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Abstract
The article presents a comprehensive study of a visual-inertial simultaneous localization and mapping
(SLAM) algorithm designed for aerial vehicles. The goal of the research is to propose an improvement to the
particle filter SLAM system that allows for more accurate and robust navigation of unknown environments.
The authors introduce a modification that utilizes a homography matrix decomposition calculated from the
camera frame-to-frame relationships. This procedure aims to refine the particle filter proposal distribution
of the estimated robot state. In addition, the authors implement a mechanism of calculating a homography
matrix from robot displacement, which is utilized to eliminate outliers in the frame-to-frame feature detection
procedure. The algorithm is evaluated using simulation and real-world datasets, and the results show that the
proposed improvements make the algorithm more accurate and robust. Specifically, the use of homography
matrix decomposition allows the algorithm to be more efficient, with a smaller number of particles, without
sacrificing accuracy. Furthermore, the incorporation of robot displacement information helps improve the
accuracy of the feature detection procedure, leading to more reliable and consistent results. The article
concludes with a discussion of the implemented and tested SLAM solution, highlighting its strengths and
limitations. Overall, the proposed algorithm is a promising approach for achieving accurate and robust
autonomous navigation of unknown environments.
Keywords: Simultaneous Localization and Mapping (SLAM), homography matrix, particle filter, robot
navigation, visual-inertial systems.
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1. Introduction

Simultaneous localization and mapping (SLAM) is a technique for obtaining a trajectory
of a robot together with a 3D structure of surroundings that the robot is navigating through.
The purpose of research in this field is to develop an accurate and robust system consisting of
a robotic platform and sensors to enable an autonomous vehicle to explore previously unknown
environments. Achieving capability to perform SLAM is among the most promising and difficult
challenges for unmanned platforms, as it would simplify other key tasks for future robots such as
path planning, obstacle avoidance and object manipulation.
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Traditionally, two primary paradigms of SLAM are recognized. First, there are numerous filter
approaches for simultaneous localization and mapping. Their main common trait is the procedure
of estimating a multidimensional state vector, which comprises the vehicle pose together with
a map of landmarks locations. One of the earliest attempts were built upon the Extended Kalman
Filter (EKF) framework [1]. Other SLAM systems that fit in this filter category are different
variants of Kalman Filter (KF) implementations – like Unscented KF and Information Filter
– as well as systems incorporating a particle filter (PF) as a backbone of their architecture –
where [2,3] and [4] are among the most notable examples. Another category of SLAM approaches
are optimization-based solutions – with [5,6] and [7] as the most significant demonstrations. They
are estimating the trajectory as a pose-graph structure, implementing bundle adjustment (BA) [8]
where every node corresponds to a robot pose and they are connected by edges that model spatial
constraints between the poses. The map is built using only selected camera frames – called
keyframes.

It is important to note that SLAM systems implementing BA are frequently perceived to
be more accurate than filter methods at the same computational cost, which was demonstrated
in Strasdat et al. [9]. However, there are still some noticeable advantages of filter architecture
systems, especially those based on PF. First, the PF SLAM approach can be considered a multiple
hypotheses analysis [10] where every particle represents a different hypothesis concerning a robot
pose and a map. The survival of the fittest approach to the resampling procedure can be described as
a constantly running local relocalization procedure [11], contributing to the algorithm robustness.
Further, the weighting procedure based on a likelihood multiplication and normalization [12]
allows to integrate additional sensors (for example ultrawideband (UWB) radio transceivers [13])
with ease – simply as another multiplication factor. This makes the PF framework a potentially
useful tool for multi-sensory platforms.

SLAM algorithms utilizing camera sensors are also frequently classified according to the
type of the camera used. Pure visual SLAM approaches are based on a single monocular camera.
Among the most known monocular algorithms not mentioned before are [14] and [15]. Robotic
platforms performing SLAM can be further equipped with inertial measurement units (IMU)
which are a useful additional source of motion information [16–18]. This type of SLAM architec-
ture is known as a visual-inertial SLAM where [19, 20] and [21] are among those most prolific.
Our approach also falls into the visual-inertial category. Algorithms which camera sensors able
to measure depth are classified as RGB-D camera SLAM. Among the most advanced RBG-D
SLAM algorithms are [22] and [23].

