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Abstract—Knowledge about future traffic in backbone optical 

networks may greatly improve a range of tasks that 

Communications Service Providers (CSPs) have to face. This work 

proposes a procedure for long-term traffic forecasting in optical 

networks. We formulate a long-terT traffic forecasting problem as 

an ordinal classification task. Due to the optical networks’ (and 

other network technologies’) characteristics, traffic forecasting has 

been realized by predicting future traffic levels rather than the 

exact traffic volume. We examine different machine learning (ML) 

algorithms and compare them with time series algorithms 

methods. To evaluate the developed ML models, we use a quality 

metric, which considers the network resource usage. Datasets used 

during research are based on real traffic patterns presented by 

Internet Exchange Point in Seattle. Our study shows that ML 

algorithms employed for long-term traffic forecasting problem 

obtain high values of quality metrics. Additionally, the final choice 

of the ML algorithm for the forecasting task should depend on 

CSPs expectations. 

 

Keywords—Traffic forecasting; Machine Learning; 

Classification; Regression 

I. INTRODUCTION 

OMPUTER networks are an integral part of contemporary 

life. Quick and global development of telecommunication 

technologies such as VoD, a cloud computing or the Internet of 

things causes rapid growth of endpoint devices [1]. According 

to the Cisco Annual Internet Report, the number of Internet 

users will reach 5.3 billion by the end of 2023 [2]. Moreover, 

the Nokia report [3] shows that as a result of the COVID-19 

pandemic, in the first weeks of lockdown, compared to pre-

pandemic time, network traffic increased by 30-50%. 

Additionally, by September 2020, traffic has stabilized at 20-

30% above pre pandemic level. To prevent the possible capacity 

crunch problem on the Internet, network operators constantly 

improve backbone networks using various optical technologies 

[4], [5]. However, constantly growing network traffic, the 

increase of which is sometimes rapid in a short time, presents 

new challenges to Communications Service Providers (CSPs). 

To improve the performance of future optical networks 

compared to mechanisms currently used in optical networks, the 

concept of a cognitive optical network [6] has been proposed. In 

more detail, a cognitive optical network is based on a cognitive 

process that monitors current network conditions and adjusts the 

network operation to observed conditions. The cognitive 
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process, which often uses history to improve operation, usually 

applies Machine Learning (ML) algorithms [7]. ML techniques 

can be successfully applied to analyze and find dependencies in 

historical data, e.g., traffic flows. Gained knowledge can be 

used to forecast future traffic in the network and later as 

valuable information for different network optimization tasks, 

e.g., traffic flow control, network operational cost reduction, 

anomaly detection, or physical network expansion [8], [9]. In 

this paper, we present a procedure for long-term traffic 

forecasting in backbone networks.  

Nowadays, the means of communication used as backbone 

networks, carrying voluminous, aggregated user data traffic, are 

optical networks [10]. They use fibers linked into one physical 

cable as a transmission medium. Using the wavelength division 

multiplexing (WDM) technique, data is transferred using optical 

channels transmitted at different wavelengths. Currently, in 

WDM one wavelength offers capacity of 100 Gbps. Optical 

networks are constantly being improved and developed. A next-

generation of optical networks architecture called Elastic 

Optical Networks (EON) [11], [12] improves the network 

operation and management. In EONs, a single optical channel 

supported by a single transceiver can carry a fixed amount of 

data. For instance, the Ciena WaveLogic 5 transceiver 

depending on the selected modulation format offers the 

following capacity of an optical channel: 200 Gbps, 400 Gbps, 

600 Gbps or 800 Gbps [13]. As a result, to establish a 

connection, CSPs need information about the number of optical 

channels required to carry the requested network traffic. 

Therefore, in this work, we realize the problem of traffic 

forecasting by predicting future traffic levels rather than the 

exact traffic volume. 

Although the work is focused on forecasting traffic in optical 

networks, many network technologies are based on the approach 

of provisioning the network capacity  in some granularities, 

namely, an Optical Transport Network (OTN) various versions 

of Ethernet (e.g., Gigabit Ethernet, 10 Gigabit Ethernet, 40 

Gigabit Ethernet, 100 Gigabit Ethernet). Therefore, the methods 

and results reported in this article can be applied to various types 

of network technologies. 

The main contributions of this work can be summarized as 

follows: 

• We design and implement historical data flows 

preprocessing methods. Each dataset used during 

experiments was initially analyzed using statistical 

methods. The analysis included dataset values’ variations 
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and amplitude, their relation with time, traffic flows 

shapes, and elements of autocorrelation. Based on the 

outcome, three different sets of features were proposed. 

• We develop long-term traffic levels forecast strategies 

using ML and Time Series (TS) algorithms. Depending on 

the feature set, different ML and TS algorithms’ 

approaches were proposed, namely Level Based (LB), 

Real Values Based (RVB) and Level Values Based 

(LVB). Additionally, two different strategies were 

proposed and tested, i.e., static prediction and dynamic 

prediction. 

• We propose an evaluation metric suitable for the 

considered problem. It is based on metric described in [14] 

and allows to evaluate tested algorithms in terms of 

underpredictions and overpredictions, which can be 

significant for network operators. Its main characteristic is 

flexibility. 

The rest of this paper is organized as follows. Section 2 

includes a literature review of the considered problem. Sections 

3, 4 and 5 present used datasets, formulate problems and 

describe used approaches to solve them. Section 6 shows and 

discusses experimental results. Section 7 concludes whole 

article. 

II. RELATED WORKS 

The network long-term traffic forecasting problem is not new 

in the literature and has been widely studied in many papers. 

Typically, it is formulated as a TS problem and solved using 

approaches based on ARIMA and its numerous variations, as 

well as ML techniques [15]. Authors of [16] compared ARIMA, 

Holt-Winters, and neural network algorithms for forecasting the 

amount of traffic in TCP/IP-based networks. The datasets were 

based on distinct time scales, namely 5 minutes, 1 hour, and 1 

day, and different forecasting horizons were analyzed. The 

obtained results concluded that the neutral network achieved the 

best results for 5 minute and hourly data, while the Holt-Winters 

was the best for the daily forecast. Work [17] presents TS 

algorithms for traffic forecasting. ARIMA and SARMIA 

models were used for short-term and long-term future traffic 

volume forecasts. Authors propose a procedure for separating 

temporal and seasonal variations of traffic. Additionally, work 

also investigates the impact of traffic forecasting on traffic 

engineering. As a result of traffic management, based on 

forecasted traffic flows, the required bandwidth for data 

transmission was reduced by almost 19%. Authors of [18] 

