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Abstract: Manufacturing errors (MEs) are unavoidable in product fabrication. The om-
nipresence of manufacturing errors (MEs) in product engineering necessitates the develop-
ment of robust optimization methodologies. In this research, a novel approach based on the
morphological operations and interval field (MOIF) theory is proposed to address MEs in
the discrete-variable-based topology optimization procedures. On the basis of a methodol-
ogy for deterministic topology optimization (TO) based on the Min-Cut, MOIF introduces
morphological operations to generate geometrical variations, while the dimension of the
structuring element is dynamically set by the interval field function’s output. The effective-
ness of the proposed approach as a powerful tool for accounting for spatially uneven ME in
the TOs has been demonstrated.
Key words: interval field, manufacturing errors, morphological operation, topology opti-
mization

1. Introduction

Topology optimization (TO) is to optimize the distribution of materials within a device
based on specific performance criteria during the initial phase of device design. Nowadays, TO
has evolved to a novel paradigm, offering a quantitative design approach for devices design. In
real-world devices, particularly microscale devices like antennas and MEMS (Micro Electronic
Mechanical Systems), the inherent discrepancy between the computationally optimized topology
and the actual built structure due to manufacturing tolerances can significantly impair the final
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design’s performance. Consequently, the exploration of robust optimization (RO) methods that
account for manufacturing errors (ME) has emerged as a prominent and crucial topic in the field
of the TO. By integrating the RO and the TO, researchers aim to develop design strategies that
ensure the resilience of optimized topologies against manufacturing uncertainties, leading to more
reliable and high-performing products in practical applications [1].

A critical concern in the ROME is the suitable representation of a topological deviation. In
the solid isotropic material with penalization (SIMP) method, the projection threshold, which
determines the filtering of the element density in the deterministic TO, is represented by a random
field in the robust TO to represent MEs [2, 3]. In the level set method (LSM), a perturbation
function 𝛿(𝑥, \) is added to the original level set function 𝜑(𝑥, \) in the deterministic TO, so that
the boundary of ME is represented by the modified zero level set of a perturbed LSF 𝜑(𝑥, \) [4].

The aforementioned methodologies for the ROME suffer from two major issues. Firstly, it is
widely acknowledged that two distinct modeling approaches, namely discrete-variable-based and
continuous-variable-based approaches, are universally employed in the TOs. In the continuous-
variable-based approach, the design variable representing the status of each element is treated as
a continuous value ranging from zero to one. This approach often involves material interpolation
schemes to ultimately penalize the intermediate variable, forcing it into either the solid (one) or
void (zero) status. On the other hand, the discrete-variable-based methodology describes design
variables as discrete entities. Each of these two categories of methodologies has its unique
advantages and disadvantages. However, the prevailing strategies for addressing the ROME in the
field of TO are predominantly tailored to the continuous-variable-based modeling methodology,
including the SIMP and the LSF, while negligible efforts have been paid to the ROME in the
discrete-variable-based TO. A continuous-variable-based TO method basically represents the
geometrical deformation by disturbing the intermediate variables, and is obviously inapplicable
to a discrete-variable-based modelling one.

Secondly, most techniques developed for the ROME are probability-based approach, such as
random field model, which requires a large amount of information for the accurate description of
the probability parameters. Nevertheless, the accurate probability parameters of the uncertainties,
such as the mean and the standard deviation, are hard to predict in the initial phase of the design
process. In contrast with the probability-based approach, the interval-based method employs solely
the nominal value and the bounds of the uncertainties, operating independently of substantial prior
information.

In this regard, this paper proposes a new technique for the ROME in discrete-variable-based
TOs. A novel methodology for TOs based on Min-Cut [5] has been recently introduced and has
demonstrated a remarkable capacity to generate new holes while effectively curbing the emer-
gence of checkerboard patterns in the TO. By extending this work, an approach based on the
morphological operations and interval field (MOIF) is firstly introduced to solve a discretely
modelled TO problem considering MEs. Particularly, the geometrical deformation is treated as
the fluctuation of the interface between two materials, and is represented using the morphological
operations conducted on the computationally optimized topology. The dimension of the morpho-
logical operator is defined as the outcome of an interval field, allowing the MOIF to effectively
represent spatially uneven MEs without the acquirement of large amount of information. The
numerical results have validated the ability of the MOIF to generate optimized topologies capable
of enduring the MEs.
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2. Min-Cut based deterministic TO

