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The speed of sound (SoS) in tissues reflects their mechanical properties and therefore can carry valuable
diagnostic information. In conventional ultrasound sonography (US), however, this information is not readily
available. Furthermore, since the actual SoS is unknown, image reconstruction is carried out using an average
SoS value for soft tissues. The resulting local deviations from the actual SoS lead to aberrations in US im-
ages. Methods for SoS imaging in US therefore have the potential to enable the correction of aberrations in
classical US. In addition, they could also become a new US modality.

There are several approaches to SoS image reconstruction. They differ in terms of input data requirements,
computational complexity, imaging quality, and the potential for signal analysis at the intermediate stages of
processing. This article presents an algorithm with multi-stage processing and low computational complexity.

The algorithm was verified through numerical simulations and phantom measurements. The obtained results
show that it can correctly estimate SoS in layered media, which in most cases model the tissue structure well.
With its computational complexity of O(n), the algorithm can be implemented in real-time ultrasound imaging
systems with limited hardware performance, such as portable ultrasound devices.

Keywords: speed of sound; ultrasound imaging; computational complexity.

Copyright © 2023 The Author(s).
This work is licensed under the Creative Commons Attribution 4.0 International CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).

1. Introduction

The speed of sound (SoS) in tissues reflects their
mechanical properties and depends on many aspects.
Various soft tissue types can be characterized by an
SoS ranging approximately from 1440 m/s in fat to
1620 m/s in skin (Cobbold, 2007; Foundation for Re-
search on Information Technologies in Society, n.d.).
Moreover, the SoS can vary with tissue composition.
For example, excess fat content leads to a decreased
SoS, as in fatty liver (Ghoshal et al., 2012). It can
also be altered due to pathological changes in the ex-
tracellular matrix, specifically the excessive accumula-
tion of collagen and the development of fibrosis, which
often accompany inflammatory diseases and tumors.

The SoS can therefore provide information on tis-
sue type and condition. It has already proven usable
in the assessment of breast tumor malignancy in ultra-
sound computed tomography (UCT) (Andre et al.,
2012). This technique, however, requires that the ex-
amined tissue is accessible from all sides in the imag-

ing plane, and preferably contains no bones. As a re-
sult, UCT has a very narrow field of application,
limited mainly to breast imaging. Implementing the
SoS modality into conventional ultrasound sonography
(US) could allow for utilizing the SoS information on
a much larger scale and in the context of many other
organs and diseases.

The existing solutions for SoS imaging in conven-
tional US are relatively new. Jaeger et al. (2014;
2015) introduced a mathematical model and an al-
gorithm for SoS reconstruction, which they called
the computed ultrasound tomography in echo mode
(CUTE). It utilized phase differences between complex
images obtained for a number of plane wave transmis-
sions at different angles. The authors proposed a model
describing these phase differences as a function of SoS
local errors made in image reconstruction. To solve the
inverse problem, they proposed the use of the pseu-
doinverse of the transformation matrix based on their
model. At first, the processing was conducted in the
frequency domain, which made the algorithm compu-
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tationally efficient. However, it also made it impossible
to consider imaging dead zones, which in turn led to
bias in the resulting SoS estimates. To address this
problem, a spatial domain version of CUTE process-
ing was proposed (Jaeger, Frenz, 2015; Sanabria
et al., 2018). This led to an improvement in the qual-
ity of resulting SoS images to the point where CUTE
could be referred to as a quantitative method. This im-
provement, however, was accompanied by a significant
increase in computational complexity. In another pa-
per (Stähli et al., 2020), the authors indicated that
certain assumptions made in the CUTE method are
wrong. As a solution, they proposed a new algorithm
and a modification in the input data to ensure the
same transmit-receive mid-angle in the compared im-
ages. In exchange for more complex preprocessing and
a reduced resolution, this method offers more accurate
SoS estimates.

Another group of methods for SoS imaging uses
convolutional neural networks (CNNs). In some studies
(Feigin et al., 2020; Young et al., 2022), CNNs were
trained using raw echo data obtained through numer-
ous simulations with the k-Wave toolbox (Treeby,
Cox, 2010) for Matlab. SoS imaging using CNNs does
not require the initial image reconstruction. More-
over, the reported models demonstrated good perfor-
mance with data from just three transmissions, a no-
tably smaller number to what is reported in the case
of CUTE methods. Finally, CNNs are fast enough to
be implemented in real-time imaging systems. On the
other hand, analyzing and understanding the CNN’s
way of interpreting the signal in order to find a corre-
lation with some physical model poses challenges for
researchers.