presented a traffic forecasting method based on the Facebook 

PROPHET algorithm, procedure for time data series based on 

an additive model where non-linear trends are fit with yearly, 

weekly, and daily seasonality, plus holiday effects. The work 

shows that PROPHET can be well used for a 14-day horizon 

traffic forecasting. Three different models containing sets of 

additional input features to improve the forecasting quality of 

different ML algorithms are presented in [19]. Models were 

evaluated on datasets with different types of traffic. The authors 

evaluated number of ML algorithms. The performance of them 

was measured using MAPE. Experiments proved that relevant 

features improve the quality of ML algorithms. The obtained 

MAPE values varied between 1 and 10%. Authors in [20], [21] 

and [22] present future traffic forecasting by predicting the 

occurrence of future requests in the network. Each request 

consists of a source node, a destination node, and request 

volume information. The assumption is that traffic in a network 

can be characterized as chain traffic, i.e., it represents traffic 

flow between network nodes in which single virtual network 

functions are located. Authors employ different ML 

classification algorithms, namely k Nearest Neighbors, 

Decision Tree, Random Forest, Gaussian Naïve Bayes, 

Multilayer Perceptron, and Linear Discriminant Analysis. 

Experiments brought forecasting quality up to 94%. 

Although many works have presented promising results, 

there is a high demand for exploring the possibility of 

application of ML methods to network problems [23], [24]. The 

majority of the related works realized the traffic forecasting task 

as a prediction of exact traffic bitrates. To the best of our 

knowledge, long-term traffic forecasting has not been addressed 

in the literature in the context of  prediction of traffic level. 

Additionally, short-term traffic forecasting using traffic levels 

was described only in articles [14], [25] and [26]. To fill the 

research gap, this work introduces, formulates, and examines 

the long-term forecasting problem as a prediction of fixed traffic 

levels. Such a concept is a result of optical networks and other 

transport network technologies’ characteristics. 

III. DATASETS 

Datasets used for experiments are semi-synthetic and contain 

real and artificially generated data. This section describes the 

dataset generator and the generated traffic flows. 

1) Traffic Generator 

Datasets used for experiments contain real and semi-

synthetic data. The semi-synthetic datasets were created with 

the use of the custom traffic generator proposed in [27], which 

applies the  time-varying real data obtained from the Internet 

Exchange Point in Seattle (SIX). In more detail, the semi-

synthetic traffic follows the shape of the real traffic that can be 

found at the SIX official website (https://www.seattleix.net/, 

accessed on 21 February 2021). The provided rrd files have a 5 

minute granulation time and were downloaded between 

27.12.2020 and 21.02.2021. The collected sets of SIX traffic 

were parsed and transformed for further processing.  

The generator is a set of smaller request generators, each 

representing a different web service and having a defined share 

[2] and their own characteristics, such as a set of stochastic 

processes with assigned parameters and contribution scales for 

each of them. In this generator, the considered stochastic 

processes are Poisson process (PP), Poisson Pareto burst process 

(PPBP) [28], and constant traffic (CT) with uniformly 

distributed random offset. The web services are represented 

using the stochastic processes indicated above in the following 

manner: 

• Internet video accounts for 51% of the total bitrate. Made 

of two different PPs, PPBP and CT. 

• IP VOD accounts for 22% of the total bitrate. Made from 

a single PP. 

• Web data accounts for 18% of the total bitrate. Made of 

two different PPs. 
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• File sharing accounts for 8% of the total bitrate. Made 

from a single CT. 

• Gaming accounts for 1% of the total bitrate. Made from a 

single CT. 

The primary goal of this distinction between traffic patterns 

for certain online services is to simulate the changing nature of 

Internet traffic. The overall bitrate of generated requests varies 

over time depending on the provided traffic characteristics. 

2) Datasets 

The semi-synthetic traffic created by the traffic generator 

described in previous Section can be characterized by its 

fluctuation. As a fluctuation metric, Mean Absolute Percentage 

Error (MAPE) is considered. It determines how values of one 

traffic flow differs from values of the base traffic flow. Let 𝐴 =
(𝑎1, 𝑎2, … , 𝑎𝑛) and 𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑛) contain bitrates of 

traffic flows. Let us consider 𝐵 as base traffic flow. MAPE for 

𝐴 can be calculated by: 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑏𝑖 − 𝑎𝑖

𝑏𝑖
|

𝑛

𝑖=1

 (1) 

To calculate the MAPE of a particular traffic dataset, as a 

reference traffic we use the original SIX traffic normalized to a 

common range of considered bitrate values. In other words, 

MAPE indicates how the considered semi-synthetic traffic 

differs from the SIX traffic. 

In this paper, four traffic patterns were examined: 

• dataset_1 – semi-synthetic traffic flow with MAPE equal 

to 2,9%. 

• dataset_2 – semi-synthetic traffic flow with MAPE equal 

to 7%. 

• dataset_3 – semi-synthetic traffic flow with MAPE equal 

to 11,6%. 

• dataset_4 – traffic flow related to real volumes collected 

by SIX, MAPE is equal to 0%. 

The first three datasets were chosen from a large number of 

generated datasets, because they are representative in terms of 

the MAPE value, i.e., the reported MAPE values are from a 

relatively small value of 2,9% to a relatively large values of 

11,6%. Fig. 1 visualizes two days of data flows from 28.12.2020 

to 30.12.2020 of the datasets mentioned above. Because dataset 

bitrates ranges differ from each other, for the sake of 

visualization, dataset bitrates were normalized to the same range 

and presented on the vertical axis. It can be clearly seen that 

their difference in terms of fluctuation and MAPE correctly 

reflects their characteristics, i.e., higher MAPE points and more 

frequent fluctuation. 

 

 

 

Fig. 1 - Datasets visualization 

 

IV. PROBLEM FORMULATION 

This section describes a formulation of the main problem 

addressed in this work. It contains a description and a 

mathematical definition of the problem and information about 

the used performance metrics. 

1) Network model  

The problem, which is examined in this work, is a network 

traffic forecasting based on historical traffic data flows. The 

time scale of the network operation is divided into time intervals 

(TIs) of the same size, equal to 30 minutes. For consecutive TIs, 

traffic volumes (bitrates) related to the single pair of nodes or a 

whole traffic going through a single node create continuous and 

regular data flows. Depending on the transport network 

technology, to establish a connection, the network operator 

requires information about a traffic level that is sufficient to 

carry a transmission and allows allocation of network resources 

efficiently, e.g., choosing an adequate number of optical 

channels in optical networks. Thus, for each TI, a corresponding 

traffic level can be assigned. 

