
spent on initialization, so setting this parameter to 0 means no
initialization and only gradient descent will be used while set-
ting it to 100 means fully heuristic training without traditional
training.

4. EXPERIMENTAL ANALYSIS
To evaluate the proposed algorithm, five benchmark datasets
listed in Table 1 were selected. For each dataset, the number of
layers and the number of trainable parameters can be seen. The
number of trainable parameters is very important from the per-
formance point of view as it represents the length of the weight
vector and determines the size of the solution space. For each
dataset, a model performing well after several experiments was
selected. However, our approach is not limited to any architec-
ture, as mentioned in Algorithm-1; the model to be optimized is
an input for the algorithm without any limitation regarding the
number of layers or the number of trainable parameters. The
datasets were split into training and test sets, number of sam-
ples allocated for testing is mentioned also in Table 1. These
split ratios (train/test) were selected as they are widely accepted
in the machine-learning community and have been used in nu-
merous studies. They are considered reasonable because they
strike a balance between having a substantial training dataset
and a representative test dataset.

Because outcomes can potentially be influenced by various
random factors, including initial weight settings and the gen-
eration of random variables during solution creation, to ensure
a fair comparison, the same initial weights were used for all
experiments on the same model, and the same seed when gen-
erating random values.

The training process was executed for all datasets using 20,
30, and 40 epochs, and measured the obtained accuracy. The
balance between whether to use traditional gradient descent,
heuristic approach, or hybrid model can be adjusted by setting
the parameter heuristic ratio. In the experimental analysis, the
values (0, 20, 50, 70, and 100) were evaluated, where 0 means
no heuristic initialization but only gradient optimization, while
setting to 100 will only use a heuristic approach for optimiza-
tion. Other values (20, 50, and 70) will be hybrid models by
using a heuristic algorithm for initialization and to continue the
training process using gradient descent. For instance, when run-
ning 40 epochs and the heuristic ratio is 20, it means that 8
cycles will be used by the heuristic algorithm for initialization
while the remaining 32 cycles will be used by gradient descent.
The optimizer Adam [4] was used to represent the gradient-
based optimization approach as it outperforms [37] and [4] sim-
ilar gradient-based optimizers in terms of performance. How-

ever, in the following analysis, SGD will be mentioned as the
base of the gradient-based because any other gradient-based op-
timizer can also replace Adam in our model.

Table 1
List of used datasets

Dataset Layers Parameters Features
Total

instances
Test

instances
Output

Iris 3 55 5 150 30 3

Mnist 7 1 256 080 784 60 000 10 000 10

Cifar-10 7 1 632 080 1024 60 000 10 000 10

Cifar-100 8 3 042 546 1024 60 000 10 000 100

Fashion 7 1 163 330 784 70 000 10 000 10

From Table 2 and charts in Fig. 3, it can be seen that the
algorithm at a heuristic ratio equal to 20 performed very well
across all datasets and almost for all numbers of cycles while
increasing this ratio to more than 50 did not give better results.
Comparing the results obtained for a heuristic ratio of 0 and 20
can tell us that quickly exploring the search domain and contin-
uing with SGD will give optimal results. Since traditional SGD-
based optimizers start from a random point, results proved that
investing a few cycles in finding a good initial point resulted in
better results.

Table 2
Accuracy per dataset/epoch/heuristic ratio

Heuristic ratio

Epoc Dataset 0 20 50 70 100

20 Mnist 0.953 0.974 0.967 0.893 0.806

30 Mnist 0.967 0.984 0.979 0.914 0.860

40 Mnist 0.994 0.995 0.995 0.953 0.894

20 CIFAR10 0.714 0.759 0.747 0.660 0.413

30 CIFAR10 0.807 0.848 0.748 0.694 0.518

40 CIFAR10 0.859 0.897 0.884 0.837 0.649

20 CIFAR100 0.618 0.654 0.542 0.494 0.453

30 CIFAR100 0.737 0.777 0.698 0.640 0.582

40 CIFAR100 0.924 0.953 0.815 0.868 0.628

20 IRIS 0.618 0.620 0.653 0.647 0.721

30 IRIS 0.737 0.720 0.734 0.751 0.769

40 IRIS 0.823 0.848 0.857 0.860 0.868

20 FASHION 0.858 0.894 0.879 0.758 0.404

30 FASHION 0.914 0.937 0.885 0.774 0.423

40 FASHION 0.925 0.931 0.913 0.851 0.474

It can be concluded that the algorithm is effective in initial-
izing the training process of an NN, experiments showed that

Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 6, p. e147924, 2023 5



A. Mirkhan and N. Çelebi

Fig. 3. Accuracy per dataset according to heuristic ratio

allocating around 20 percent of the training time before starting
the traditional training will result in higher accuracy and faster
convergence.