In (Karwat, 2019), the author proposed a modi-
fication to the CUTE mathematical model and intro-
duced a corresponding SoS reconstruction algorithm
based on it. This modification made it possible to solve
the inverse problem at low computational cost and was
therefore called Quick-CUTE (Q-CUTE). The algo-
rithm was validated using simulation data.

In this study, the input signal of the CUTE method
is analyzed with respect to its compliance with the
modified mathematical model. Moreover, the algo-
rithm is described in more detail, including an analysis
of the signal at individual stages of the processing. Fi-
nally, the results of the measurement-based validation
are presented.

2. Methodology

2.1. General CUTE model

The general idea behind the spatial domain CUTE
method is presented in (Jaeger, Frenz, 2015; Sana-
bria et al., 2018), but for clarity, it will also be ex-
plained here. Reconstruction of images in conventional

US is usually performed according to the delay-and-
sum (DAS) algorithm that includes, inter alia, compen-
sation for the ultrasound pulse propagation delays t.
The calculation of these delays requires knowledge of
the SoS value c along the pulse propagation path r
from the probe to the pixel of interest and back to the
probe:

t = ∫
r

dr
c
. (1)

However, the value of c is not known precisely,
therefore its approximation is used. Typically, an aver-
age SoS value for soft tissues is used for this purpose.
Any discrepancies between the SoS value cR adopted
for reconstruction and the actual SoS spatial distribu-
tion c result in calculated propagation delays tr being
different from the actual delays t. Consequently, these
discrepancies lead to time delay errors τ :

τ = t − tr = ∫
r

dr
c
− ∫
r

dr
cR

= ∫
r

σ dr − ∫
r

σR dr = ∫
r

∆σ dr. (2)

For notation simplicity, σ, σR, and ∆σ terms are
introduced in the aforementioned equation. The first
two represent actual and approximated values of sound
slowness (inverse of SoS), respectively. The last one
stands for the error in sound slowness:

∆σ (z, x) = σ (z, x) − σR =
1

c (z, x)
−

1

cR
. (3)

Coming back to the time delay errors τ , they lead
to phase aberrations ϕ in the reconstructed complex
radio-frequency (CRF) images. These phase aberra-
tions cannot be measured directly for an individual
CRF image but can be estimated as local phase dif-
ferences ∆ϕ with respect to another CRF image ac-
quired for different propagation paths r. Based on the
∆ϕ, however, only relative values of τ can be obtained.
Therefore, instead of τ , time delay error differences ∆τ
will be further considered:

∆τm,n = τn − τm = ∫
rn

∆σ dr − ∫
rm

∆σ dr, (4)

where m and n subscripts identify the m-th and n-th
images being compared. The above equation describes
the forward problem, i.e., it defines the observed ∆τ
as a function of the error in sound slowness ∆σ. The
CUTE algorithms are designed to solve the inverse
problem, that is to estimate the SoS corrections based
on the observed ∆τ . To make this feasible, some as-
sumptions are made. First, similarly to the classical
DAS reconstruction algorithm, the concept of rays
known from geometrical optics is used to describe the
propagation of ultrasound. Given that relative SoS
variations in soft tissues are relatively low (up to ap-
proximately ±6% from the SoS mean value), it is also
assumed that the ultrasound rays do not refract.
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Furthermore, if the receive aperture and apodiza-
tion used for reconstructing each pixel remain the same
for the images being compared, the parts of time de-
lay errors τm and τn associated with the return paths
(from pixel to probe) are assumed to be equal. The
time delay error differences ∆τm,n are therefore a con-
sequence of the errors committed on the transmit paths
(from probe to pixel) only, as the return paths errors
cancel each other out. With the above assumptions,
and bearing in mind that CUTE methods typically use
images obtained for plane wave emissions at various
angles θ, r represents a rectilinear transmit propaga-
tion path taken at angle θ from a probe to a pixel of
interest P .

The formulation of the forward problem in Eq. (4)
can be further modified. Its frequency domain ver-
sion is utilized in the first reported version of CUTE
(Jaeger et al., 2014; 2015). Its original form is the
foundation for the spatial domain CUTE algorithm
(Jaeger, Frenz, 2015; Sanabria et al., 2018). Fi-
nally, it can be linearly approximated to obtain a com-
mon integration path, as in Q-CUTE (Karwat, 2019).
Depending on the formulation of the forward prob-
lem, solving the inverse problem can be conducted in
various ways. This, in turn, leads to multiple CUTE
versions differing in terms of SoS imaging quality and
computational complexity.