In this work, traffic level is calculated as the maximum bitrate 

value within TI, however different ways of calculations can be 

applied, for example, the average value. Fig. 2 illustrates the 

process of defining traffic levels for traffic flows. The blue line 
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represents real bitrate values and the green line traffic levels that 

correspond to them. Possible traffic levels (determined by a 

transport network technology) are represented by grey 

horizontal lines. Based on such a formulation, the final network 

traffic forecasting outcome is information about future traffic 

levels in TIs, rather than the exact traffic volume. 

 

Fig. 2 - Traffic level definition 

 

2) Classification type 

As mentioned earlier, the problem considered in this work is 

network traffic forecasting, realized by prediction of future 

traffic levels. Because traffic levels have a hierarchy (they can 

be arranged in ascending order), a task is considered as an 

ordinal classification [29], also called an ordinal regression, 

problem. In general, it is a multiclass classification problem 

[30], [31] (in a specific case, when only two traffic levels are 

considered, it is a binary problem), where possible classes have 

inherent order. Labels can take any value, even numeric, e.g. 

“Level_1”, “100Gbps”, “100” However, from the classification 

point of view, there is no meaningful numeric difference among 

them [32], i.e., it does not matter if traffic levels differ by 100, 

1000, or even by different granulations. Additionally, the 

problem is the offline learning. The whole dataset of historical 

data flows in the network is known in advance, and models are 

not updated during forecasting. 

To formalize the considered problem, let us define a set of 

input vectors 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑖) and a set of traffic levels (in 

ordinal classification called ordered labels or ordered classes) 

𝑌 = (𝑦1 , 𝑦2, … , 𝑦𝑗), where 𝑖, 𝑗 𝜖 𝑁. In the network traffic levels’ 

forecasting problem, there occurs an order among classes, i.e., 

𝑦1 <  𝑦2 < ⋯ < 𝑦𝑗. For each instance 𝑥𝑖, class from 𝑌 can be 

assigned. As a result, a set of pairs 𝑃 = (𝑋, 𝑌) = (𝑥𝑡 , 𝑦𝑡), where 

t points TI, is created. 𝑃 can also be called a training set. The 

task posed to ML algorithms in classification problem is to first 

obtain knowledge about historical data flows and their traffic 

levels representation, i.e., train using a training set, and find a 

function 𝑀(𝑥𝑡) = 𝑦𝑡 , which maps 𝑋 into 𝑌 [33].  Next, to 

forecast 𝑌 for unseen 𝑃∗ = (𝑋, 𝑌), which reflects the future. 

Each input vector in the set 𝑋 consists of 𝑤 number of features, 

i.e., 𝐹 = (𝑓1, 𝑓2, … , 𝑓𝑤). 

3) Quality metric  

Evaluation of ordinal classification is a challenging task. The 

reason for that is twofold. First, there is a number of metrics that 

can be used for algorithms evaluation. Each metric can measure 

different aspects of an algorithm's performance. Additionally, 

because of the lack of metrics for ordinal classification, to 

evaluate such problems, metrics appropriate for nominal 

classification, i.e., classification problem, where there is no 

order between classes, are typically used [34]. Secondly, some 

errors are worse than others [32], i.e., let 𝑌 = (𝑦1, 𝑦2 , 𝑦3) be a 

set of ordinal classes and 𝑦1 = 100, 𝑦2 = 200 and 𝑦3 = 300. 

Assigning 𝑦1 to 𝑥 when actual class is 𝑦2 (some data are lost 

during transmission) costs network operator more than 

assigning 𝑦3 to the same 𝑥 (transmission occurs, however it uses 

more network resources than required). To evaluate the ML 

algorithm a confusion matrix (𝐶𝑜𝑛𝑀) [35] can be used. It is a 

matrix of the size 𝑗 𝑥 𝑗, where 𝑗 denotes the number of possible 

classes. Each column indicates forecasted classes and each row 

– real classes. Let us consider a multiclass ordinal classification 

problem, i.e., traffic levels forecasting, where possible classes 

belong to set 𝑌 = (𝑦1 , 𝑦2, … , 𝑦𝑗). After classification task a 

confusion matrix 𝐶𝑜𝑛𝑀 can be created. Each element 𝑎𝑢𝑔 , 

where 𝑢, 𝑔 𝜖 (1, 2, … , 𝑗) represents the number of cases when 

the algorithm returned 𝑦𝑔 and actual it was 𝑦𝑢. For each traffic 

forecasting case, the interpretation matrix can be defined. It is a 

matrix of the size 𝑗 𝑥 𝑗. Fig. 3 presents confusion matrix 𝐶𝑜𝑛𝑀 

and interpretation matrix 𝐼𝑛𝑡𝑒𝑟𝑀 of a classification problem 

described above. 

 
Fig. 3 - Confusion and Interpretation Matrices 

 

Each element 𝑖𝑢𝑔, where 𝑢, 𝑔 𝜖 (1, 2, … , 𝑗), of 𝐼𝑛𝑡𝑒𝑟𝑀 

represents the interpretation of each classification type, i.e., the 

importance of cases when the algorithm returned 𝑦𝑔 and actual 

was 𝑦𝑢. 𝑖𝑢𝑔 values are in range [−1, 1]. A positive value of 𝑖𝑢𝑔 

means that such type of classification is acceptable with specific 

weight, a negative values means that such type of classification 

is unwanted with specific weight and 0 means that such type of 

classification is neutral. The diagonal of 𝐼𝑛𝑡𝑒𝑟𝑀 represents 

cases, where correct classes have been chosen and often contain 

1, i.e., correct classifications are highly desirable. Additionally, 

values above 𝐼𝑛𝑡𝑒𝑟𝑀 diagonal represent overestimations and 

those below the diagonal represent underestimations. In order to 

estimate the performance of algorithms, thus final traffic level 

forecasting quality, in this work, the metric called Traffic Level 

Prediction Quality (TLPQ) is defined. It is an extended version 

of the metric, which we presented in [14]. Compared it to its 

previous version, it considers more under and overpredictions 

variants. Each variant can have assigned a different weight. 

Additionally, the metric used in this article takes different range 

of values. It can be calculated based on the confusion matrix 

(𝐶𝑜𝑛𝑀) and the interpretation matrix (𝐼𝑛𝑡𝑒𝑟𝑀), using the 

following equation: 
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𝑇𝐿𝑃𝑄 = ∑ ∑
𝑎𝑢𝑔 ∙ 𝑖𝑢𝑔

∑ ∑ 𝑎𝑢𝑔
𝑗
𝑔=0

𝑗
𝑢=0

𝑗

𝑔=1

,

𝑗

𝑢=1

 (2) 

where 𝑎𝑢𝑔 and 𝑖𝑢𝑔 are elements of 𝐶𝑜𝑛𝑀 and 𝐼𝑛𝑡𝑒𝑟𝑀 

respectively, 𝑗 denotes number of possible classes and 

𝑢, 𝑔 𝜖 (1, … , 𝑗). TLPQ is a flexible metric and can be adjusted 

to the specifications of any traffic level forecasting problem. It 

ranges from −1 to 1. It is a point metric, i.e., a greater score is 

better, where −1 means that the algorithm returns only 

unacceptable classes, 0 means that the number of acceptable and 

unacceptable classifications are equal, and 1 means that only 

acceptable classes are returned by algorithm. Defining a specific 

measure for an ordinal classification problem is a common 

practice [32], [36], [37], [38], [39]. This is due to the fact that 

the characteristics of each classification task are different and 

there is no one well-known measure that can be applied to each 

problem [38], [40]. 

