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Our recognition and quantitative
characterization of real-word phenomena
cannot be complete (indeed being
impossible in many situations)
unless we account for the great role
played by randomness

The randomness of events and phenom 
ena has troubled mankind since the earliest 
times; its hidden essence has been a point of 
interest for philosophy and the methodology 
of science, whereas its intrinsic regularities 
have been brought to light by mathematics 
and empirical sciences. Various kinds of 

chance are well-known to every one of us 
from our everyday experience: the outcome 
of a coin-toss or die-roll, the length of time 
spent waiting in line, how meteorological 
phenomena will proceed. In all such situa 
tions, we are unable to predict the outcome 
of an "experiment" or the future course of a 
process. The cause of the difficulty is gener 
ally our incomplete information about all the 
factors at work driving the phenomenon at 
hand, although it may also lie in the unknown 
degree of accuracy in the empirical data we 
possess about it. Randomness may also stem 
from the excessively complex nature of a 
phenomenon, which thus precludes a clear 
cut deterministic description. This is the case 
in statistical physics, for example, or more 
precisely in kinetic gas theory, which looks 
at very large sets of gas particles (on the 
order of 1023 particles - Avogadro's number), 
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How might we capture
the possible regulańties
in the propagation
of acoustic ways within
a sea full of fish? 
What laws govern
the "refraction" of waves
at the confluence of two
media where the boundary
is uneven, highly irregular,
with a vańable
random geometry
(such as the rough
surface of the sea)?
We do not need to stress
that the above questions
(and the answers to them)
are highly important
in practical terms

19
z p 
w 



.,,...
ii; 
E 
G> = ...
::E ....= ...
'CLO = t = u = ...
c::
o
V, 
::::,
'-'.5: 

Searching for the hidden order in the world around us 

which are in permanent, disorderly/chaotic
motion and are subject to a vast number
of collisions with each other every second.
And although it is "theoretically possible" to
write equations describing the movement of
the individual particles, as I. Stewart writes:
" ... that would take an amount of paper com
parable to the surface of the region delimited
by the orbit of the Moon," and so it would be
senseless to imagine solving them.

It is not wholly obvious what sort of uncer
tainty or incomplete information about a phe
nomenon should be considered to constitute
randomness. Is the randomness involved in
the breakdown of a radioactive element (con
sidered a hallmark case) of the same sort as
that involved in ocean waves? Yet regardless
of the difficulty in rigorously pinpointing the
causes and nature of chance/randomness,
there has long been a strong need - even
though phenomena are indeed random - to
try to recognize the orderliness inherent in
them, to describe them in mathematical
terms and analyze them quantitatively. This
is what is done by the theory (or "calculus")
of probability, a vast and still expanding field
of mathematics closely linked to various
applications.

Two notions lie at the base of probabil
ity theory: the random event and probability. 
Probability theory defines these concepts,
studies the relationships between the prob
abilities of various random events, identifies

The field of stochastic 
dynamics, emerging 
in recent decades, 

has developed methods 
for solving dynamical 
equations including 
random elements, 
therefore making 

it possible to characterize 
the reaction of various 

real systems 
to the kind of random 

stresses that many man• 
made structures are 

subject to - such as this 
long-wave broadcasting 

antenna of Polish Radio 1 
in Konstantynowo, 

in its day the tallest 
such structure in history 

when events are independent of one another,
introduces rules for transforming probabili
ties, etc., etc. In other words, probability the
ory constructs and analyzes general models
of random events, whereby probability is a
quantitative characterization of the potential
for specific events to occur. Developing first
from the characterization of "static" events,
probability theory expanded its methods to
include random events that are dependent
on time (the theory of random/stochastic
processes) and to phenomena which vary
in space and are linked to geometric objects
(random field theory, stochastic geometry).

This raises the following natural ques
tions: In what way do probability theory
and empirical sciences seek to uncover the
regularities that lie hidden in randomness?
What does the recognition and explanation
of random phenomena involve? What do we
mean when we discuss predicting/forecast
ing the future behavior of a random process?
And finally, what sort of useful information
about a phenomenon may be gleaned from
probabilistic analysis (i.e. by employing prob
ability theory)?

Such questions, although very natural, are
certainly not trivial. Answering them would
require insight into the entire broad diversity
of the ways randomness is manifested in
natural, technical, and economic phenomena,
etc., as well as the quite advanced math
ematical language of probability theory.

evertheless, we can shed at least some lightł on these problems by looking more closely at
~ two examples.