The purpose of the work presented in this paper was to expand our previously developed
algorithm [24]. By introducing the proposal distribution refinement as in [10], we aimed at making
the PF framework less computationally expensive through limiting the number of particles needed
to accurately describe the probability density function (PDF) of the pose of the robot. Further,
as the refinement is based on a homography matrix decomposition calculated from the frame-
to-frame relationships, apart from the previously used frame-to-map relationship, it introduces
a new information source making the filter more accurate and robust.

In this research we build on the main ideas and architecture of our previous SLAM system [24].
The authors’ major contribution in this paper is threefold:

– implementation of a procedure that utilizes a homography matrix to refine proposal distri-
bution of a PF,

– adding a mechanism that calculates a homography matrix from a robot displacement to
eliminate outliers in frame-to-frame feature detection procedure,

– evaluation of the proposed improvements using simulation and real-world datasets.
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The remainder of the paper is organized as follows. In Section 2, materials and methods are
described in detail. In Section 3, the results of the SLAM algorithm are presented. Section 4
contains the conclusions where the approach and test results are summarised.

2. Materials and methodology

In this paper, we propose a modification of a particle filter SLAM algorithm that is an extension
to the monocular SLAM approach detailed in [24]. Below, a review of the approach is given, as
well as a detailed description of the proposed algorithm augmentation which exploits the epipolar
geometry relationship between points extracted from subsequent frames captured by a camera
during a UAV flight.

2.1. Particle filter SLAM approach

Our framework aims to solve the SLAM problem for an airborne autonomous platform in
the event of absence of an external positioning signal from a geospatial positioning system. We
assume that the UAV is equipped with an IMU and a downward facing gyro-stabilized monocular
camera – criteria regularly met in aerial drones. According to the common classification adopted
in numerous SLAM field surveys, including [25] and [26], our approach can be identified as
a particle-filter-based visual-inertial monocular SLAM system.

The localization routine in our SLAM system is performed by estimating the UAV kinematic
parameters x𝑘 consisting of 9 variables:

x𝑘 =
[
𝑥 𝑦 𝑧 𝑣𝑥 𝑣𝑦 𝑣𝑧 𝜙 \ 𝜓

]𝑇
, (1)

where 𝑘 is a time step, 𝑥, 𝑦, 𝑧 represent a localization in rectangular coordinates, 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧
are orthogonal velocity components and 𝜙, \ and 𝜓 are roll, pitch and yaw orientation angles
respectively. The state vector directly describes the camera pose, rather than the pose of a drone
itself, to decrease the number of reference frames needed.

The main task of the mapping procedure is to provide a sparse geometrical reconstruction of
the observed terrain for the UAV to navigate in it. The simultaneous calculation of the kinematics
and map is described by the joint posterior:

𝑝

(
x𝑘 ,m[1:𝐿 ]

𝑘

�� x𝑘−1, u𝑘 , z𝑘
)
, (2)

where m[1:𝐿 ]
𝑘

is a set of all 𝐿 landmarks, u𝑘 is a vector of IMU readings, and z𝑘 is the observation
vector extracted from the camera image. To decrease the number of dimensions to estimate,
the above equation is commonly further transformed in accordance with the Rao-Blackwell
factorization [27]. Rao-Blackwellization of the particle filter exploits dependencies between
different dimensions of the state space in (2). Namely, by assuming that knowledge of consecutive
robot poses is sufficient to build an individual map of landmarks, the particle filter sample
set can be responsible only for representing different UAV trajectory hypotheses. Then, each
particle includes individual information about its surroundings, which results in marginalization
of landmarks from the estimated state space and consequently, in factorization of the posterior:

𝑝

(
x𝑘 ,m[1:𝐿 ]

𝑘

�� x𝑘−1, u𝑘 , z𝑘
)
= 𝑝

(
x𝑘

�� x𝑘−1, u𝑘

)
×

𝐿∏
𝑙=1

𝑝

(
m𝑙

𝑘

�� x𝑘 , z𝑘
)
. (3)
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The map constructed by the SLAM algorithm is a sparse structure consisting of landmarks
𝑝m𝑙