To test algorithms for different network scenarios, three 

variants of TLPQ are calculated, namely TLPQ_1, TLPQ_2 and 

TLPQ_3. Let us consider the problem with five possible traffic 

levels. 𝐼𝑛𝑡𝑒𝑟𝑀 matrices for individual TLPQ’s are presented 

below. 𝐼𝑛𝑡𝑒𝑟𝑀1 can be applied for TLPQ_1, 𝐼𝑛𝑡𝑒𝑟𝑀2 for 

TLPQ_2 and 𝐼𝑛𝑡𝑒𝑟𝑀3 for TLPQ_3. For problem with a 

different number of possible traffic levels, 𝐼𝑛𝑡𝑒𝑟𝑀 matrices 

change dimension and take values of elements according to the 

scheme. TLPQ_1 is suitable when CSP accepts correct forecasts 

and overestimations by one traffic level with the same weight 

equal to 1. In turn, overestimations by more than one traffic 

level, together with underestimations, are neutral. In TLPQ_2 

the highest importance have the correct forecasts. 

Overestimations are acceptable, but with a lower weight, equal 

to 0,7. Underestimations are unacceptable with a weight 0,3. 

Overestimations by more than one traffic level are neutral for 

TLPQ_2 quality metric. In TLPQ_3 the most significant are 

correct forecasts. Overestimations by one level are acceptable 

with a weight 0,5. The same weight of unacceptance has 

underestimations. Overestimations by more than one traffic 

level do not impact TLPQ_3 value. 

 

𝐼𝑛𝑡𝑒𝑟𝑀1 = |
|

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

|
|  (3) 

 
 

𝐼𝑛𝑡𝑒𝑟𝑀2 = |
|

1 0,7 0 0 0
−0,3 1 0,7 0 0
−0,3 −0,3 1 0,7 0
−0,3 −0,3 −0,3 1 0,7
−0,3 −0,3 −0,3 −0,3 1

|
| (4) 

  

𝐼𝑛𝑡𝑒𝑟𝑀3 = |
|

1 0,5 0 0 0
−0,5 1 0,5 0 0
−0,5 −0,5 1 0,5 0
−0,5 −0,5 −0,5 1 0,5
−0,5 −0,5 −0,5 −0,5 1

|
| (5) 

 

To evaluate the performance of a ML algorithm used for the 

ordinal classification problem, also some error functions can be 

applied. Such functions measure how far are forecasts from the 

real value. In ordinal classification problems, their value is 

correlated with the numerical representation of classes, i.e., 

values of traffic levels, since this values are used for 

calculations. However, they still can give an overview of 

algorithm performance. One of the most widely used error 

function is mean absolute error (MAE) [41]]. It is used in a 

number of ordinal classification problems [42], [43], [44], [45], 

[46]. Let 𝑌∗ = (𝑦1
∗, 𝑦2

∗, … , 𝑦𝑛
∗) be the set of classes returned by 

the algorithm in the ordinal classification task, and 𝑌 =
(𝑦1, 𝑦2, … , 𝑦𝑛) be a set of real classes corresponding to 𝑌∗. MAE 

can be calculated by: 
 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖

∗|

𝑛

𝑖=1

 (6) 

It represents the average of the absolute differences between 

forecast and actual classes. MAE is a “lower is better” type of 

performance. Additionally, according to [32], it can be used to 

minimize the number of errors. 

In this paper, two metrics are used as the main performance 

metrics of the algorithm, namely, the proposed TLPQ metric 

and MAE. This choice is due to the fact that TLPQ gives high 

flexibility, thus can be adjusted to any traffic level forecasting 

problem by definition of 𝐼𝑛𝑡𝑒𝑟𝑀. Its calculation is intuitive and 

easier comparing to classical classification metrics. A literature 

study shows that MAE is a widely used metric in the case of 

ordinal classification. Tied together, they give reliable insight 

on the forecast performance. 

V. METHODS 

This work presents three different approaches for traffic 

levels forecasting: 

• Label based (LB) – problem is treated as a pure 

classification task. Possible network traffic levels create a 

set of classes and employed algorithms that return the 

exact traffic level in the TI (Fig. 4). 

• Real values based (RVB) – in this case, the problem is 

considered initially as a regression task. First, the applied 

algorithm returns the value of a bitrate in a particular TI. 

Next, based on the obtained result, traffic levels in TIs are 

calculated by rounding up the forecasted bitrate (Fig. 5). 

• Labels values based (LVB) – it is a mix of previous two 

approaches. Regression algorithms are applied to forecast 

the values of traffic levels. Because the forecast is rarely 

the exact value of the traffic level, the final decision is the 

traffic level closest to the value returned by the algorithm 

(Fig. 6). 

Fig. 4 to Fig. 6 illustrate the ways of forecast in the case of a 

particular approach. The black color represents historical traffic, 

which the algorithm gets as an input. The green color reflects 

forecasts and, for RVB and LVB approaches, the blue color 

symbolizes traffic levels defined based on forecasts. For each 

approach, different types of algorithms can be employed, i.e., 

ML algorithms and TS algorithms. Besides the different ways 

of forecasting, outcome is the same in the case of all approaches, 

i.e., at the end traffic levels in TIs are returned. In general, 
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algorithms map input vector (which describes data flows) into 

network traffic levels. 

LB and LVB approaches can be executed as follows. Let the 

set 𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑇) consists of historical bitrates related to a 

single pair of nodes or to a single node in a network for 𝑇 

consecutive TIs. For each 𝑏𝑡, where 𝑡 = 1, … , 𝑇, a class from 

the set 𝑌 can be assigned, based on the actual value of the bitrate. 

Additionally, for each 𝑏𝑡, a vector from 𝑋 can be defined, based 

on instances from 𝑏1 to 𝑏𝑡−1. Methods of defining vectors in 𝑋 

are presented below. Algorithms take as input pairs 𝑃 =
(𝑋, 𝑌) = (𝑥𝑡 , 𝑦𝑡), find 𝑀(𝑥𝑡) = 𝑦𝑡  and forecast 𝑌 for unseen 𝑋. 