Stochastic Waves 
Let us turn our attention to spatial random

processes, i.e. those which manifest their
variability not only in time, but also (or often
chiefly) in space. Here we are concerned
with real processes whose irregularity and
randomness are generated by complexities
in the physical and geometrical properties of
the spatial domains in which they play out.

Let's consider the phenomenon of wave
propagation, known to each of us from day-to
day experience (as well as school education).
In general, waves constitute disturbances in
a material medium which propagate through
space at a finite speed, transporting energy
and information. In the language of math
ematics, waves are described by a function

20 
~ 



o 
::::, 

646.38 meters tall, 
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and 289 meters tall 

dependent on a spatial variable (i.e. the point 
in space r) and on time t. If the temporal 
dependency of such disturbances is "fixed" 
- for example, periodic or what is called "har 
monic" - then we are only interested in the 
disturbances' dependence upon the spatial 
variable, or more precisely, upon complexi 
ties in the wave-bearing medium. 

One common aspect of classical wave 
analysis (i.e. the kind familiar to us from 
school or university classes) is that there is 
a deterministic mathematical model assumed 
to describe wave propagation (e.g. the equa 
tions used in acoustics or radio physics). 
More precisely, the wave-bearing medium 
is considered ideal, i.e. its parameters are 
invariant (note the dielectric constant, the 
constant of magnetic permeability, and of 
course the medium's constant density), and 
the obstacles which waves encounter en route 
are of ideal shape. We may also recall Snell's 
law, which describes the reflection of waves 
from the boundary between two different 
media (of course, this boundary was seen as a 
flat plane(!), and so the law was simple). Yet 
reality turns out to be not so ideal in many 
situations. The existence of many diverse 
and random factors that determine real 
wave processes requires other mathemati 
cal descriptions to be sought. How should 
we describe and analyze the propagation 
of waves through a turbulent atmosphere 
(with strong spatial fluctuations of pres- 

sure, medium density, magnetic properties, 
etc.)? How might we capture the possible 
regularities in the propagation of acoustic 
ways within a sea full of fish? Finally, what 
laws govern the "reflection" of waves at the 
confluence of two media where the boundary 
is uneven, highly irregular, with a variable 
random geometry (such as the rough surface 
of the sea)? What regularities are there in the 
propagation of seismic disturbances through 
the Earth's highly heterogeneous crust? We 
do not need to stress that the above ques 
tions (and the answers to them) are highly 
important in practical terms. Yet we hope 
that readers will recognize the beauty hidden 
here for the researcher who tries to work out 
the basic dependencies and express them in 
the language of mathematics. 

The complexity of real wave processes is 
above all a consequence of the random heter 
ogeneity and indefiniteness in the structure 
of most wave-bearing media and the random 
unevenness of the surfaces which delimit 
regions of differing properties. The irregular 
and complex properties of many real media 
(such as the turbulent atmosphere, the 
Earth's crust, or composite materials} do not 
lend themselves to description in terms of 
ordinary "deterministic" mathematical tools, 
thus necessitating the use of probability 
theory - essentially the language of random 
field theory (i.e. random functions of several 
variables). To study such phenomena, we 
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Wind vs. Man-made Structures 
How can we characterize the motion of the wind? Instead of a function of the sort V(t}, such as we know from school, we 
introduce a random function V(t, ). which depends not only on time t, but also on chance (;- symbolizes an "elementary 
event"). Such a function is in essence a family (set) of various possible realizations - i.e. deterministic velocity functions 
v(t} that could occur. We derive basic information about this random function from observations and statistically-processed 
measurements. The simplest characterization of the function V(t. ;} is its mean value (frequently written mv(t}), which 
describes the average value of all the possible speeds at any given instant. Of course. they way that materials react to 
displacement or stress at a given point is likewise random (more frequently we say "stochastic") and a different random 
process Y{t, ;'} is used to characterize such processes. If we know the basic characteristics of the reaction, i.e. the process 
Y(t, y}, we can estimate the probability of damage to the material or endurance. We shouldn't have to point out how 
important such information is for the practice of engineering! 

need to introduce a random function <D (r, y)
of the spatial variable r so as to capture the
random heterogeneity of the medium (or the
random unevenness of surfaces); the basic
characteristics of this function must be deter
mined using empirical data.