2.2. Spatial domain CUTE processing

The model described in Eq. (4) is the basis for the
spatial domain CUTE algorithm. It is used for the de-
termination of the forward problem (calculation of
∆τ based on ∆σ) transformation matrix. Next, its
pseudo-inverse is computed for subsequent use in solv-
ing the inverse problem (calculation of ∆σ based
on ∆τ). Due to the ill-conditioning of the inverse prob-
lem, spatial gradient regularization is used.

Having the pre-calculated inverse transformation
matrix, it only takes ∆τ to compute ∆σ. The time
delay errors ∆τm,n are estimated from the local phase
differences ∆ϕm,n between CRFm and CRFn complex
images as well as the signal frequency f :

∆τm,n =
∆ϕm,n

2πf
. (5)

Due to the interference nature of the CRF images,
to obtain a usable signal, the local phase differences
∆ϕm,n are estimated according to the equation:

∆ϕm,n = arg [filt (CRFn ○CRF∗

m)] , (6)

where ∗ and ○ operators are the complex conjugate
and Hadamard (element-wise) product, respectively.
The term “filt” denotes spatial smoothing filtration,
and “arg” returns the arguments of complex numbers.

The ∆τ maps obtained using the above methodol-
ogy are of poor lateral resolution due to the absence

of transmit focusing in the CRF images. In order to
enhance the resolution, the input CRF images can be
obtained through coherent compounding for a number
of closely spaced transmit angles θ. Another issue is
the aliasing and decoherence, which may occur if the
difference between θm and θn angles is substantial. On
the other hand, if the difference between θm and θn is
small, the amplitude of the useful part of ∆τ is low
compared to the interference part, adversely affecting
the sensitivity of the method. To avoid the aliasing and
limit the decoherence while maintaining the sensitivity,
∆τm,n is estimated using a number of closely spaced θ
angles that cover the angular space between the target
pair of θm and θn angles.

To illustrate it, let us consider the objective of
obtaining ∆τm,n map for transmit angles [θm, θn] =

[0○, 8○]. To avoid the aliasing and preserve the
coherence of the paired CRF images, one would re-
duce the difference in θ from 8○ to 2○, and this
involves using a set of CRF images for transmit an-
gles θ = {0○, 2○, 4○, 6○, 8○}. For each pair of consec-
utive θ angles, ∆τ is calculated. The final ∆τm,n
is the sum of the ∆τ maps obtained for θ pairs
{[0○, 2○], [2○, 4○], [4○, 6○], [6○, 8○]}. Furthermore, in
order to enhance the ∆τ lateral resolution, each CRF
image would be obtained through coherent compound-
ing for angles, e.g., being {−1○, −0.5○, 0○, 0.5○,1○}
around the base angle θ. This means that a single
∆τm,n map would require plane wave transmissions at
angles in the range [−1○, 9○] with a step of 0.5○, which
amounts to 21 transmissions.

More details on the spatial domain CUTE algo-
rithm can be found in the presentation by Jaeger
et al. (2015) and the paper by Sanabria et al. (2018).
For simplicity, in the remaining sections of this paper,
the term CUTE will be used to refer to the spatial
domain version of the CUTE method.

2.3. Q-CUTE model

The method being the subject of this article is
the Q-CUTE technique, presented briefly in (Karwat,
2019). It is based on a model that is a modified version
of the general CUTE model described by Eq. (4). The
aim of the modification is to obtain a common integra-
tion path. This, in turn, enables a different approach
to the input signal ∆τ and opens new ways of solving
the inverse problem. Let us start from the beginning,
though.

Because dr = dz′/ cos θ, Eq. (4) can be rewritten as:

∆τm,n(z, x) =
1

cos θn

z

∫
0

∆σ (rn) dz′

−
1

cos θm

z

∫
0

∆σ (rm) dz′. (7)
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Let us approximate linearly ∆σ along rm and rn
paths using ∆σ and its x-derivative ∆σx along a path
rm,n that is horizontally equidistant from rm and rn,
as shown in Fig. 1.
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Fig. 1. Sketch of the linear approximation approach used in
the Q-CUTE model. The approximation is done horizon-

tally as indicated by gray arrows.