The difference between the LB and LVB approaches is the type 

of algorithms used during forecasting. LB approach is pure 

classification, so it uses classifiers. In turn, LVB approach relies 

on regression, so it uses regressors. 

 

 
Fig. 4 - LB approach 

 

 
Fig. 5 - RVB approach 

 

 
Fig. 6 - LVB approach 

 

In the case of RVB approach, first a set of 𝑌∗ =
(𝑦1

∗, 𝑦2
∗, … , 𝑦𝑇

∗ ) has to be defined. For each 𝑏𝑡, 𝑦𝑡
∗, which 

represents the exact bitrate value of 𝑏𝑡 can be assigned. Vectors 

in set 𝑋 are defined in the same way as in the case of level based 

approach. Algorithms first train to find a function 𝑀(𝑥𝑡) = 𝑦𝑡
∗, 

next forecast 𝑌∗ based on unseen 𝑃∗ = (𝑋, 𝑌∗) and at the end 

assign 𝑌 based on 𝑌∗, by rounding up 𝑌∗ to the nearest 𝑌. 

 

Each input vector in set 𝑋 consists of 𝑤 number of features, 

i.e., 𝐹 = (𝑓1, 𝑓2, … , 𝑓𝑤). Selecting a suitable set of features is 

crucial for the forecasting problem. Based on them, algorithms 

define the relevant 𝑀(𝑋). In more detail, when forecast is based 

on the historical information, features should allow mapping 

history into the future in an efficient way. In the network traffic, 

some daily and weekly patterns can be distinguished. Thus, the 

characteristics of traffic flows are correlated with time. 

Additionally, because the general shape of the flows repeats in 

time, i.e., there is a seasonality in the data, bitrates from the past 

can reflect future traffic. To determine which previous TIs 

correlate with the current TI, the autocorrelation function has to 

be studied Fig. 7 presents week autocorrelation of dataset 1. For 

the presented data, TIs length is equal to 30 min. Based on 

graph, strong seasonality can be noticed. A high positive 

autocorrelation occurs every 48 points, i.e., after 24 hours, since 

each single point reflects 30 minutes. Additionally, the highest 

autocorrelation appears for TIs close to the first TI. The blue 

background designates an area where autocorrelations become 

insignificant. Finally, a significant autocorrelation occurs for 

7th day. 

Considering all of this, the following sets of features 𝐹 have 

been tested in this work: 

 

• 𝐹1 = (𝑑𝑎𝑦, 𝑚𝑖𝑛𝑢𝑡𝑒, 𝑏𝑡−1, 𝑏𝑡−2, 𝑏𝑡−3, 𝑏𝑡−24ℎ). 

• 𝐹2 = (𝑑𝑎𝑦, 𝑚𝑖𝑛𝑢𝑡𝑒, 𝑏𝑡−24ℎ, 𝑏𝑡−1−24ℎ,  
                𝑏𝑡−2−24ℎ, 𝑏𝑡−3−24ℎ, 𝑏𝑡−7𝑑). 

• 𝐹3 = (𝑏1, 𝑏2, … , 𝑏𝑇). 

 

 
Fig. 7 - dataset_1 one week autocorrelation, TI equal to 30 min 

 

We assume that 𝑑𝑎𝑦 ϵ [1, 7] defines the number of the day in 

the week and 𝑚𝑖𝑛𝑢𝑡𝑒 ϵ [0, 1440] and also reflects the minute 

during the day. Different types of 𝐹 were used for different 

models. To better understand (𝑋, 𝑌) pairs creating process, let 

us consider an example. Let set B = (95, 155, 220, 450, 390, 

280, 105, 180, 240, 450, 420, 405, 395, 380, 350, 295, 250, 180, 

150, 80, 90, 115, 160, 210, 280, 450, 320, 150, 200) consists of 

historical bitrates related to a single pair of nodes in a network 

for consecutive TIs (one TI reflects 1h), and set Y = (100, 200, 

300, 400, 500), contains possible classes in a network traffic 

levels forecasting problem. For each element from B 

information about TI number, the day during the week, the 

minute during the day and a traffic level out of Y can be 

assigned. Based on that, a set of pairs (𝑋, 𝑌) can be created, 

where 𝑋 contains 𝐹1 features’ set. Fig. 8 describes the process 

of creation of such pairs.  
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Fig. 8 - (X,Y) pairs creation 

 

Note that B has 29 elements and only 5 pairs can be created. 

It is because of the fact that there is no information about 𝑏𝑡−24 

for first 24 elements in B. 

Sets of pairs (𝑋, 𝑌) containing features from 𝐹2 are created in 

a similar way.  𝐹3 features’ set is intended for TS. In this case, 

the plain dataset is given as an input for models. 

During the forecasting process, algorithms take input vectors, 

whose features are based on the past. To forecast using 𝐹1 

features’ set, algorithms have to get information about traffic in 

three TIs which precede the considered TI. Because of that, the 

forecast horizon is limited to one TI ahead (one step ahead). To 

forecast the future for a longer time horizon, algorithms can use 

their forecasts as  features’ values. In turn, 𝐹2 features’ set 

requires information about traffic from TIs distant by one day 

from considered TI, thus it allows to forecast one day ahead. In 

this paper, the strategy where real traffic levels or bitrates are 

used as features is called static prediction, and the strategy 

which uses algorithms’ forecasts as features to extend the 

possible forecast horizon is called dynamic prediction. Note that 

dynamic prediction strategy is used only with 𝐹1 features’ set 

and 𝐹2 features’ set is designed for static prediction since it 

provides sufficient forecasting horizon. 

The ML algorithms used in this work are as follows: 

• Decision tree (DT) [31] – builds a hierarchical model in 

the shape of a tree, which consists of decision nodes and 

leafs. Decision tree decomposes a complex problem into a 

series of individual, simple steps. 

• k – Nearest Neighbor (kNN) [46], [48] – belongs to the 

group of minimal distance algorithms. A final decision is 

made based on k-objects in the nearest neighborhood. 

• Logistic regression (LR) [48] – is a linear model for 

classification task. Based on the dataset’s statistical 

analysis, it estimates probabilities describing the possible 

outcomes of a single trial using a logistic function. 

• Linear regression (LR) [49] – assumes a linear 

relationship between the input (features) and output. To 

create the model, the ordinary least squares method for 

coefficients’ calculation is used. LR can be applied for 

regression. 

• Multilayer perceptron (MLP) [50] – the neutral network 

composed of one input layer, one or more hidden layers, 

and one output layer. Each layer consists of a number of 

single perceptrons [51] also called neurons. 