One chief physical phenomenon that
attracts researchers' interest in this situation
is the scattering of waves at "heterogeneities"
of the medium. When an initial (incoming)
wave reaches a point in the medium with
different properties than its surroundings, it
becomes a source of new waves - scattering
waves. These overlap with the initial wave
and cause random total field fluctuations
(fluctuations in phase, amplitude, etc.); as a
result the wave may be attenuated (a decay in

amplitude), retarded, depolarized, or undergo
a range of other phenomena. The objective of
stochastic wave analysis is to quantitatively
characterize such phenomena. Of course, in
view of the difficulties, stochastic wave analy
sis is based on many physical hypotheses
and mathematical assumptions that are sub
sequently empiricaJly verified. One premise
that facilitates effective analysis involves
introducing a parameter into the mathemati
cal model to describe the ratio of wavelengths
to the size (scale) of random spatial heteroge
neities. Stochastic wave analysis is nowadays
not only its own quite theoretically advanced
field; it has also proven quite useful in such
fields as radio physics, geophysics, astro
physics, and acoustics.

The true mlcrostructure 
of aluminum Al203 

and a simulated model 
of it using a random 

tessellatlon 

ł Random microstructures 
,, When we pick up a piece of metal (such

as steel) and look at it closely, as long as its
surface has been given the proper treatment,
we have no doubt that it is a very homage 
nous material and it seems natural that basic
science books on mechanics and strength of
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materials work with such metals. Indeed, for 
a long time, when the point was to charac 
terize the global, macroscopic properties of 
materials, internal structure was not of inter 
est. But when we want to glean a more pro 
found knowledge of the basic construction of 
various materials used in technology (such 
as in electronics), it becomes important to 
pin down their microstructure, i.e. their 
morphology on the microscopic level (i.e. 
on scales much smaller than the scale of our 
direct sensory observations). owadays such 
macroscopically uniform materials are well 
known to have very complex mlcrostructure 
e.g. poly-crystal bodies, that is aggregates of 
a vast number of anisotropic crystals, whose 
crystallographic axes are randomly oriented 
in space. 

And so, an important problem has 
emerged for both research and development: 
how can we mathematically characterize 
the empirically observed, complicated and 
random microstructures of materials, and 
how can potential models of them be used 
in analyzing microscopic-level phenom 
ena that occur in materials? Here again, 
the theory of probability comes to our aid, 
or more precisely a specific branch of this 
theory: stochastic geometry, which studies 
various geometrical objects and structures 
with random properties. One type of these 
highly interesting structures consists of ran 
dom tessellations (or mosaics) - a family (set) 
of adjoining random polyhedra which fill the 
space. These polyhedra (or polygons, if in two 
dimensions) are random, because they have a 
differing, random number of vertices, edges, 
and sides, and are also of random volume. 
AJthough such tessellations first appeared in a:- 

]. pure mathematics long ago (Dirichlet - 1850, ~ 
Yoronoi - 1908), they became a point of inter- l 

~z est for a great many researchers only once 
applications arose. They have turned out to 
serve as adequate models for many real ran 
dom cellular structures - including the grain 
microstructure of metals and ceramics. 

When such a tessellated model is con 
structed for a given metallic microstructure 
under study, and its parameters are related 
to empirical data, we can then identify defor 
mation and stress for the model, which in 
turn are necessary for characterizing such 
phenomena as the initiation of cracking. This 
is of course a random phenomenon, and so 

we express our expectation that it will occur 
in terms of probability. 

It is not easy to construct a general 
model for a phenomenon such as cracking 
that would take account of the complex 
microstructure and its randomness. The 
micro-scale mechanisms of cracking have 
not yet been recognized. And although the 
stress field is the basic driving force here, 
just like in macroscopic mechanics, in micro 
mechanics cracking is greatly complicated 
by the complexity of the microstructure, i.e. 
by its high spatial variability and random 
ness - here this is a hierarchical variability, 
evident in the relation between stress and 
the medium's properties on various spatial 
scales. Without a doubt, the problems out 
lined above in researching the phenomena 
in random rnicrostructures (also in biologi 
cal microstructures) have a place among 
the challenges faced by both contemporary 
applied mathematics and materials science, 
but also in a certain sense they belong to a 
more general complexity science. The present 
author is pleased to be able to take active part 
in pursuing such challenges. ■
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The forces
or stresses acting
on modem technological
constructions
are frequently very
irregular and develop
randomly over time.
This pertains not only
to the tornado-tom
buildings portrayed here,
but also to tall radio
or television antennas
and open-sea dńlling
platfonns. The stresses
they sustain from gusts
of wind or sea waves
have a very complicated
development over time,
in the face of which
traditional means
of descńbing them
(e.g. as peńodic functions
of time) break down
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