The corresponding angle θm,n equals:

θm,n = tan−1
(

tan θm + tan θn
2

), (8)

and the linear approximations of ∆σ along the rm and
rn paths are:

∆σ(rm) ≈ ∆σ(rm,n)

+∆σx(rm,n)(z − z
′
) (

tan θn − tan θm
2

),

∆σ(rn) ≈ ∆σ(rm,n)

−∆σx(rm,n)(z − z
′
) (

tan θn − tan θm
2

).

(9)

With this modification, the rm,n becomes the new,
common integration path, and Eq. (7) takes the form:

∆τm,n(z, x) = am,n

z

∫
0

∆σ (rm,n) dz′

+ bm,n

z

∫
0

(z′ − z)∆σx (rm,n) dz′. (10)

Terms am,n and bm,n in Eq. (10) are functions of θm
and θn:

am,n = (
1

cos θn
−

1

cos θm
),

bm,n = (
1

cos θn
+

1

cos θm
)(

tan θn − tan θm
2

),

(11)

and are shown in Fig. 2.
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Fig. 2. Graphs of am,n and bm,n terms as functions of θm,n.

Integration by parts of the second integral in Eq. (10),
after some rearrangements, yields:

∆τm,n(z, x) = am,n

z

∫
0

∆σ(rm,n)dz′

− bm,n

z

∬
0

∆σx(rm,n)dz′2. (12)

The aforementioned forward problem model is the
basis for the Q-CUTE method.

2.4. Q-CUTE processing

The estimation of ∆τ in the Q-CUTE method is
conducted in the same way as in CUTE, i.e., according
to Eqs. (5) and (6). Solving the inverse problem, in
turn, is done in two steps.

First, by using the properties of am,n and bm,n, i.e.,
parity and amplitude ratio, especially for θm,n close to
zero (Fig. 2), Eq. (12) is simplified by neglecting the
first integral on the right side of the equation:

∆τm,n(z, x) ≈ − bm,n

z

∬
0

∆σx(rm,n)dz′2. (13)

This allows a direct calculation of ∆σx for each
[m,n] pair:

∆σx (z, x, [m,n]) ≈
−1

bm,n
[
d2

dz′2
∆τm,n(rm,n)]

z′=z

. (14)

The ∆σx is next averaged over [m,n] pairs, yielding
∆σx. This, in turn, is integrated with respect to x to
obtain the estimate of ∆σ:

∆σ(z, x) =

x

∫
−∞

∆σx (z, x
′
) dx′ +C(z), (15)

where C is the constant of integration (it is constant
along the x-direction, but may vary with z).

In the second step of the Q-CUTE algorithm, the
missing C(z) is determined. The formula for C can be
derived using the unmodified form of Eq. (12). Substi-
tuting ∆σx for ∆σx, and expanding ∆σ according to
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Eq. (15), after rearrangements, yields the C estimates
based on individual [m,n] pairs:

Cm,n(z, x) =
1

am,n
[
d

dz′
∆τm,n (rm,n)]

z′=z

−

x

∫
−∞

∆σx (z, x
′
) dx′

+
bm,n

am,n

z

∫
0

∆σx (rm,n) dz′. (16)

To obtain the final estimate for C, the values cal-
culated using the above formula need to be averaged
over [m,n] pairs and the x-dimension. However, for
θm,n close to zero, am,n is close to zero as well. This
means that ∆τm,n for small ∣θm,n∣ does not provide
much information on C, and dividing by am,n, in this
case, would only amplify distortions in d

dz∆τm,n. To
prevent this, the averaging over [m,n] pairs uses a2

m,n

as weights, which leads to inverse variance weighting.
Finally, knowing the ∆σ (including the constant of

integration C), one can calculate the speed of sound c
using a reorganized version of Eq. (3):

c(z, x) =
c0

1 + c0∆σ(z, x)
. (17)

2.5. Regularized derivative operator

As in the case of the CUTE algorithm, Q-CUTE
needs regularization to prevent amplification of inter-
ference present in the ∆τ data. In the Q-CUTE al-
gorithm, this is realized by replacing the derivative
operators that act on ∆τ with regularized ones. As
a matrix model Dreg of the regularized derivative op-
erator, a pseudo-inverse of integration operator ma-
trix J (Fig. 3a) with gradient regularization (gradient
operator D shown in Fig. 3b) was adopted:

Dreg = (JTJ + λDTD)
−1

JT , (18)

where λ denotes the regularization factor. Figure 3c
shows an exemplary Dreg matrix, while Fig. 3d pres-
ents selected impulse responses from Dreg.
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Fig. 3. Examples of a) integration operator matrix J;
b) gradient operator matrix D; c) regularized derivative op-
erator matrix Dreg; d) selected impulse responses of Dreg.