To achieve a better performance, single algorithms can be 

aggregated into ensembles [52], [53], [54]. An ensemble is a 

group of base algorithms (also called estimators) whose 

individual decisions are combined in some way, typically by 

unweighted or weighted voting. Ensembles often return better 

performance than single algorithms, which make them up. 

Following ensemble methods were tested during experiments: 

• Extra Trees (ET) [55], [56] – uses an implementation of 

the decision trees ensemble provided by scikit-learn 

python library [57]. It trains a number of decision trees on 

various sub-samples of the dataset and uses averaging to 

improve performance. As a base estimator, DT and DTR 

can be applied. 

• Random Forest (RF) [58] – is an ensemble of decision 

trees. It builds decision trees on different objects and takes 

their majority vote for classification and average in the 

case of regression. As a base estimator, DT and DTR can 

be applied. 

• Eibe Frank and Mark Hall ensemble method (EFMH) – is 

an ensemble designed for ordinal classification problems 

and described in [59]. It transforms a multiclass problem 

into binary problems. Each algorithm has to answer the 

question if an object is higher or lower than the considered 

class. 

• Bagging (Ba) [60] – also known as bootstrap aggregation. 

BR is an ensemble of regression algorithms, e.g., kNN, 

DT. It trains base algorithms on random subsets of the 

original dataset. The training set is selected with 

replacement, i.e., the individual objects can be chosen 

more than once. As a final forecast, it returns an average 

of base algorithm forecasts. 

All ML algorithms’ implementations were done using scikit-

learn python library [57]. Each of used algorithms has a number 

of parameters, which influence its architecture and final 

performance. To select the optimal set of parameter values for 

each algorithm, a parameter tuning process has to be performed. 

For ML algorithms, it was done using a grid search procedure. 

TS algorithms’ parameters were determined using auto_arima() 

function from alkaline-ml python library [61]. 

In case of the traffic level forecasting problem, data are 

related with time and have sequential order. Additionally, the 

specificity of the problem is that often the future is forecasted 

based on the nearest past. Because of that, in this work, to get 

reliable model performance, the dataset is divided into training 

and test subsets in a slightly different way than in classic k-fold 

cross validation. At the beginning, the whole dataset is divided 

into equal subsets, each containing consecutive elements. Let us 

assume that the dataset is divided into four subsets, based on 

which four different models are created. From each subset, a 

given number of consecutive dataset elements are taken as the 
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training subset and the remaining ones are taken as the test 

subset. At the end, as a final metric value, an average of all 

models’ performance is taken. Note that subsets of the whole 

dataset can be disjoint as well as they can have partly the same 

elements. 

VI. NUMERICAL RESULTS 

This section presents and discusses numerical results 

obtained during experiments. Algorithms related to subsections 

6.2 and 6.3 were trained on datasets containing TIs collected 

from 28 days and tested on datasets containing information 

about TI during 1 day. Experiments in those subsections were 

conducted 28 times, and the results were calculated as an 

average. The length of train datasets in subsection 6.4 was also 

28 days, however train dataset length varies depending on the 

time horizon. Datasets used during research were described in 

section 4. 

1) Single ML and TS algorithms 

At the beginning, to find effective methods for traffic level 

forecast, some ML algorithms (classifiers and regressors) 

together with TS algorithms were tested.  

Table I and Table II report TLPQ and MAE values of each 

tested approach in the case of static and dynamic predictions, 

respectively. The best results from a single dataset are bolded. 

TS was used only for RVB approach in static perdition, since it 

forecasts traffic bitrate real values. Additionally, it returns 

traffic levels for the whole forecast horizon, so its way  of 

operation is similar to the static prediction. Based on TLPQ 

values, the general trend can be noticed. Algorithms obtained 

higher TLPQ values for datasets with lower MAPE, namely 

dataset_1 and dataset_4. In the case of static prediction, the best 

results had algorithms in LVB approach (Table I) For dataset_1 

and dataset_4, the best TLPQ values returned LR, and for other 

datasets, i.e., dataset_2 and dataset_3, the best turned out to be 

kNN. Different situation occurs for dynamic prediction 

(Table II). For dataset_1 and dataset_4, the highest TLPQ 

values were obtained by algorithms in the LB approach, namely 

kNN and MLP, respectively. For datasets with higher MAPE 

value, i.e., dataset_2 and dataset_3, the best turns out to be kNN 

in RVB approach. Additionally, for dataset_2 and dataset_3, the 

best algorithms in RVB and LVB approaches got similar TLPQ 

results. In the case of other datasets, the LVB approach together 

with dynamic prediction did not produce  good forecast results 

(Table II). In RVB and LVB approaches algorithms with 

simpler architecture, i.e., kNN and LR, turned out to return 

better TLPQ metrics than more complex algorithms, like 

MLPR. For LB approach, MLP was better than other algorithms 

in most cases. Algorithms in the case of static prediction get 

better results than in dynamic prediction. Additionally, TS 

algorithms have TLPQ performance lower than ML algorithms 

in the case of all datasets. 

Looking at MAE errors, it can be observed that algorithms in 

the case of the RVB approach make fewer mistakes than LB and  

LVB approaches. Such a characteristic is true for both static and 

dynamic predication. For datasets with higher MAPE value, 

namely dataset_2, dataset_3, algorithms obtained lower MAE in 

the case of static prediction, when for datasets with lower 

MAPE values, i.e., dataset_1, and dataset_4, MAE values are 

similar in case of both static and dynamic predictions. 

To check if differences between methods are statistically 

significant, the Friedman test and Nemenyi post hoc test at a 

significance level set to 0.05 were performed. Fig. 9 presents 

ranking of methods related to TLPQ_1 metric. As it can be seen, 

there is statistical difference between tested algorithms. The best 

rank obtained DT algorithm applied with LB approach. Similar 

results of the Friedman test and Nemenyi post hoc test were also 

observed for TLPQ_2 and TLPQ_3 metrics. 

 

 
Fig. 9 - TLPQ_1 statistical tests, single algorithm 

 

2) Ensembles 

Ensembles consisting of weak algorithms often perform 

better than a single algorithm. To obtain better traffic levels 

forecasting quality, in this subsection, two different ensemble 

types with DT and kNN applied as base algorithms were 

examined, namely Ba and EFMH. Additionally, two other 

ensembles with DT as the base algorithm were used, i.e., RF and 

ET. Ba ensembles were tested with RVB and LVB approaches 

and EFMH ensemble with LB approach. 