SGD is very powerful in local search because it depends
on the derivation of the loss function to decide the direction
to move. But it may fall in local optimums, especially when
starting with a bad solution, although modern SGD-based al-
gorithms are not suffering from the local optima dilemma, and
they still need long training cycles to achieve high accuracy.

It can also be noticed that using the heuristic ratio of 100 pro-
duced bad results except for the Iris dataset, and this can be due
to the complex models used, consisting of a very high number
of parameters to be optimized, which resulted in a huge num-
ber of combinations that cannot be traversed using stochastic
methods.

According to [42], the time complexity of training a model
is mainly based on the number of epochs, number of training

instances, and number of parameters to be optimized. The ex-
periments listed in Table 2 are performed on the same model
and same dataset, so when applying the hybrid approach the
same accuracy with the same number of training cycles can be
obtained. Then it can be concluded that our approach is more
efficient in terms of time complexity, as the number of param-
eters and number of training samples is considered constant in
all runs.

The explained experiments took place with a population size
equal to 20. However, this population size is an important input
parameter for the algorithm and should be selected carefully
because it affects both the runtime and the obtained accuracy.
We believe that this parameter should be selected according to
the number of parameters in the model. Increasing the number
of parameters will increase the search domain and will require
more agents to explore the search space, to prove that more
detailed experiments were needed.

6 Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 6, p. e147924, 2023



A hybrid model of heuristic algorithm and gradient descent to optimize neural networks

Table 3
Accuracy per dataset/population size/heuristic ratio

Population size

Dataset 10 20 40 60 80

Mnist 0.884 0.901 0.965 0.985 0.994

CIFAR10 0.756 0.850 0.897 0.902 0.907

CIFAR100 0.827 0.903 0.953 0.983 0.994

IRIS 0.815 0.841 0.848 0.851 0.853

FASHION 0.842 0.842 0.931 0.937 0.943

The best obtained heuristic rate at 20 was selected from the
previous experiments and the algorithm was tested at different
values for population size at 10, 20, 40, 60, and 80. Results are

represented in Table 3 and Fig. 4, where the obtained accuracy
was registered for each data set and population size by having
the heuristic ratio fixed at 20.

The algorithm is trying to find a good initialization point in
a very high dimensional search space within a limited number
of iterations and search agents. We believe that the algorithm
performs well and can outperform similar heuristic algorithms.
Due to the dynamic population feature which facilitates explor-
ing the search domain efficiently by keeping focused on promis-
ing areas and not wasting time in hopeless ones. To prove that
another experiment was done by selecting the best values for
the input parameters obtained by the previously discussed ex-
periments and then the same algorithm was run without apply-
ing the dynamic population part of the algorithm, lines from
7 to 11 of Algorithm-1, results listed in Table 4 showed that
disabling this part of the algorithm resulted in lower accuracy
due to ineffective technique in navigating the very big search
space.

Fig. 4. Accuracy per dataset according to population size

Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 6, p. e147924, 2023 7



A. Mirkhan and N. Çelebi

Table 4
Impact of dynamic population

Dataset
Dynamic population

Enabled Disabled

Mnist 0.995 0.994

CIFAR10 0.897 0.859

CIFAR100 0.953 0.924

IRIS 0.848 0.823

FASHION 0.931 0.925

Except for the Iris dataset, where the model was very simple,
it can be noticed that the results are close to the one in the first
column of Table 1, where the heuristic ratio was zero. In other
words, in high-dimensional search spaces (models) the dynamic
population strategy was able to find good initialization points
while in relatively simple models traditional heuristic search
approaches were able to do so.

5. DISCUSSION AND FUTURE WORK
In this study, a new dynamic population-based heuristic algo-
rithm is proposed to initialize the training process of neural
networks as a hybrid model of a heuristic algorithm along with
traditional derivative-based techniques. The algorithm showed
good results when evaluated by five benchmark datasets with
a high number of parameters to be optimized. The method
showed satisfactory results in initializing the training process
when setting the heuristic ratio to 20%. This approach was ap-
plied to fixed neural network models. However, based on the
promising results we got from the algorithm. We believe that
the same approach can even be used to generate the NN model
itself in addition to tuning the hyper. Moreover, since the ini-
tialization process to explore the search domain is done using
multiple agents, the ability to make this process in parallel can
be also investigated.