The first quarter of matrices is shown in a)–c).

These types of impulse responses can be precisely
approximated using pairs of computationally efficient
infinite impulse response (IIR) filters (Lyons, 2004)
operating one in forward and the other backward di-
rection. Implementation of the regularized derivative
operator depicted in Figs. 3c and 3d requires the use
of second-order IIR filters. The IIR filter coefficients
were precomputed to approximate the central, anti-
symmetric impulse response of Dreg for a chosen value
of λ. However, as shown in Figs. 3c and 3d, impulse re-
sponses close to signal boundaries are more complex.
To reflect the changes in the Dreg impulse responses
and thus ensure proper derivative operation when ap-
proaching signal boundaries, the output of each fil-
ter is multiplied by a precalculated correction vector.
The vector compensates for two effects resulting from
clipping the forward or backward impulse responses.
Firstly, it equalizes the areas under both impulse re-
sponses so that the derivative of a constant signal is al-
ways 0. Secondly, it corrects the change in the distance
between the centers of mass of the impulse responses
so that the derivative of a linear signal is always con-
stant.

2.6. Computational complexity

The implementation of preprocessing, i.e., the esti-
mation of ∆τ based on a set of CRF images, can be
done in a variety of ways. They can differ in terms
of optional CRF images compounding, pairing strat-
egy, or type and order of the smoothing filter used in
Eq. (6). As a result, the discussion of the computa-
tional complexity of the preprocessing becomes hin-
dered. However, the preprocessing for the Q-CUTE al-
gorithm is the same as in other CUTE methods based
on the model presented in Eq. (4). Hence, it does not
introduce computational differences between the com-
pared SoS imaging algorithms. Therefore, the descrip-
tion of computational complexity is limited to the sub-
sequent processing.

Let us define nPIX as the number of pixels in a sin-
gle ∆τ map, and n∆τ as the number of ∆τ maps.
Then the size of the ∆τ to ∆σ transformation ma-
trix in the CUTE algorithm is nPIX × (nPIX ⋅ n∆τ).
Although the forward problem transformation matrix
is sparse, the inverse problem transformation matrix is
not. The CUTE computational complexity, expressed
as a number of multiply-add operations, is therefore
equal n∆τ ⋅ n

2
PIX.

In the case of Q-CUTE algorithms, the computa-
tional complexity is a sum of the complexities of their
components. Apart from the operations directly repre-
sented in the equations (derivatives, integrations, and
weighted sums), they also include 1-D linear interpola-
tion every time some operation is performed along a di-
rection that is not aligned with rows or columns of the
data array. The computational cost of each operation
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and their total cost in the Q-CUTE algorithms are pre-
sented in Table 1. The total computational complexity
of the Q-CUTE algorithm is equal to 35 ⋅ n∆τ ⋅ nPIX.

Table 1. List of the operations, their computational cost
per pixel of the ∆τ map, and the number of calls per single

∆τ map in the Q-CUTE algorithm.

Operation name Unit cost # of calls Cost
1-D linear interpolation 2 3 6
Derivative (regularized)
(two 2nd order IIR filters)

12 2 24

Integration 1 1 1
Weighted sum 1 4 4
Total 35

2.7. Validation/input data

The Q-CUTE algorithm was tested and validated
based on data obtained from phantom measurements
as well as from numerical simulations.

Measurements were carried out with the use of the
us4R-lite system (us4us, Warsaw, Poland) (Cacko,
Lewandowski, 2022) and a linear array probe SL1543
(Esaote, Genoa, Italy) with 192 elements, a pitch of
0.245 mm, and a center frequency of 8 MHz. The data
were acquired from a phantommodel 1438 (Dansk Fan-
tom Service, Frederikssund, Denmark). The main ma-
terial of this phantom is characterized by an SoS of
1540 m/s. The phantom also contains four cylindrical
targets, 10 mm in diameter, with SoS values equal to
1480, 1510, 1570, and 1600 m/s.

Numerical simulations were performed with probe
parameters identical to those for SL1543, using
a custom-developed MATLAB-based simulator tool.
The simulator follows a similar principle to the Field
software (Jensen, 1996), i.e., it is based on linear
acoustics and uses the concept of scattering points.
Unlike Field, however, it can simulate any SoS maps
(refraction is still omitted). Furthermore, it makes pos-
sible to simulate a medium in which the SoS map is dif-
ferent for the transmit and receive paths, which also
distinguishes it from the k-Wave toolbox (Treeby,
Cox, 2010). This feature proves useful in the separa-
tion of ∆τ signal components presented in the Results
section.