Table III and Table IV present results obtained during 

experiments. In most cases, the application of the ensemble 

allowed us to return better (higher) TLPQ values than in case of 

single algorithms. The exception was a dynamic prediction and 

LVB approach (Table IV), where TLPQ metrics turned out to 

be lower, compared to single algorithms (Table II). Ensembles 

during static prediction (Table III) return higher TLPQ values 

than ensembles during dynamic prediction (Table IV). In case 

of LB approach, the highest TLPQ values were achieved in 

ensembles with kNN as a base estimator. In turn, for RVB and 

LVB approaches, the best turned out to be ensembles with DT 

as base estimator. The ensemble which forecasted traffic with 

the highest TLPQ performance was ET in LVB approach and 

static prediction (Table III) 

When analyzing MAE values, it can be noticed that 

ensembles during dynamic prediction make higher errors (Table 

IV). Additionally, ensembles in the case of RVB approach made 

the lowest errors among all tested approaches. Application of 

ensembles decreased MAE errors, compared to  MAE errors of 

single algorithms. 
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TABLE I  

SINGLE ALGORITHMS RESULTS, STATIC PREDICTION 

  LB approach RVB approach LVB approach 

 Alg. TLPQ_1 TLPQ_2 TLPQ_3 MAE TLPQ_1 TLPQ_2 TLPQ_3 MAE TLPQ_1 TLPQ_2 TLPQ_3 MAE 

d
at

as
e

t_
1 

DT 0,70 0,57 0,48 162 0,75 0,62 0,53 114 0,75 0,62 0,54 156 

kNN 0,74 0,62 0,54 144 0,80 0,68 0,61 95 0,89 0,76 0,67 136 

LoR/LR 0,64 0,51 0,42 202 0,80 0,69 0,62 92 0,90 0,75 0,64 133 

MLP 0,73 0,61 0,53 158 0,77 0,65 0,57 163 0,89 0,74 0,63 135 

TS - - - - 0,69 0,58 0,47 221 - - - - 

d
at

as
e

t_
2 

DT 0,53 0,36 0,25 39 0,58 0,41 0,29 34 0,58 0,41 0,30 39 

kNN 0,55 0,38 0,26 32 0,67 0,51 0,41 26 0,75 0,59 0,49 30 

LoR/LR 0,58 0,42 0,31 38 0,67 0,51 0,40 27 0,73 0,58 0,48 31 

MLP 0,59 0,53 0,33 33 0,60 0,43 0,32 49 0,70 0,54 0,43 41 

TS - - - - 0,53 0,37 0,25 41 - - - - 

d
at

as
e

t_
3 

DT 0,56 0,39 0,28 23 0,62 0,45 0,34 19 0,61 0,45 0,34 23 

kNN 0,58 0,41 0,29 19 0,70 0,55 0,45 15 0,76 0,61 0,50 18 

LoR/LR 0,66 0,49 0,38 21 0,70 0,54 0,44 15 0,75 0,60 0,50 18 

MLP 0,68 0,52 0,40 18 0,68 0,53 0,43 16 0,73 0,57 0,46 22 

TS - - - - 0,59 0,39 0,36 25 - - - - 

d
at

as
e

t_
4 

DT 0,74 0,63 0,55 22047 0,77 0,65 0,58 15939 0,77 0,65 0,57 21782 

kNN 0,76 0,65 0,57 20897 0,81 0,71 0,65 13180 0,89 0,74 0,65 21084 

LoR/LR 0,69 0,56 0,47 31927 0,82 0,72 0,66 12335 0,94 0,78 0,67 20313 

MLP 0,78 0,66 0,60 19875 0,80 0,69 0,62 22806 0,88 0,72 0,61 31568 

TS - - - - 0,71 0,62 0,53 28254 - - - - 

 
 

 

TABLE II  

SINGLE ALGORITHMS RESULTS, DYNAMIC PREDICTION 

  LB approach RVB approach LVB approach 

 Alg. TLPQ_1 TLPQ_2 TLPQ_3 MAE TLPQ_1 TLPQ_2 TLPQ_3 MAE TLPQ_1 TLPQ_2 TLPQ_3 MAE 

d
at

as
e

t_
1 

DT 0,56 0,45 0,37 431 0,69 0,55 0,46 142 0,42 0,33 0,28 599 

kNN 0,80 0,66 0,56 257 0,77 0,64 0,56 109 0,51 0,40 0,33 447 

LR 0,41 0,32 0,26 641 0,74 0,61 0,52 125 0,15 0,11 0,09 697 

MLP 0,79 0,63 0,55 260 0,71 0,57 0,47 186 0,18 0,13 0,09 731 

d
at

as
e

t_
2 

DT 0,47 0,33 0,25 72 0,58 0,41 0,30 35 0,54 0,40 0,31 63 

kNN 0,65 0,49 0,39 36 0,68 0,52 0,42 26 0,65 0,51 0,41 60 

LR 0,45 0,32 0,24 70 0,60 0,43 0,31 32 0,34 0,26 0,20 96 

MLP 0,64 0,49 0,38 42 0,65 0,48 0,37 28 0,26 0,18 0,12 133 

d
at

as
e

t_
3 

DT 0,47 0,35 0,27 40 0,59 0,43 0,32 20 0,51 0,39 0,31 42 

kNN 0,66 0,50 0,40 20 0,72 0,57 0,47 15 0,72 0,57 0,48 32 

LR 0,56 0,42 0,33 33 0,64 0,47 0,36 18 0,30 0,23 0,18 60 

MLP 0,68 0,53 0,43 19 0,67 0,51 0,40 16 0,24 0,18 0,14 76 

d
at

as
e

t_
4 

DT 0,28 0,23 0,20 121769 0,73 0,62 0,55 17357 0,29 0,23 0,20 126339 

kNN 0,76 0,59 0,47 44824 0,72 0,59 0,50 17560 0,54 0,42 0,35 67895 

LR 0,26 0,15 0,07 122496 0,58 0,41 0,29 30549 0,04 0,03 0,02 333897 

MLP 0,75 0,63 0,55 29851 0,71 0,61 0,53 18134 0,06 0,01 0,02 228530 
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TABLE III  