𝑘
estimated by single EKFs for every tracked scene point for a given particle 𝑝. The landmark

vector state is expressed using the inverse-depth point notation [28]:
𝑝m𝑙

𝑘 =
[
𝑥0 𝑦0 𝑧0 Y 𝛼 𝜌]𝑇 , (4)

where 𝑥0, 𝑦0, 𝑧0 are the coordinates of an anchor point – from which the landmark was observed for
the first time. Further, Y and 𝛼 are the elevation and azimuth angles, expressed in the East-North-

Up (XYZ) frame, at which the scene point was registered by the camera, while 𝜌 =
1
𝑑

is the inverse
of the distance between the sensor and the landmark. This representation is known as inverse-
distance point (IDP) or anchored modified-polar points (AMPP). An exemplary parametrization
is shown in Fig. 1.

Fig. 1. IDP landmark parametrization.

Landmarks are extracted from image frames registered by the camera. To calculate 3D rep-
resentation of 2D features detected in the image plane, at least two consecutive observations –
from different points of view – are needed. Further, spatial relationships between the image plane
and sensor’s surroundings are identified using a calibrated camera whose intrinsic parameters are
described by the matrix Kintr:

Kintr =


𝑓𝑥 𝑠 𝑢0
0 𝑓𝑦 𝑣0
0 0 1

 , (5)

where 𝑓𝑥 and 𝑓𝑦 represent focal lengths along the camera axes, 𝑢0 and 𝑣0 are the principal point
offset and 𝑠 is a skew of the camera axes.

There are numerous available algorithms that allow to extract good features to track, 𝑒.𝑔. [29,
30] and [31]. In our implementation we choose to use an ORB detector [32], although other
methods can be used interchangeably. During feature extraction, not only are the pixel coordinates
of the scene points calculated, but also a descriptor. The descriptors are used to match newly
observed features with already initialized landmarks constituting the map. The matching criteria
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implemented in our approach seek the descriptor whose Hamming distance is minimum with
respect to all other descriptors associated with the landmark expected to appear in a given camera
frame. More detailed information concerning landmark initialization and update procedures can
be found in [24].

Different particles represent alternative hypotheses describing both the trajectory of the UAV
and the map created during its flight. To estimate the UAV state and its surroundings, one has to
identify more and less probable of those hypotheses. The procedure of calculating the likelihood
of different particles is called particle weighting. Samples’ weights are determined by the accuracy
of the predicted landmarks’ location. It is calculated with respect to the current sensor pose and
compared with coordinates of features extracted from the most recent camera frame – which were
matched with the scene points already initialized in the map. The weight 𝑤𝑝

𝑘
of a given particle

𝑝 in a time step 𝑘 is inversely proportional to the measurement residual y[1:𝐿𝑝

𝑘
]

𝑘
of the landmarks’

locations projection onto the image frame. The mathematical formula is given below:

𝑤
𝑝

𝑘
= 𝑤

𝑝

𝑘−1

𝐿
𝑝

𝑘∏
𝑙=1

���2𝜋S[𝑙 ]
𝑘

���−1/2
× exp

[
−1

2

(
y𝑙𝑘

)𝑇 (
S𝑙
𝑘

)−1
y𝑙𝑘

]
, (6)

where 𝑤𝑝

𝑘−1 is the previous particle weight (indicating the influence of the earlier hypothesis prob-

ability evaluation), S[1:𝐿𝑝

𝑘
]

𝑘
is the innovation covariance matrix constructed for all the landmarks

that were matched with the previously seen scene points and 𝐿
𝑝

𝑘
is the number of landmarks

matched by particle 𝑝.
Feature matching using only feature descriptor comparison can relatively frequently lead to

mismatches and spatial outliers. This issue is solved using spatial gates which are formed in
accordance with (7): √︂(

y𝑙
𝑘

)𝑇 (
S𝑙
𝑘

)−1
y𝑙
𝑘
< gatingThreshold, (7)

where the gating threshold is a measured standard deviation and is set to 3 by default.
Lastly, as different trajectory hypotheses become more diverse, the differences in weights

become more significant, allowing to point out the least probable estimates. To prevent the filter
from becoming increasingly less efficient, the resampling is implemented if the efficient number
of particles 𝑁eff , becomes smaller than the predefined threshold:

𝑁eff =
1

𝑁∑︁
𝑝=1

(𝑤𝑝)2

< efficientParticlesThresh. (8)

2.2. Homography augmentation

The extension we propose to implement in the described above SLAM algorithm is based on
the idea of refining particle distribution using additional information derived from the analysis
of sensor readings. Not only does the proposal distribution rely on the motion model, but it takes
two recent camera measurements into consideration as well. As a result, a more efficient proposal
distribution can be obtained. This leads to more robust and accurate SLAM realization. The tool
we use to achieve the distribution augmentation is the homography matrix.

The homography is a relation defined between two images of the same planar surface in
space. Let’s assume that the images were taken from two different camera poses in space: 𝑐1 and
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𝑐2. If positions of points on the surface are identified using vectors containing the homogeneous
coordinates

[
𝑥 𝑦 1

]𝑇 in Euclidean space, the spatial relationship (up to a scale) between them
can be expressed using the Euclidean homography matrix 𝑐2H𝑐1:

𝛾


𝑐2𝑥
𝑐2𝑦

1

 = 𝑐2H𝑐1


𝑐1𝑥
𝑐1𝑦

1

 =

ℎ11 ℎ12 ℎ13
ℎ21 ℎ22 ℎ23
ℎ31 ℎ32 ℎ33



𝑐1𝑥
𝑐1𝑦

1

 , (9)

where 𝛾 is the scale factor.

Fig. 2. Two views of the same surface from different camera poses.

If points are expressed in the image coordinates, using pixels 𝑝 =
[
𝑢 𝑣 1

]
, the Euclidean

homography matrix 𝑐2H𝑐1 has to be replaced with a projective homography matrix 𝑐2G𝑐1, for the
relationship to hold:

𝛾


𝑐2𝑢
𝑐2𝑣

1

 = 𝑐2G𝑐1


𝑐1𝑢
𝑐1𝑣

1

 . (10)

The relationship between the matrices 𝑐2H𝑐1 and 𝑐2G𝑐1 is given in the equation below:

𝛾 𝑐2G𝑐1 = 𝛾Kintr
𝑐2H𝑐1 K−1

intr. (11)

As (11) is valid up to a scale factor, 𝑐2H𝑐1 has only eight degrees of freedom. Thus, it is
required that we have four corresponding coplanar scene points matched. At least three of those
features have to be non-collinear points, since each pair of corresponding points provides two
independent constraints.
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The homography matrix contains information about the spatial relationship between the
camera poses from which the images were taken. The relationship is encoded using a tuple
consisting of:

– vector 𝑐2t𝑐1 – the translation between the reference frames tied to camera poses,
– matrix 𝑐2R𝑐1 – the rotation between the reference frames tied to camera poses,
– vector 𝑐1n – the normal to the observed surface expressed in the reference frame tied to the

first camera pose.
In the proposed SLAM algorithm extension, 𝑐2t𝑐1 and 𝑐2R𝑐1 are used as inputs to the correc-

tion step that refines the proposal distribution.
The procedure of calculating a tuple of vector 𝑐2t𝑐1, matrix 𝑐2R𝑐1 and vector 𝑐1n from a ho-

mography matrix is called the homography matrix decomposition. There are different algorithms
that perform homography decomposition, both numerical, which use singular value decompo-
sition (SVD) [33] and analytical. Regardless of the chosen method, there are no less than four
potential solutions to the homography decomposition. Naturally, only one tuple provides the valid
transformation. In order to correctly reject invalid solutions, an additional step of eliminating of
impossible solutions has to be performed. A detailed instruction on how to perform this analytical
elimination can be found in [34]. In our approach, the rejection of invalid solutions is performed
using the kinematics.