2.1. The optimal direction change
The main concern of a TO problem is to determine the optimal redistribution of materials

in each iteration. The quality of the optimized outcomes is predominantly assessed through
two crucial indicators: piecewise smoothness and accuracy. In the context of a Min-Cut based
approach, these indicators, piecewise smoothness and accuracy, are jointly evaluated through the
utilization of the energy function [6]:
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where: 𝑋0 → 𝑋 indicates the direction change from topology 𝑋0 to 𝑋 , 𝐾 stands for the weight,
𝑃 represents a set of elements, 𝑋𝑝 signifies the updated material attribute of element 𝑝 determined
by cut 𝐶, 𝑁 denotes a set of the interacting pairs of elements, and connection correspond to the
degree of connections defined as:

Connection(𝑝,𝑞) =

{
1 𝑝 and 𝑞 are connected
0 otherwise

. (2)

When considering two materials 𝛼 and 𝛽 to be redistributed (𝛼 possesses higher material
property), the calibrated sensitivity SE𝑋𝑝

(𝑝) is defined as:

𝑆𝐸
𝑝
𝛼 =

{
|𝑠𝑒𝑝 | , 𝑠𝑒 < 0
− |𝑠𝑒𝑝 | , 𝑠𝑒 > 0

, 𝑆𝐸
𝑝

𝛽
=

{
− |𝑠𝑒𝑝 | , 𝑠𝑒 < 0
|𝑠𝑒𝑝 | , 𝑠𝑒 < 0

, (3)

where 𝑠𝑒 signifies the original sensitivity concerning the objective function (typically computed
using the adjoint variable method), while SE𝛼 denotes the probability that an element is designated
as 𝛼. For an element possessing material property 𝛼, a negative sensitivity 𝑠𝑒 implies an elevation
in the attribute parameter of the element, and vice versa. Given the minimization nature of the
energy function, the element that ought to transit from 𝛼 to 𝛽 is characterised by a positive SE𝛼
and a negative SE𝛽 .

Evidently, minimizing the energy function will lead to a decrease in the variation of material
distribution between a pair of interconnected elements featuring a significant connectivity level.
Furthermore, the parameter 𝐾 holds influence over the optimized outcomes. It is apparent that
a smaller 𝐾 barely constrains the emergence of checkerboard patterns. Nonetheless, an extensive
spectrum of 𝐾 values has been demonstrated to be effective [5].

2.2. Finding optimal direction using Min-Cut
For a weighted network, denoted as 𝐺 (𝑉, 𝐸), as showed in Fig. 1, with two distinguished

vertices “𝑠” and “𝑡”, an 𝑠-𝑡 cut pertains to a collection of edges. The removal of these edges
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results in the separation of𝐺 into two distinct segments while also placing “𝑠” and “𝑡” in separate
portions within the residual graph 𝐺 (𝐶) = (𝑉, 𝐸 − 𝐶) [6].

Fig. 1. An example of an 𝑠-𝑡 cut

To employ the Min-Cut theorem in a TO, the mesh-grid in the finite element analysis is
initially converted into a network. One approach for this transformation is illustrated in Fig. 2(a).
Subsequently, for a TO problem involving the reassignment of materials 𝛼 and 𝛽, two terminals,
labeled “𝛼” and “𝛽”, are introduced into the primary network (as depicted in Fig. 2(b)). In the
context of a TO problem, an 𝑠-𝑡 cut refers to a collection of edges whose removal leads to
the disconnection of the network. Within the partitioned network, each element is exclusively
connected to either “𝛼” and “𝛽”. In simpler terms, an optimal direction is distinctly represented by
an 𝑠-𝑡 cut in the transformed network. The relationship between cut𝐶 and the material assignment
in the topology can be described as follows:

𝑋𝑐
𝑝 =

{
𝛼 if 𝑡𝛼𝑝 ∈ 𝐶
𝛽 if 𝑡𝛽𝑝 ∈ 𝐶

∀𝑝 ∈ 𝑃, (4)

where 𝑋𝑐
𝑝 represents the modified material attribute of element 𝑝 determined by cut 𝐶. The

guidelines for the calculation of edge weights are detailed in [6].