REFERENCES
[1] I.H. Osman and G. Laporte, “Metaheuristics: A bibliography,”

Ann. Oper. Res., vol. 63, no. 5, pp. 511–623, Oct. 1996, doi:
10.1007/BF02125421.

[2] X.-S. Yang, Nature-inspired metaheuristic algorithms, 2. ed.
Frome: Luniver Press, 2010.

[3] S. Amari, “Backpropagation and stochastic gradient descent
method,” Neurocomputing, vol. 5, no. 4–5, pp. 185–196, Jun.
1993, doi: 10.1016/0925-2312(93)90006-O.

[4] D.P. Kingma and J. Ba, “Adam: A Method for Stochastic Opti-
mization.” arXiv, Jan. 29, 2017. Accessed: Apr. 26, 2023. [On-
line]. Available: http://arxiv.org/abs/1412.6980.

[5] Y. Nesterov, “Implementable tensor methods in unconstrained
convex optimization,” Math. Program., vol. 186, no. 1–2,
pp. 157–183, Mar. 2021, doi: 10.1007/s10107-019-01449-1.

[6] T. Dozat, “Incorporating Nesterov Momentum into Adam,”
2016.

[7] J. Duchi, E. Hazan, and Y. Singer, “Adaptive Subgradient Meth-
ods for Online Learning and Stochastic Optimization,” J. Mach.
Learn. Res., vol. 12, pp. 2121–2159, 2011.

[8] M.D. Zeiler, “ADADELTA: An Adaptive Learning Rate
Method.” arXiv, Dec. 22, 2012. Accessed: Apr. 26, 2023. [On-
line]. Available: http://arxiv.org/abs/1212.5701.

[9] P. Liashchynskyi and P. Liashchynskyi, “Grid Search, Random
Search, Genetic Algorithm: A Big Comparison for NAS.” arXiv,
Dec. 12, 2019. Accessed: Apr. 26, 2023. [Online]. Available:
http://arxiv.org/abs/1912.06059.

[10] J.S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms
for Hyper-Parameter Optimization,” in Advances in Neural In-
formation Processing Systems, 2011, vol. 24..

[11] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter
Optimization,” J. Mach. Learn. Res., vol. 13, pp. 218–305, 2012.

[12] T. Domhan, J.T. Springenberg, and F. Hutter, “Speeding up Au-
tomatic Hyperparameter Optimization of Deep Neural Networks
by Extrapolation of Learning Curves,” in Proceedings of the
24th International Conference on Artificial Intelligence, 2015,
pp. 3460–3468.

[13] I. Loshchilov and F. Hutter, “SGDR: Stochastic Gradient De-
scent with Warm Restarts.” arXiv, May 03, 2017. Accessed: Apr.
26, 2023. [Online]. Available: http://arxiv.org/abs/1608.03983.

[14] J. Rasley, Y. He, F. Yan, O. Ruwase, and R. Fonseca, “Hy-
perDrive: exploring hyperparameters with POP scheduling,” in
Proceedings of the 18th ACM/IFIP/USENIX Middleware Con-
ference, Las Vegas Nevada: ACM, Dec. 2017, pp. 1–13, doi:
10.1145/3135974.3135994.

[15] A. Gyorgy and L. Kocsis, “E?cient Multi-Start Strategies for Lo-
cal Search Algorithms,” arXiv, 16 Jan. 2014. [Online]. Available:
https://arxiv.org/abs/1401.3894.

[16] P. Koch, O. Golovidov, S. Gardner, B. Wujek, J. Griffin, and
Y. Xu, “Autotune: A Derivative-free Optimization Framework
for Hyperparameter Tuning,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery
&Data Mining, London United Kingdom: ACM, Jul. 2018,
pp. 443–452, doi: 10.1145/3219819.3219837.

[17] A. Aly, G. Guadagni, and J.B. Dugan, “Derivative-Free Op-
timization of Neural Networks using Local Search,” in 2019
IEEE 10th Annual Ubiquitous Computing, Electronics &Mo-
bile Communication Conference (UEMCON), New York City,
NY, USA: IEEE, Oct. 2019, pp. 0293–0299, doi: 10.1109/UEM-
CON47517.2019.8993007.

