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Can we predict the behavior of evolving 
systems? While it is sometimes easy 
to do so, as in the case of an ordinary, 
slightly tilted pendulum, there are some 
systems whose ultimate state 
is practically impossible to ascertain 

Practical systems of any sort have a 
set of desired working conditions, and so 
while designing an engineering device one 
typically assumes that it will operate in such 
conditions. Unfortunately, when a system 
is nonlinear this state cannot always be 
guaranteed and one must bear in mind that 
undesired working conditions might dam 
age the device. Such a situation may occur 
while modeling biological or geophysical 
systems, for instance. One may find that 
the system under consideration operates 
in a number of different states with differ 
ent meanings - like for example life and 
death in biological systems or good or bad 
weather in geophysical ones. Such situa 
tions are usually modeled and tackled using 
the mathematical concept of attractors. 

The notion of attractor is the fundamental 
concept in the theory of dynamical systems. 
Consider the dynamical system dx/dt = f(x) 
where f(x) is a function which fulfils all the .., -~ conditions necessary for the above equation 1 

'"' to have a unique solution, x belonging to R" 
- this n-dimensional real space is called a 
phase space of the equation. The minimal 
subset of R", A, with the property that x(t) 
➔ A as t ➔ co, is called an attractor. Typical 
attractors are fixed points (equilibria), limit 
cycles (periodic behavior), tori (quasiperi 
odic behavior) and strange attractors (cha 
otic behavior). 

One of the typical features of a nonlinear 
system is the existence of co-existing attrac 
tors, i.e. for a given set of parameter values, 
depending on initial conditions, the system 
may move toward a different attractor. This 
feature is called multistability. To under 
stand the dynamical behavior of such sys 
tems it is necessary to calculate the basin of 
attraction for each coexisting attractor. In a 
number of cases the structure of the basins 
and their bifurcations leads to unexpected 
dynamical uncertainty; a priori one can 
not predict which attractor the system will 
evolve based on. Some of these cases are 
described in this paper. 

One of the simplest mechanical systems 
with more that one possible attractor is the 
inverted pendulum. As shown below, three 
equilibrum positions A, B and C are possible. 
Positions A and C are attractors and B is an 
unstable equilibrium. The attraction basins 
of attractors A and C are shown in blue and 
yellow, respectively. The basin boundaries 
are well-defined as straight lines. Assume 
that the initial conditions can be set with 
a precision £, so if the initial conditions 
are not within the s-wide bands around the 
boundaries one can easily predict towards 
which attractor the system will go. 

A more complicated case occurs when the 
basins' boundary has a fractal structure. An
example of such a case is to be found in the 
dynamics of the an externally excited pen 
dulum as seen on Fig. 3. There exist exci 
tations for which the pendulum performs 
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Figure 1:
An inverted pendulum
and the attraction
basins of its attractors:
H the Initial state
Is In the blue areas,
the system will eventually
come to rest at point A
(Initial states In the yellow
areas tend to develop
towards point C)
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clockwise and counterclockwise rotation. 
These two periodic attractors are represent 
ed respectively as A and B and their basins 

d1 = d2 = O, x (-2, 2), y (-2, 2) 

Figure 2: 
the basins of attraction 

of the attractors 
for the dynamic system 

of equations shown 
in the text. The four 
symmetrica l chaotic 

attractors initially seen 
in (a) as dark grey, green, d1 = d2 = 0.26, x (-2, 2), y (-2, 2) 

yellow, and red regions, 
are preserved 

at a small coupling (b), 
but disappear when 

the coupling increases 
(c,d). The attractors far 
from the main diagonal 
x ,. y are destroyed first. 

If the system 
is evolving towards one 

of the attractors that 
subsequently becomes 

destroyed, it is Impossible 
to predict to which 

of the remaining 
attractors the system 
trajectory will switch d1 = d2 = 0.65, x (-0.5, 1.5), y (-0.5, 1.5) 

of attraction are shown in purple and light 
blue, respectively. The basin boundary here 
has a fractal structure. Large domains of 

d1 = d2 = 0.11, x (-2, 2), y (-2, 2) 

d1 = d2 = 0.65, X (-2, 2), y (-2, 2) 

d1 = d2 = 0.65, x (0.5, 1.5), y (0.5, 1.5) 
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the phase space have the property that in 
any neighborhood of a given point which 
belongs to the basin of one attractor, there 
exist points which belong to the basin of the 
other attractor. In such domains one cannot 
predict the fate of the system trajectory only 
knowing initial conditions with E uncertain 
ty, although there are certain domains, for 
example the neighborhoods of the attractors, 
in which such prediction is indeed possible. 

The worst predictability is seen in dynami 
cal systems which can actually change attrac 
tors, as a result of the destruction of the 
original attractors or through small (theoreti 
cally infinitely small) external perturbation. 
These cases will be described using the exam 
ple of the following discrete dynamical system 
(a two-dimensional piecewise linear map): 
X0,1 = PXn + V2 (1 - p/J) (IX.+ 1/11 - IX0- 1/11) + di{y0- X0) 

Yn•l=pyn+V2(1-p/J)(lyn+ 1/11 - IYn- 1/ll)+di(Xn-Yn) 
For d12 = O, F,,p(O) has four symmetrical 

chaotic attractors A(;J, i = 1; 4 inside I x I, 
where I = [2; 2]. These attractors shown 
together with their basins of attraction in 
Figure 2(a). The basins of attractors A1 (dark 
grey), A2 (red), A3 (green) and A4 (yellow) are 
shown in dark blue, purple, light blue, and 
light grey, respectively while the basin of 
attraction of infinity is shown in navy blue. 

As the computer experiment presented in 
Figure 2b-d shows, such types of attractors 
are preserved at a small coupling I d1,2 I « 
1 (Figure 2b), but they disappear when the 
coupling increases (Figure 2c,d). First the 
attractors far from the main diagonal x = y, 
i.e. A(2) and A(41, are destroyed (Figure 2c). 

Assume that a dynamical system is evolv 
ing on one of its attractors, but this attractor 
becomes destroyed. It is then impossible to 
predict to which of the remaining attrac 
tors the system trajectory will switch. The 
destruction of one attractor when at least 
two other attractors remain is called a mul 
tiple choice bifurcation, which is a source of 
dynamical unpredictability. 

In Figure 2d we observe that x = y and 
two-dimensional attractors are reduced to 
two symmetrical one-dimensional attractors 
at the main diagonal x = y. As can be seen 
in the enlargements shown in Figure 2e-f, in 
any neighborhood of attractor A (or B) there 
are points which belong to the basin of anoth 
er attractor B (or A). In such a case the basin 
of A (B) is riddled by the basin of B ( or A). The 

:; 
i ~ acoscor 

angular position 

Figure 3: 
the setup of 
an externally excited 
pendulum (above) 
and the attraction basins 
of Its attractors 
In the space of Initial 
states (below) 

riddled basins give another possible dynami 
cal uncertainty, as a system trajectory evolv 
ing on one attractor can switch attractors as a 
result of small external perturbation. 

To recapitulate, multistability has been 
found to be common in dynamical systems 
- mechanical systems with impacts and dry 
friction, electrical nonlinear circuits, bio 
logical and economical models being typical 
examples. In such systems one can expect 
to find one of the dynamical uncertainties 
described here. Particularly in systems 
with noise, such uncertainties can lead to 
unexpected phenomena, in most cases with 
dramatic results. Dynamical uncertainties 
are currently a main topic of extensive world 
wide research. ■
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