Fig. 2. A cut in the network for TOs: (a) one way of transformation of a mesh-grid into a network;
(b) transformed network; (c) partitioned network; (d) cut set, and (e) updated material distribution

Furthermore, it has been established that the cost of a cut, denoted as |𝐶 |, which is the
sum of the edge weights, is equivalent to the energy function [6]. As a result, the minimization
of the energy function outlined in Eq. (1) is tantamount to identifying the Min-Cut within the
transformed weighted network.
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3. Manufacturing error representation using morphological operations
and random field

3.1. Representation of manufacturing errors using morphological operations
Morphological operations, fundamental techniques in image processing, involve the applica-

tion of a structuring element (SE) as a probe to a given binary image, resulting in the generation
of a new image [7]. The SE is represented by a binary matrix. The dimensions of the matrix and
the arrangement of ones and zeros within it determine the size and shape of the SE, respectively.
The SE is consecutively positioned at every pixel within the image and matched against the
corresponding pixel neighborhood. As depicted in Fig. 3, the SE is considered to fit the image
if, for each of its pixels with a value of 1, the corresponding image pixel also holds a value of 1.
Similarly, an SE is deemed to hit an image if, at least one of its pixels with a value of 1 aligns
with a corresponding image pixel of value 1.

Fig. 3. Probing of an image with a SE (white and grey pixels present non-zero
and zero values, respectively)

Erosion and dilation are foundational morphological operations. Following an erosion, the
values at positions (𝑥, 𝑦) within the resulting image C become 1 if the structuring element B fits
within the corresponding area of A; otherwise, they become 0. Similarly, following a dilation,
the values at positions (𝑥, 𝑦) in the new image C become 1 if the structuring element B hits the
corresponding region of A; otherwise, they become 0. The definitions of dilation and erosion are
given as follows:

𝑋 ⊕ 𝐻 =
{
(𝑥, 𝑦) : 𝐻(𝑥,𝑦) ∩ 𝑋 ≠ ∅

}
, (5)

𝑋 − 𝐻 = {(𝑥, 𝑦) : 𝐻(𝑥,𝑦) ⊆ 𝑋}. (6)

Figure 4 provides a visual representation of the outcomes of erosion and dilation on an image
utilizing a diamond-shaped structuring element. Evidently, the configuration and the dimensions
of the structuring element collaboratively influence the pattern observed in the resultant image.

Fig. 4. Erosion operation (a); dilation operation (b)
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In a discrete-variable-based TO, MEs can be conceptualized as rearranging 0/1 patterns within
the boundary’s vicinity. Put differently, specific portions of the material exhibit a propensity to
expand, while others tend to contract. Consequently, it becomes logical to signify material growth
through a dilation operation and material contraction through an erosion operation.

3.2. Interval field
Practically, the manufacturing tolerance often exhibit spatial variations. Moreover, the exact

probability information is generally unavailable in the initial phase of the device design. Therefore,
the interval field theory is employed to produce a spatially uneven geometrical deviation. The
interval field theory utilizes the bounds of the variations to effectively describe spatial uncertainty.
These bounds are typically more accessible in practical engineering.

A spatial uncertainty 𝐻 (u) is deemed an interval field when, for a given spatial loca-
tion u𝑘 ∈ Δ, 𝑘 = 1, 2, . . ., the potential values of 𝐻 (u𝑘 ) can be depicted by an interval
𝐻 𝐼 (u𝑘 ) = [𝐻𝐿 (u𝑘 ), 𝐻𝑈 (u𝑘 )], wherein Δ signifies a bounded domain of the spatial location
u [10, 11].

Considering an interval field {𝐻 (u) ∈ 𝐻 𝐼 (u𝑘 ), u ∈ Δ}, where 𝐻𝑈 (u) and 𝐻𝐿 (u) represent
the upper and the lower bound function, its radius function 𝐻𝑟 (u) and midpoint function 𝐻𝑚 (u)
are given as:

𝐻𝑚 (u) = 𝐻𝑈 (u) + 𝐻𝐿 (u)
2

, 𝐻𝑟 (u) = 𝐻𝑈 (u) − 𝐻𝐿 (u)
2

. (7)

The potential realizations of an interval field are strictly situated between the lower bound
function𝐻𝐿 (u) and the upper bound function𝐻𝑈 (u). Figure 5 illustrates the comparison between
the realizations of random field and the interval field. It is evident that, for each realization of the
interval field, the fluctuation of 𝐻 (u𝑘 ) is rigorously confined to 𝐻 𝐼 (u𝑘 ) = [𝐻𝐿 (u𝑘 ), 𝐻𝑈 (u𝑘 )],
whereas the realizations of the random field cannot be ensured to locate within the interval.