[18] L.M. Rios and N.V. Sahinidis, “Derivative-free optimization:
a review of algorithms and comparison of software implementa-
tions,” J. Glob. Optim., vol. 56, no. 3, pp. 1247–1293, Jul. 2013,
doi: 10.1007/s10898-012-9951-y.

[19] N.H. Kadhim and Q. Mosa, “Review Optimized Artificial Neural
Network by Meta-Heuristic Algorithm and its Applications,” J.-
Qadisiyah Comput. Sci. Math., vol. 13, no. 3, pp. 2021–2021,
doi: 10.29304/jqcm.2021.13.3.825.

[20] Z. Tian and S. Fong, “Survey of Meta-Heuristic Algorithms for
Deep Learning Training,” in Optimization Algorithms – Methods
and Applications, InTech, 2016, doi: 10.5772/63785.

[21] R. Mohapatra, S. Saha, C.A.C. Coello, A. Bhattacharya, S.S.
Dhavala, and S. Saha, “AdaSwarm: Augmenting Gradient-Based
optimizers in Deep Learning with Swarm Intelligence,” arXiv,
May 2020, [Online]. Available: http://arxiv.org/abs/2006.09875.

[22] M. Kaminski, “Neural Network Training Using Particle Swarm
Optimization – a Case Study,” in 2019 24th International Con-
ference on Methods and Models in Automation and Robotics

8 Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 6, p. e147924, 2023

https://doi.org/10.1007/BF02125421
https://doi.org/10.1016/0925-2312(93)90006-O
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/s10107-019-01449-1
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1912.06059
http://arxiv.org/abs/1608.03983
https://doi.org/10.1145/3135974.3135994
https://arxiv.org/abs/1401.3894
https://doi.org/10.1145/3219819.3219837
https://doi.org/10.1109/UEMCON47517.2019.8993007
https://doi.org/10.1109/UEMCON47517.2019.8993007
https://doi.org/10.1007/s10898-012-9951-y
https://doi.org/10.29304/jqcm.2021.13.3.825
https://doi.org/10.5772/63785
http://arxiv.org/abs/2006.09875


A hybrid model of heuristic algorithm and gradient descent to optimize neural networks

(MMAR), Aug. 2019, pp. 115–120, doi: 10.1109/MMAR.2019.
8864679.

[23] K.H. Lai, Z. Zainuddin, and P. Ong, “A study on the performance
comparison of metaheuristic algorithms on the learning of neural
networks,” in AIP Conference Proceedings, American Institute
of Physics Inc., Aug. 2017, doi: 10.1063/1.4995871.

[24] M. Jaderberg et al., “Population Based Training of Neural Net-
works,” arXiv, Nov. 2017, [Online]. Available: http://arxiv.org/
abs/1711.09846.

[25] S.R.Young, D.C. Rose, T.P. Karnowski, S.H. Lim, and R.M.
Patton, “Optimizing deep learning hyper-parameters through an
evolutionary algorithm,” in Proceedings of the Workshop on Ma-
chine Learning in High-Performance Computing Environments,
Austin, USA, Nov. 2015, doi: 10.1145/2834892.2834896.

[26] M. Mavrovouniotis and S. Yang, “Training neural networks with
ant colony optimization algorithms for pattern classification,”
Soft Comput., vol. 19, no. 6, pp. 1511–1522, Jun. 2015, doi:
10.1007/s00500-014-1334-5.

[27] X. Cui, W. Zhang, Z. Tüske, and M. Picheny, “Evolutionary
Stochastic Gradient Descent for Optimization of Deep Neural
Networks,” arXiv, Oct. 2018, [Online]. Available: http://arxiv.
org/abs/1810.06773.

[28] F.P. Such, V. Madhavan, E. Conti, J. Lehman, K.O. Stanley,
and J. Clune, “Deep Neuroevolution: Genetic Algorithms Are
a Competitive Alternative for Training Deep Neural Networks
for Reinforcement Learning,” arXiv, Dec. 2017, [Online]. Avail-
able: http://arxiv.org/abs/1712.06567.

[29] G. Morse and K.O. Stanley, “Simple evolutionary optimiza-
tion can rival stochastic gradient descent in neural networks,”
in Proceedings of the 2016 Genetic and Evolutionary Compu-
tation Conference GECCO 2016, Jul. 2016, pp. 477–484, doi:
10.1145/2908812.2908916.

[30] A. Khan, R. Shah, M. Imran, A. Khan, J.I. Bangash, and K.
Shah, “An alternative approach to neural network training based
on hybrid bio meta-heuristic algorithm,” J. Ambient Intell. Hu-
maniz. Comput., vol. 10, no. 10, pp. 3821–3830, Oct. 2019, doi:
10.1007/s12652-019-01373-4.