In both cases, i.e., measurements and simulations,
the raw echo data were acquired using the single-ele-
ment synthetic transmit aperture (SSTA) technique,
elsewhere referred to as full matrix capture (FMC).
It involves the separate transmission through each in-
dividual probe element and receiving the echoes each
time with the entire probe. This strategy was used in
the case of changing the transmission angles θ or SoS
value cR, because it does not require repeating mea-
surements or simulations, just the FMC data need to
be properly converted into a form corresponding to the
plane wave imaging.

The obtained raw echo data underwent processing
through a digital down converter (DDC), i.e., they
were quadrature demodulated, low-pass filtered and
decimated. The resulting complex echo signal was next
reconstructed into CRF images using the delay-and-
sum (DAS) algorithm with phase-error-free quadrature
sampling (Chang et al., 1993).

The CRF images were reconstructed for diverging
waves, so they had to be converted into a form corre-
sponding to plane waves. This was done through the
proper recombination of the CRF images. This con-
version was done for transmit angles θ ranging from
−17○ to +17○ in a step of 0.25○, resulting in a set of
137 CRF images. In the next step, a subset of CRF
images with θ in a ±2○ range around a selected θ was
coherently summed. The selected θ were in the range
from −15○ to +15○ in a step of 2○, resulting in a set of
16 compounded CRF images. Then, based on pairs of
compounded CRF images with consecutive θ values,
∆τ maps were estimated using Eqs. (5) and (6). Next,
the ∆τ maps were summed in groups so that θn – θm
equaled 6○, which resulted in a set of five ∆τ maps
further processed to obtain a single SoS output image.
A diagram of this procedure for a single ∆τ map is
presented in Fig. 4.

Δτ detection

CRF
–17°

CRF
–15° ± 2°

Δτ
[–15°, –13°]

Δτ
[–15°, –9°]

CRF coherent
compounding

Δτ accumulation

Fig. 4. Diagram of processing a set of CRF images to obtain
a single ∆τ map.

The SoS spatial distributions used in this study in-
cluded uniform cases, horizontal layer cases, and circu-
lar inclusion cases. The layers and circular inclusions
in measurement data were obtained through position-
ing the probe along and across cylindrical objects in
the phantom, respectively.

In order to assess the SoS imaging quality, the
results of the Q-CUTE method were compared with
those obtained from the spatial domain CUTE algo-
rithm considered as a reference at this stage of the
research.

The appearance of the resulting SoS images de-
pends on the regularization factors (CUTE) and the
corresponding filters in the regularized derivative op-
erators (Q-CUTE). Increasing the regularization factor
results in smoother SoS images. The level of regular-
ization was therefore a compromise between reducing
the variance and maintaining the details of the SoS
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images. It was also adjusted so that the average image
of a simulated circular inclusion was reproduced with
similar amplitudes and slopes by both algorithms.

All the raw echo data simulations and conversions,
CRF image reconstructions, CUTE processing, and
preparation of the results were executed using MAT-
LAB 2021b (Mathworks, Inc., Natick, Massachusetts).

3. Results

The SoS images reconstructed using the CUTE and
Q-CUTE algorithms are depicted in Figs. 5–8. Figure 5
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Fig. 5. Images of the homogeneous 1540 m/s part of the
phantom: b-mode (left), SoS images obtained with the use

of CUTE (middle), and with Q-CUTE (right).
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Fig. 6. Images of layers: b-mode (left), SoS images obtained
with the use of CUTE (middle), and with Q-CUTE (right).
SoS in the layers is: a) 1480 m/s; b) 1510 m/s; c) 1570 m/s;

d) 1600 m/s.
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for CUTE (dotted lines) and Q-CUTE (solid lines).

a)
b-mode

–20 0 20

0
10
20
30
40
50

z [
m

m
]

CUTE

–20 0 20

0
10
20
30
40
50

Q-CUTE

–20 0 20

0
10
20
30
40
50 1460

1500

1540

1580

1620

SoS  [m
/s]

b)

–20 0 20

0
10
20
30
40
50

z [
m

m
]

–20 0 20

0
10
20
30
40
50

–20 0 20

0
10
20
30
40
50 1460

1500

1540

1580

1620

SoS  [m
/s]

c)