It is generally hoped to represent a spatial uncertainty using a set of uncorrelated variables. In
this regard, the widely recognized Karhunen–Loève (K–L) expansion theorem is utilized in this

Fig. 5. Realizations of an interval field (a); a random field (b)
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article to depict a spatially continuous interval field using sets of orthogonal deterministic basis
functions featuring uncorrelated interval coefficients.

An interval field 𝐻 (u) is expressed using K–L expansion [8, 9] as:

𝐻 (u) = 𝐻𝑚 (u) +
∞∑︁
𝑗=1

𝐻𝑟 (u)
√︁
_ 𝑗𝜑 𝑗 (u)b 𝑗 , b 𝑗 ∈ [−1, 1], (8)

where 𝐻𝑟 (u) and 𝐻𝑚 (u) correspond to the radius function and the midpoint function of the
interval field, respectively. The uncorrelated interval variables are denoted as b 𝑗 ∈ b 𝐼 = [−1, 1],

𝑗 = 1, 2, . . ., which satisfy
∞∑︁
𝑗=1
b2 ≤ 1. The eigenvectors and the eigenvalues are denoted as 𝜓 𝑗 (u)

and _ 𝑗 ∈ [0,∞], respectively.
In general, a significant portion of the attributes associated with a spatial uncertainty can

be effectively captured by the principal terms. In terms of practical application, approximating
interval field uncertainty involves arranging the eigenvalues _ 𝑗 in descending order and limiting
the expansion to the first𝑀 terms. As a result, a truncated Karhunen–Loève expansion can be
defined as follows:

𝐻 (u) = 𝐻𝑚 (u) +
𝑀∑︁
𝑗=1

𝐻𝑟 (u)
√︁
_ 𝑗𝜑 𝑗 (u)b 𝑗 . (9)

Given an interval field, both the radius function 𝐻𝑟 (u) and the midpoint function 𝐻𝑚 (u) are
predetermined. Consequently, following Eq. (9), the primary objective in the approximation of
such an interval field using the interval Karhunen–Loève expansion lies in the computation of
eigenvalues _ 𝑗 and eigenfunctions𝜓 𝑗 (u), which could be acquired through solving the subsequent
Fredholm integral equation of the second kind:∫

𝐷

𝐶 (u1, u2)𝜑 𝑗 (u1) du1 = _ 𝑗𝜑 𝑗 (u2). (10)

In this study, a squared exponential covariance function is used:

𝐶 (u1, u2) = 𝑒−|𝑢1−𝑢2 |/𝐿 , (11)

where 𝐿 is the correlation length.
Many numerical methods have been proposed to solve Eq. (10) [10, 11]. After obtaining _ 𝑗

and the 𝜓 𝑗 (u), the interval field could therefore be approximated using Eq. (9).

3.3. Quantification of manufacturing errors using interval field and morphological operator
The goal of the TO is to redistribute the material in the design domain to achieve optimal

device performance. Therefore, the manufacturing tolerance of the TO could be regarded as the
deformation of the interface between different materials. Moreover, the variation of the interface
in a 2D problem could be depicted by an interval field of one dimension.

To employ the interval field interval field {𝐻 (u) ∈ 𝐻 𝐼 (u𝑘 ), u ∈ Δ} for the representation of
the nonuniform variation of the interface within the given range, the interface to be conducted
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should firstly be extracted. The integral interval in Eq. (6) is discretized into 𝐾 segments, which
is equal to the number of the elements contained in the interface. In each realization of 𝐻 (u),
a vector ℎ containing 𝐾 interval variables will be generated. As showed in Fig. 6, for the 𝑖-th
element on the interface, a morphological operation with an SE (suppose a square shaped one) of
the length equal to 𝐻 (u𝑘 ) will be operated. Specifically, a positive diameter indicates a dilation,
whereas a negative diameter signifies an erosion.