[31] R. Poli, J. Kennedy, and T.M. Blackwell, “Particle swarm opti-
mization,” Swarm Intell., vol. 1, pp. 33–57, 1995.

[32] M. Dorigo and L.M. Gambardella, “Ant Colony System: A Co-
operative Learning Approach to the Traveling Salesman Prob-
lem,” 1997. [Online]. Available: http://iridia.ulb.ac.be/dorigo/
dorigo.html, http://www.idsia.ch/~luca.

[33] X.-S. Yang and S. Deb, “Cuckoo Search via Levy Flights,”
arXiv, Mar. 2010, [Online]. Available: http://arxiv.org/abs/1003.
1594.

[34] N.F. Johari, A.M. Zain, N.H. Mustaffa, and A. Udin, “Firefly
algorithm for optimization problem,” in Applied Mechanics and
Materials, 2013, pp. 512–517, doi: 10.4028/www.scientific.net/
AMM.421.512.

[35] D. Karaboga, “An Idea Based on Honey Bee Swarm for Numer-
ical Optimization”, Technical Report, Erciyes University, 2005

[36] D. Polap and M. Woźniak, “Polar bear optimization algorithm:
Meta-heuristic with fast population movement and dynamic
birth and death mechanism,” Symmetry, vol. 9, no. 10, p. 203,
Oct. 2017, doi: 10.3390/sym9100203.

[37] S. Ruder, “An overview of gradient descent optimization algo-
rithms,” arXiv, Sep. 2016, [Online]. Available: http://arxiv.org/
abs/1609.04747.

[38] A. Mirkhan and N. Celebi, “Binary Representation of Polar
Bear Algorithm for Feature Selection,” Comput. Syst. Sci. Eng.,
vol. 43, no. 2, pp. 767–783, 2022, doi: 10.32604/csse.2022.
023249.

[39] M. Aghili Nasr, M. Zangian, M. Abbasi, and A. Zolfaghari,
“Neutronic and thermal-hydraulic aspects of loading pattern op-
timization during the first cycle of VVER-1000 reactor using
Polar Bear Optimization method,” Ann. Nucl. Energy, vol. 133,
pp. 538–548, Nov. 2019, doi: 10.1016/j.anucene.2019.06.042.

[40] V.K. Ojha, A. Abraham, and V. Snášel, “Metaheuristic design
of feedforward neural networks: A review of two decades of re-
search,” Eng. Appl. Artif. Intell., vol. 60, pp. 97–116, Apr. 2017,
doi: 10.1016/j.engappai.2017.01.013.

[41] D.A. Simovici, C. Djeraba, Mathematical Tools for Data Min-
ing. Springer, 2008.

[42] R. Livni, S. Shalev-Shwartz, O. Shamir, “On the Computational
Efficiency of Training Neural Networks” in Advances in Neural
Information Processing Systems, 2014, vol. 27.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 6, p. e147924, 2023 9

https://doi.org/10.1109/MMAR.2019.8864679
https://doi.org/10.1109/MMAR.2019.8864679
https://doi.org/10.1063/1.4995871
http://arxiv.org/abs/1711.09846
http://arxiv.org/abs/1711.09846
https://doi.org/10.1145/2834892.2834896
https://doi.org/10.1007/s00500-014-1334-5
http://arxiv.org/abs/1810.06773
http://arxiv.org/abs/1810.06773
http://arxiv.org/abs/1712.06567
https://doi.org/10.1145/2908812.2908916
https://doi.org/10.1007/s12652-019-01373-4
http://iridia.ulb.ac.be/dorigo/dorigo.html
http://iridia.ulb.ac.be/dorigo/dorigo.html
http://www.idsia.ch/~luca
http://arxiv.org/abs/1003.1594
http://arxiv.org/abs/1003.1594
https://doi.org/10.4028/www.scientific.net/AMM.421.512
https://doi.org/10.4028/www.scientific.net/AMM.421.512
https://doi.org/10.3390/sym9100203
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
https://doi.org/10.32604/csse.2022.023249
https://doi.org/10.32604/csse.2022.023249
https://doi.org/10.1016/j.anucene.2019.06.042
https://doi.org/10.1016/j.engappai.2017.01.013

	Introduction
	Background and related work
	Gradient descent
	Population-based heuristic algorithms

	The proposed model
	Experimental analysis
	Discussion and future work