Commonly, in order to perform a Simultaneous Localization and Mapping procedure robustly
and accurately using a particle filter, the proposal distribution of particles should match the desired
distribution as closely as possible. Therefore, having samples, representing poses of the camera,
sampled at the highest possible frequency – for example equal to inertial measurements data
sampling rate – can be considered not sufficiently efficient, as long as the probability mass
function (PMF) could be further refined using additional available information. We propose to
resolve the potential estimation inefficiency, resulting from IMU relative inaccuracy and drift, by
implementing the maximum a posteriori particle states correction using the data extracted from
the homography matrix decomposition. This is performed in accordance with (12):

𝑝
(
x𝑘

�� x𝑘−1, u𝑘 , z𝑘:𝑘−1
)
, (12)

where z𝑘:𝑘−1 is information extracted from a homography matrix describing relations of two most
recent camera frames. As mentioned before, the homography only describes the relationship
between different views of a given surface and does not allow to grasp the more complex
relationships between points which are not coplanar. However, it was assumed, that for the adopted
model of usage, where a camera-carrying UAV floats high over terrain with its gyro-stabilized
sensor facing downwards, using homography would be a reasonable simplification.

The first step of our algorithm is to compare the direction of the calculated vector 𝑐2t𝑐1
with the direction of velocity vectors of individual particles state vectors, to determine if the
result of homography matrix decomposition is valid in terms of the current PF motion estimate.
The comparison is performed particle-wise, thus not every sample of an entire set is going to
be corrected during a given procedure. The result of such scheme is beneficial, as one of the
particle filter main advantages is its ability to simultaneously estimate diverse SLAM hypotheses
– including hypotheses interpreting the validity of homography matrix decomposition differently.
There are two criteria of the comparison. First, the difference in the directions of vectors, ex-
pressed as an angle, cannot be larger than a predefined upper threshold – this criterion is rather
intuitive. Next, if the difference between the vectors’ directions is smaller than a predefined lower
threshold, the correction for a given particle is aborted as well. This mechanism is introduced to
address the finite accuracy of the homography matrix calculation and its decomposition. Introduc-
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ing the particle-wise comparison criteria also preserves mutual independence between different
hypotheses represented by individual particles.

If the homography matrix decomposition solution is defined as valid for a given particle, the
correction step is realized according to the following set of equations. First, the measurement
vector z𝑘 has to be defined:

z𝑘 =

[
𝑐2t𝑐1
Δ𝜓

]
, (13)

where Δ𝜓 is the yaw angle difference between the current orientation of the UAV and the previous
orientation at which the reference frame was taken. Δ𝜓 is extracted from 𝑐2R𝑐1 matrix.

Next, for each particle meeting the criteria for correction, a difference 𝚫𝑝

𝑘
between the mea-

surement and the predicted measurement ℎ
(
x𝑝

𝑘 |𝑘−1

)
is calculated:

𝚫𝑝

𝑘
= z𝑘 − ℎ

(
x𝑝

𝑘 |𝑘−1

)
, (14)

where ℎ is the observation function, which uses a particle’s state as an argument and returns
a change in pose and angle between two most recently captured frames. The mathematical
formula for the ℎ is given below:

ℎ

(
x𝑝

𝑘 |𝑘−1

)
=



𝑐2RENU



𝑥𝑘 |𝑘−1 − 𝑥𝑘−1√︃(
𝑥𝑘 |𝑘−1 − 𝑥𝑘−1

)2 + (
𝑦𝑘 |𝑘−1 − 𝑦𝑘−1

)2 + (
𝑧𝑘 |𝑘−1 − 𝑧𝑘−1

)2
𝑦𝑘 |𝑘−1 − 𝑦𝑘−1√︃(

𝑥𝑘 |𝑘−1 − 𝑥𝑘−1
)2 + (

𝑦𝑘 |𝑘−1 − 𝑦𝑘−1
)2 + (

𝑧𝑘 |𝑘−1 − 𝑧𝑘−1
)2

𝑧𝑘 |𝑘−1 − 𝑧𝑘−1√︃(
𝑥𝑘 |𝑘−1 − 𝑥𝑘−1

)2 + (
𝑦𝑘 |𝑘−1 − 𝑦𝑘−1

)2 + (
𝑧𝑘 |𝑘−1 − 𝑧𝑘−1

)2
𝜓𝑘 |𝑘−1 − 𝜓𝑘−1



4×1

, (15)

where the temporary translation in the local camera reference frame is calculated together with
the change in the yaw angle, while 𝑘 and 𝑘 − 1 address specifically the time steps during which
two consecutive images were taken. 𝑐2RENU defines the rotation from the ENU coordinate frame
to the current camera frame. We choose to drop the pitch and roll from the residual calculation
as it would be inefficient to track negligible momentary rotations in horizontal axes with a gyro-
stabilized camera.