ALGORITHMS ENSEMBLE RESULTS, STATIC PREDICTION 

  LB approach RVB approach LVB approach 

 Alg. TLPQ_1 TLPQ_2 TLPQ_3 MAE TLPQ_1 TLPQ_2 TLPQ_3 MAE TLPQ_1 TLPQ_2 TLPQ_3 MAE 

d
at

as
e

t_
1 

Ba-DT - - - - 0,78 0,67 0,60 94 0,88 0,75 0,66 130 

Ba-kNN - - - - 0,81 0,70 0,63 92 0,91 0,76 0,66 134 

RF 0,79 0,68 0,61 136 0,81 0,71 0,64 90 0,91 0,75 0,65 136 

ET 0,79 0,68 0,61 136 0,81 0,71 0,64 86 0,92 0,78 0,68 126 

EFMH-DT 0,72 0,59 0,51 144 - - - - - - - - 

EFMH-kNN 0,80 0,70 0,63 141 - - - - - - - - 

d
at

as
e

t_
2 

Ba-DT - - - - 0,67 0,51 0,41 26 0,74 0,58 0,47 30 

Ba-kNN - - - - 0,69 0,54 0,43 25 0,76 0,60 0,49 30 

RF 0,63 0,47 0,37 31 0,66 0,50 0,39 27 0,74 0,58 0,48 30 

ET 0,63 0,47 0,37 31 0,68 0,53 0,43 25 0,77 0,61 0,50 29 

EFMH-DT 0,61 0,44 0,33 35 - - - - - - - - 

EFMH-kNN 0,64 0,48 0,38 31 - - - - - - - - 

d
at

as
e

t_
3 

Ba-DT - - - - 0,71 0,55 0,44 15 0,78 0,63 0,53 18 

Ba-kNN - - - - 0,71 0,56 0,46 15 0,77 0,62 0,52 18 

RF 0,67 0,50 0,40 19 0,71 0,55 0,45 15 0,77 0,62 0,52 18 

ET 0,66 0,50 0,39 19 0,72 0,56 0,46 15 0,77 0,62 0,52 18 

EFMH-DT 0,65 0,48 0,37 20 - - - - - - - - 

EFMH-kNN 0,66 0,50 0,39 19 - - - - - - - - 

d
at

as
e

t_
4 

Ba-DT - - - - 0,81 0,71 0,65 12761 0,91 0,78 0,69 19659 

Ba-kNN - - - - 0,83 0,73 0,67 12530 0,92 0,76 0,65 20706 

RF 0,79 0,69 0,62 19572 0,83 0,74 0,67 12129 0,94 0,77 0,65 20897 

ET 0,81 0,71 0,65 19976 0,83 0,74 0,67 11739 0,95 0,79 0,69 18871 

EFMH-DT 0,77 0,65 0,58 20929 - - - - - - - - 

EFMH-kNN 0,81 0,72 0,65 21061 - - - - - - - - 
 

TABLE IV  

ALGORITHMS ENSEMBLE RESULTS, DYNAMIC PREDICTION 

  LB approach RVB approach LVB approach 

 Alg. TLPQ_1 TLPQ_2 TLPQ_3 MAE TLPQ_1 TLPQ_2 TLPQ_3 MAE TLPQ_1 TLPQ_2 TLPQ_3 MAE 

d
at

as
e

t_
1 

Ba-DT - - - - 0,78 0,67 0,59 100 0,32 0,24 0,19 717 

Ba-kNN - - - - 0,80 0,68 0,59 102 0,43 0,32 0,25 489 

RF 0,83 0,68 0,58 283 0,67 0,52 0,42 146 0,49 0,38 0,30 484 

ET 0,77 0,64 0,55 306 0,81 0,70 0,63 89 0,38 0,29 0,22 522 

EFMH-DT 0,56 0,45 0,38 483 - - - - - - - - 

EFMH-kNN 0,84 0,70 0,60 249 - - - - - - - - 

d
at

as
e

t_
2 

Ba-DT - - - - 0,68 0,52 0,42 26 0,36 0,28 0,22 109 

Ba-kNN - - - - 0,69 0,53 0,43 25 0,66 0,51 0,41 62 

RF 0,66 0,52 0,42 45 0,56 0,39 0,28 35 0,42 0,33 0,26 91 

ET 0,71 0,55 0,45 39 0,70 0,55 0,44 24 0,51 0,39 0,32 80 

EFMH-DT 0,49 0,37 0,28 76 - - - - - - - - 

EFMH-kNN 0,71 0,55 0,45 35 - - - - - - - - 

d
at

as
e

t_
3 

Ba-DT - - - - 0,71 0,56 0,45 15 0,40 0,31 0,25 56 

Ba-kNN - - - - 0,72 0,57 0,46 15 0,71 0,56 0,47 34 

RF 0,69 0,55 0,46 26 0,62 0,46 0,35 18 0,43 0,34 0,27 52 

ET 0,70 0,55 0,45 24 0,74 0,59 0,48 14 0,47 0,37 0,30 48 

EFMH-DT 0,63 0,49 0,40 30 - - - - - - - - 

EFMH-kNN 0,72 0,57 0,47 21 - - - - - - - - 

d
at

as
e

t_
4 

Ba-DT - - - - 0,76 0,65 0,58 17598 0,19 0,15 0,11 140616 

Ba-kNN - - - - 0,74 0,61 0,52 17214 0,43 0,33 0,26 76328 

RF 0,56 0,44 0,36 78180 0,67 0,52 0,42 22391 0,49 0,38 0,30 77869 

ET 0,68 0,53 0,43 61875 0,83 0,74 0,67 11377 0,35 0,26 0,20 89669 

EFMH-DT 0,41 0,32 0,26 105518 - - - - - - - - 

EFMH-kNN 0,78 0,61 0,50 44470 - - - - - - - - 
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Fig. 10 shows ranks related to TLPQ_1 metric obtained by 

ensembles during statistical test. As in case of single algorithms, 

ensembles applied with LB approach outranked ensembles with 

another approaches. The best rank got FMH-DT, ensemble 

which was designed for ordinal classification problems. 

Comparable results of the statistical tests were also viewed for 

TLPQ_2 and TLPQ_3 metrics. 

 
Fig. 10 - TLPQ_1 statistical tests, ensemble 

 

CONCLUSIONS 

In this paper, we proposed long-term traffic forecast 

strategies using ML and TS algorithms. We formulated the 

problem of long-term traffic forecasting in optical networks as 

an ordinal classification task. Due to different network 

technologies’ characteristics, traffic forecasting has been 

realized by predicting traffic levels instead of exact traffic 

volume. Depending on the applied set of features, different ML 

and TS algorithms’ approaches were proposed, i.e., LB 

approach, RVB approach, and LVB approach. Two different 

strategies were proposed and tested, namely, static prediction 

and dynamic prediction. We examined single ML algorithms, 

ML algorithms ensembles and compared their results to TS 

algorithms. To make an appropriate evaluation, we used a 

dedicated quality metric called TLPQ. It is a flexible metric, 

which can be adjusted to CSPs’ expectations. Semi-synthetic 

datasets used during experiments are based on real traffic 

characteristics collected from SIX. The main conclusion is that 

proposed ML approaches obtained high quality metric results 

which are better than results returned by TS approaches, 

however selection of forecasting method should be preceded by 

an analysis of network traffic. As a future work, we plan to 

further explore the possibility of traffic forecasting using ML 

algorithms. The obtained knowledge we would like to apply to 

different network optimization tasks, i.e., routing, resource 

usage, and network planning. 
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