–20 0 20

0
10
20
30
40
50

z [
m

m
]

–20 0 20

0
10
20
30
40
50

–20 0 20

0
10
20
30
40
50 1460

1500

1540

1580

1620

SoS  [m
/s]

d)

–20 0 20
x [mm]

0
10
20
30
40
50

z [
m

m
]

–20 0 20
x [mm]

0
10
20
30
40
50

–20 0 20
x [mm]

0
10
20
30
40
50 1460

1500

1540

1580

1620

SoS  [m
/s]

Fig. 8. Images of circular objects: b-mode (left), SoS
images obtained with the use of CUTE (middle), and
with Q-CUTE (right). SoS in the objects is: a) 1480 m/s;

b) 1510 m/s; c) 1570 m/s; d) 1600 m/s.

presents the case of a homogeneous SoS spatial dis-
tribution, while layer cases are shown in Fig. 6, and
circular object cases are presented in Fig. 8. For a bet-
ter assessment of the layer images, Fig. 7 shows the
averaged z-profiles of the SoS maps shown in Fig. 6.

In the cases shown in Fig. 8, both SoS imaging al-
gorithms fail to reveal the presence of circular objects.
To better understand the reasons behind these results,
let us analyze the ∆τ signal. Each row in Fig. 9 con-
tains ∆τ maps for a few angle pairs [θm, θn]. The first
row (Fig. 9a) shows the same measurement case for
which the results in Fig. 8 were computed. The fol-
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Fig. 9. Images of ∆τ for a circular object with an SoS of
1570 m/s for a) measurement data, and for simulated data
with the object present in: b) both transmit and receive

paths; c) transmit path only; d) receive path only.

lowing rows (Figs. 9b–9d) present ∆τ maps for the
simulated data. In the second row (Fig. 9b), the sim-
ulated SoS map was the same as in the measurement
case, i.e., it contained a circular object with an SoS of
1570 m/s. Subsequently, the presence of the object was
limited to the transmit propagation paths only, which
led to ∆τ maps shown in the third row (Fig. 9c). Ana-
logously, the fourth row (Fig. 9d) illustrates the case
with the object being present along the receive propa-
gation paths only.

There is a similarity between the ∆τ maps obtained
for the measurement (Fig. 9a) and simulation (Fig. 9b).
In both cases, they contain a strong component that
changes its orientation and a weaker, stationary com-
ponent in the background. These components are well
separated in Figs. 9c and 9d.

The ∆τ maps obtained through the simulations
(Figs. 9b–9d) were subjected to further processing, re-
sulting in the final SoS images shown in Fig. 10. The
signal at intermediate processing steps in the Q-CUTE
algorithm for the ∆τ data as in Fig. 9c is presented
in Fig. 11.
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Fig. 10. Images of SoS obtained with the use of CUTE (left)
and Q-CUTE (right) algorithms from simulation data. The
SoS map used in simulations contained a circular object
with an SoS of 1570 m/s present in: a) both transmit and
receive paths; b) transmit path only; c) receive path only.

The object position is marked with a dashed line.
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Fig. 11. Images of the signal at selected stages of Q-CUTE
processing: a) ∆τ (−3○, 3○); b) ∆σx (−3○, 3○); c) ∆σx;
d) ∆σ without C correction; e) ∆σ with C correction;

f) final SoS estimate.

4. Discussion

The presented results allow an evaluation and com-
parison of the Q-CUTE algorithm with the spatial do-
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main CUTE method in terms of SoS imaging quality.
As shown in the homogeneous medium case (Fig. 5),
both algorithms produce similar artifacts in the shal-
low area (up to approximately 15 mm depth). More-
over, both methods tend to underestimate the global
SoS. Moving on to the layer cases (Figs. 6, 7), the imag-
ing of horizontal objects shows similar dynamics, and
the overall underestimation is visible here as well. Fur-
ther problems appear when a non-layered SoS case is
considered. The circular inclusion was not exposed by
any of the algorithms (Fig. 8).

The reason for this is the fact that in the ∆τ sig-
nal, there is a component (Fig. 9d) related to the re-
ceive propagation paths passing through the circular
object. This component was assumed to be zero and
was therefore neglected in the mathematical model.
However, as shown through simulations (Fig. 9), it
significantly contributes to the ∆τ signal. Unfortu-
nately, this contribution is opposite to the useful
part of the signal related to the circular object. As
a result, imaging of local, non-layered inclusions with
CUTE algorithms based on Eq. (4) becomes difficult
(Fig. 10).