In the next step of the correction procedure, it is required to calculate the Jacobi matrix for
the function ℎ:

J𝑝

𝑘
=

𝜕ℎ

𝜕x

����
x𝑝

𝑘 |𝑘−1

. (16)

J𝑝

𝑘
is a 4×9 matrix, but we choose to omit the inclusion of equation (16) closed-form solution

in the paper, as it would be difficult due to the size of the Jacobian. Furthermore, it is relatively
easy to calculate.

To proceed with minimum-mean-square-error (MMSE) state correction, one must calculate
the covariance of the difference 𝚫𝑝

𝑘
:

S𝑝

𝑘
= J𝑝

𝑘
P𝑘 J𝑝

𝑘

𝑇 + R𝑘 . (17)
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The covariance matrices denoted as P𝑘 and R𝑘 are predefined rather than calculated and allow
to adjust the correction magnitude elementwise.

In the next step, the algorithm proceeds with the maximum-a-posterioriMAP correction gain
matrix calculation:

K𝑝

𝑘
= P𝑘 J𝑝

𝑘

𝑇
(
S𝑝

𝑘

)−1
. (18)

Finally, the correction of the state vector of a given particle is performed in accordance with
the equation below:

x𝑝

𝑘 |𝑘 = x𝑝

𝑘 |𝑘−1 + K𝑝

𝑘
𝚫𝑝

𝑘
. (19)

The procedure described by the equation above is directly derived from the Extended Kalman
Filter routine. In Fig. 3, an exemplary effect of correction using information extracted from the
homography matrix decomposition is presented.

Fig. 3. Exemplary effect of the distribution refinement step. Left: Particles after prediction without the correction.
Right: Particles after prediction with the correction.

2.3. Homography from displacement for outlier removal

Additionally, we introduced another homography related mechanism, which allows us to
significantly mitigate the problem of ambiguous data association during feature matching. Due
to changes in lighting and perspective, as well as due to the sensor noise and the surroundings
appearance itself, seeking for the descriptor with the minimal Hamming distance with respect
to all other descriptors is prone to generating mismatches. Including mismatches could result
in erroneous homography matrix calculation. To counter this adverse effect, we choose to add
an intermediate step between the feature matching and homography calculation. In this step, we
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evaluate an approximate homography matrix with the displacement estimated by the particle filter
and introduce an outlier removal scheme which uses the evaluated homography. This mechanism
is implemented as common for every particle and uses the weighted mean state of the UAV.
A kinematic transformation between two time steps during which two consecutive images were
registered can be encoded using:

– rotation matrix 𝑐2R′
𝑐1,

– translation vector 𝑐2t′
𝑐1,

where the right superscript ′ indicates that 𝑐2R′
𝑐1 and 𝑐2t′

𝑐1 were calculated using the information
about a UAV displacement from the state vector x𝑘 . Knowing a mean depth of currently observed
landmarks, we can calculate an approximate distance 𝑐2𝑑 to a surface on which the pseudo-
coplanar points, extracted from the most recent image, would lay. All this information, together
with a vector which is perpendicular to the observed surface – 𝑐1n – can be used to estimate the
homography matrix 𝑐2H′

𝑐1 with the following formula [34]:

𝑐2H′
𝑐1 = 𝑐2R′

𝑐1 −
𝑐2t′

𝑐1
𝑐1n𝑇

𝑐2𝑑
. (20)

The relationship encoded in (20) is shown in Fig. 4.

Fig. 4. Calculation of the homography matrix from the camera displacement.
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Matrix 𝑐2H′
𝑐1 is used to compare coordinates of every matched pair of points, by finding the

distance between them in a common reference frame. The formula for the 𝑖-th matched pair of
points is given below:

dist𝑖 =



𝑐2𝑢𝑖
𝑐2𝑣𝑖

1

 − Kintr
𝑐2H′

𝑐1 K−1
intr


𝑐2𝑢𝑖
𝑐1𝑣𝑖

1


 . (21)

Next, the mean distance between points is calculated and the pairs that exceed a threshold
defined in terms of the mean distance are removed.