This problem was already identified in (Stähli
et al., 2020). The authors proposed to abandon the as-
sumption of canceling the return path influence. They
introduced a new version of the CUTE algorithm that
takes into account the receive paths. In the computa-
tion of the ∆τ signal, the algorithm requires that the
transmit-receive mid-angle in the compared CRF im-
ages remains the same.

The Q-CUTE algorithm cannot be easily adapted
to this new approach. Representing four propagation
paths (transmit and receive paths for two acquisitions)
with a single common integration path would impose
narrow limits on transmit and receive angles. More-
over, at least a quadratic approximation would be re-
quired in place of Eq. (9), which could cause further
complications.

A more promising way might be to separate or fil-
ter out the unwanted receive component. One of the
options is to replace the ∆τ with differences between
∆τ obtained for different sets of θ angles. This ap-
proach would eliminate the stationary receive compo-
nent. This, of course, would require major modifica-
tions to the algorithm to account for the change in the
∆τ signal definition.

Having discussed the quality of the SoS imaging, it
is also worth mentioning other features of the Q-CUTE
algorithm. One of its advantages is the modular struc-
ture. It makes it possible to control the data at each
stage of the processing (Fig. 11), helping to understand
the signal and allowing for easy optimization of the al-
gorithm. By contrast, in the case of the CUTE method,
a deeper analysis of the signal and its processing is
difficult as the algorithm is not modular and is pre-
determined by the matrix inversion process. One can

analyze the impulse responses included in the inverse
transformation matrix, but without descriptions like in
Eq. (12) it is hard to understand them. There are also
other approaches to SoS imaging that hold promise
but provide little in terms of understanding the sig-
nal. This especially applies to deep learning methods,
which have become popular in many areas and have
also been used in SoS imaging (Feigin et al., 2020;
Young et al., 2022). Their cognitive value, however,
is limited to the so-called maps of attention.

Another aspect is the computational complexity.
As described in the Methods section, the computa-
tional complexity of Q-CUTE is O(n) and, in most
cases, it will be significantly lower than the complexity
of the spatial domain CUTE which is O(n2). In prac-
tice, it translates into shorter execution times, which
was observed when generating the images presented in
the Results section. The algorithms were run in MAT-
LAB on a PC with an Intel Core i7-6900K CPU. The
common preprocessing took 340 ms, while the remain-
ing parts of the algorithms took 30 ms and 310 ms
for Q-CUTE and CUTE, respectively. Consequently,
Q-CUTE ran nearly twice as fast as CUTE (2.7 fps
versus 1.5 fps). This was the case with the common
preprocessing designed with a focus on high-quality
∆τ signal. A more balanced quality/performance ratio
would lead to overall higher frame rates with a larger
difference between Q-CUTE and CUTE. Obviously,
single frames per second cannot be considered a satis-
factory result in the target applications, but this can
be improved for both algorithms through balanced pre-
processing, optimized implementations, and of course,
the usage of more powerful hardware. In the case of
large US devices with high computing power, the com-
putational complexity of the algorithms may not be
a decisive factor. However, there is an emerging mar-
ket of portable medical devices with their limitations.
They are battery-powered and are enclosed in tight
housing, impeding heat dissipation. For these reasons,
power consumption has to be kept at relatively low
level. This, in turn, puts constraints on the hardware,
limiting its computing power. In this type of US de-
vices, the algorithms such as Q-CUTE can find their
use.

5. Conclusions

In this paper, an algorithm for SoS imaging in con-
ventional ultrasound sonography was presented. The
algorithm, called Q-CUTE, is characterized by low
computational complexity, which allows implementing
it on US devices with hardware limitations, e.g., on
portable US devices. Its modular structure makes it
possible to analyze the data at each stage, helping to
understand the signal and optimize the processing.

The Q-CUTE algorithm performs on a similar level
as the reference CUTE algorithm. It allows for imaging
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the horizontally layered structures, a frequent case in
US. These structures include tissues such as skin, fat,
muscles, etc., forming layers of different SoS. There-
fore, the Q-CUTE algorithm might be used for deter-
mining SoS profiles for aberration correction in con-
ventional US.

However, problems arise when revealing non-
layered structures, such as circular inclusions. To over-
come them, a new approach to the ∆τ computation
will be analyzed in the future research. This will re-
quire further modifications to the mathematical model
and the implementation of the Q-CUTE algorithm.
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