In Figs. 5 and 6, an example of this outlier removal mechanism is presented.

Fig. 5. Descriptors matching without outlier removal.

Fig. 6. Descriptors matching with outlier removal.

3. Experiments and results

To evaluate consequences of implementation of the proposed extension of the monocular
particle filter SLAM, we conducted a series of experiments, using both simulation and real-world
data. Material collected for both cases was analysed offline. The main goal of the undertaken
experiments was to perform a direct comparison of the accuracy and robustness of the following
SLAM approaches:

– the standalone SLAM algorithm from our previous work [24],
– the same algorithm, but with additional homography augmented proposal distribution

extension.
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3.1. Simulation results

For evaluating the performance of the compared methods, the Gazebo open-source soft-
ware [35] was selected as the robotics simulator to generate data. The experimental setup involved
two sensors following a predetermined trajectory. The camera was positioned to capture a down-
ward view, while the IMU provided 3D accelerations and angular velocities. To ensure similarity
between the real-world and simulation environment, an aerial photograph taken from a UAV was
applied as a texture, effectively covering the ground plane in Gazebo.

The purpose of comparison using simulation data was to evaluate both approaches in the
environment where the conditions are accurately defined and known. This provided the capability
for a precise quantitative comparison of the estimated UAV trajectory with the reference, 𝑖.𝑒.
ground truth trajectory. Hence, the calculation of exact position and altitude errors was feasible.

To evaluate the influence of proposal distribution refinement on simulated data, we compared
the performance of both approaches in setups with different numbers of particles – a relatively
difficult configuration with 10 samples and a less demanding filter setting with 30 samples
performing estimation.

The simulation scenario assumed that the vehicle was travelling at a constant altitude for
about 75 seconds. An exemplary result of a SLAM procedure performed using simulated data
trajectory is visible in Fig. 7. There are four possible loop closures along the UAV route.

Fig. 7. Simulated SLAM routine for 30 particles – proposed method. Left: 3D trajectory – estimated and ground truth.
Right: Altitude – estimated and ground truth.

Next, we performed a set of 20 runs for each configuration, where configuration is defined by
the use of homography augmentation and the number of particles. For every set, we averaged the
results.

To compare the algorithm accuracy, we calculated the root mean square error (RMSE) of
the 3D trajectory estimation as well as of the estimation of the altitude exclusively. Further, we
performed calculations to determine the RMSE associated with the estimation of the azimuth
angle estimation.

The robustness of the approach was evaluated by analysing the number of correctly closed
loops along the trajectory. The proportion of valid solutions to the homography matrix decompo-
sition was also calculated in terms of its compliance with the estimated robot motion. The results
gathered during the experiment are presented in Table 1.

As shown in Table 1, the RMSE of the trajectory estimation without the homography augmen-
tation was 24.7 m and 14.5 m for the 10 and 30 particle configuration respectively. For the runs
which included the homography augmentation, the RMSE was 10.6 m and 6.8 m respectively.
The yaw angle RMSE for homography augmented SLAM was comparatively lower as well –
0.91◦ versus 1.05◦ without augmentation for 10 particles and 0.87◦ versus 0.96◦ for 30 particles.
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Table 1. Comparison of simulation results.

Number of particles 10 30

Homography augmentation No Yes No Yes

Percent of correct loop closures [%]

Loop 4 20 80 45 85
Loop 3 55 95 75 100
Loop 2 75 100 90 100
Loop 1 90 100 90 100

Avg. ratio of valid solution of 𝑐2H𝑐1 decomposition [%] – 86.5 – 82.7

Avg. RMSE – altitude [m] 5.7 4.6 4.7 2.7

Avg. RMSE – trajectory [m] 24.7 10.6 14.5 6.8

Avg. RMSE – yaw angle [◦] 1.05 0.91 0.96 0.87

The proposed modification had a more significant influence in demanding configuration, with the
lower number of particles. This indicates the superior accuracy of the proposed approach.

The number of successful loop closures was higher as well, showing a significant robustness
advantage of proposal refinement using the homography matrix.

3.2. Real-world data results

In order to thoroughly evaluate the effectiveness of our approach, we conducted a comparative
analysis of SLAM approaches using real-world data obtained from a UAV. The data collection
process involved utilizing a DJI Matrice M100, with a Raspberry Pi serving as the onboard
computer. Images were captured using a Zenmuse X3 camera, while the onboard flight controller
provided the necessary kinematic data.

The main objective of the real-world data evaluation was to compare both approaches in
a more demanding environment to determine whether the proposed improvement is valid outside
the simulated surroundings. We aimed at confronting the approach with outdoor conditions.

The difficulties of the real-world dataset, in terms of the SLAM procedure, resulted from
a number of conditions. First, it was caused by synchronization inaccuracies and sensor noise.
Further, our flight scenario assumed a relatively low altitude (about 10 meters above the ground)
and a flight speed up to 20 km/h, causing a short time of landmark visibility – even though the
camera field of view was 94 degrees. These mentioned dataset properties, together with a blur
and a sudden motion could contribute to tracking failure or map corruption.

An exemplary result of a SLAM procedure performed using real-world data trajectory is
visible in Fig. 8. There are two possible loop closures along the UAV route.

We compare the same parameters except for the overall trajectory estimation error. It was
omitted since the reference trajectory of a UAV was determined by an on-board autopilot unit and
the calculation would lack sufficient accuracy. However, we decided to evaluate altitude RMSE.
As the aircraft was piloted at a constant height, the altitude error can be a useful indicator of the
altitude evaluation drift.

During the evaluation with real-world data, we compared the two SLAM approaches with
three different settings concerning the number of particles – the most demanding configuration
with only 10 samples and less difficult settings with 30 and 50 samples. Again, we performed
a set of 20 runs for each approach – for a given number of particles – after which we averaged the
results.
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Fig. 8. Real-world SLAM routine for 30 particles – proposed method. Left: 3D trajectory – estimated and GNSS.
Right: Altitude – estimated and GNSS.

The results gathered in the experiment are in Table 2.

Table 2. Comparison of real-world results.

Number of particles 10 30 50

Homography augmentation No Yes No Yes No Yes

Percent of correct loop closures [%]
Loop 2 35 70 55 75 60 85
Loop 1 55 95 70 95 80 100

Avg. ratio of valid solution of 𝑐2H𝑐1 decomposition [%] – 52.1 – 55.4 – 55.8

Average RMSE – altitude [m] 7.6 4.9 6.7 4.2 4.6 2.4

As shown in Table 2, for every filter configuration with homography augmentation the per-
centage of successfully closed loops was higher. The RMSE of the altitude estimation without
the homography augmentation was significantly larger. This indicates lower altitude drift for the
proposed approach. For the algorithm without the homography augmentation, estimation errors
led to tracking failure together with map corruption, which resulted in inability to perform loop
closures. This again shows the increased robustness of the proposed algorithm extension.

4. Conclusions

The goal of the implemented proposal distribution refinement was to achieve a more accurate
and robust SLAM algorithm. From the presented results, it can be clearly seen that the introduction
of the homography matrix augmentation proved to be useful in terms of the algorithm overall
performance. The particle filter utilizing information from the homography matrix decomposition
focuses the particles around the correct trajectory much better.

Additional benefits can be pointed out when considering the altitude drift. In downward
facing camera scenarios, at relatively high altitudes, vertical movement introduces the smallest
contribution to the changes in landmark positions predicted in the pixel coordinates. In addition,
upward drift causes the increase of the measurement gates size and cannot be fought using strati-
fication [24] as efficiently as lateral movements. Hence, the positive influence of the homography
refinement containing the altitude drift should be further considered advantageous.

Consideration should be given to a significantly lower success rate of homography matrix
decompositions when evaluating a real-world scenario. This was potentially caused by abrupt
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manoeuvres and image blurs, together with a rather strict validity threshold. However, on average,
the valid solution was found every second frame, even under those difficult conditions.

Our next step is to test the presented approach with an onboard embedded system mounted on
a UAV. Furthermore, since the particle filter framework enables easy integration of more sensors
into a system by adding additional weighting and resampling procedures, we intend to implement
our approach in a multisensory and multiplatform system with UWBs, lidars and a team of UAVs.
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