Fig. 6. Illustration of dilation and erosion based on interval field

Figures 7(a)–7(c) show the original material distribution (white is air and black is iron), the
extracted interface of the material, and the neighborhood of the interface where the deformations
will take place, respectively. Figure 8 depicts four deformed interfaces under the four realizations
of the 𝐻 (u) illustrated in Fig. 9.

Fig. 7. The original material distribution (a); the extracted interface of the material (b); the neighborhood of
the interface (c)

Fig. 8. Four realizations of the 𝐻 (u)

Moreover, the form of the deformation is associated with the correlation length 𝐿 of the
interval field. The lower the correlation length, the more frequent the deformation is. Therefore,
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Fig. 9. Four deformed interfaces

the correlation length determines the shape of the deformation. Figures 10(a) and 10(b) show
the realizations of interface deformation under lower correlation length and the higher one,
respectively. By tuning the value of the correlation length, one can represent the geometrical
deformation of different shapes more practically.

(a)

(b)

Fig. 10. Geometrical variations under correlation 𝐿 = 25 (a) and 𝐿 = 50 (b)
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4. Numerical results

To validate the proposed methodology, a magnetic actuator comprising a coil, a yoke, and an
armature [12] is topologically optimized to enhance the magnetic force in a specific direction. In
the finite element analysis, the design domain is discretized into a grid of 30×9 quadrilateral ele-
ments. The coils, consisting of 400 turns, are subject to an input current of 1 A. The deterministic
objective function is defined as:

Minimize 𝑓 =
𝜕𝑊magnetic

𝜕𝑥
,

Subject to 𝑔 =

270∑︁
𝑒=1

𝑉𝑒

𝑉0 −𝑉set
< 0, 𝑉𝑒 =

{
1, element 𝑒 is iron
0, element 𝑒 is air

.

(12)

The robust equivalents of the deterministic objective function 𝑓 and the constraint function 𝑔
within interval uncertainty are characterized by their worst-case scenarios, defined as follows:

𝑓𝑤 (𝑥, 𝛿) = Max
(𝛿𝑁−𝛿0≤𝛿≤𝛿𝑁 +𝛿0)

[ 𝑓 (𝑥, 𝛿)] ,

𝑔𝑤 (𝑥, 𝛿) = Max
(𝛿𝑁−𝛿0≤𝛿≤𝛿𝑁 +𝛿0)

[𝑔(𝑥, 𝛿)] .
(13)

In this numerical example, the midpoint function is set as: 𝐻𝑚 (u) = 0, indicating that the
geometrical deformations fluctuate around the original interface. The radius function is set as
𝐻𝑟 (u) = 8, indicating that the width of the neighborhood where the fluctuations occur is set 5
(evaluated by the number of elements in the mesh-grid). The correlation length is set 5. During
each optimization iteration, 40 realizations of𝐻 (u) are conducted, resulting in the need to compute
the sensitivity of each element 40 times. Obviously, the computational burden is comparatively
higher than that of the deterministic TO. It should be noted that the primary emphasis of robust
optimization lies in the quantification and propagation of the uncertainties. However, the focus of
this article is on the quantification of the manufacturing uncertainty in the TO, without delving
into the computation of uncertain propagation. Further research remains imperative to delve into
the propagation of geometric uncertainty, thereby reducing the computational cost of topology
optimization problems considering the manufacturing errors.

x

y

Fig. 11. Schematic diagram of the actuator

Figure 12(a) displays the outcomes of deterministic topology optimization, while Fig. 12(b)
exhibits the results of robust topology optimization (areas in black signify air). The magnetic
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forces of the optimized topology obtained from the deterministic optimization and the robust
one are –55.62 N/m and –52.82 N/m, respectively. A comparison between the two reveals that,
in the deterministic optimized topology, the air region (black) located at the lower left corner of
the design domain is notably slender and susceptible to contraction due to geometric uncertainty
(as depicted in Fig. 12(c)). Consequently, this can lead to the obstruction of the magnetic flux
towards the armature, resulting in a substantial decline in magnetic force. Conversely, in the robust
optimized topology, this area expands, rendering it less susceptible to the effects of geometry
uncertainty.

tend to shrink
(a) (b) (c)

Fig. 12. Optimized topology from deterministic optimization (a); optimized topology from robust
optimization (b); distorted topology from (a) (c)

To test the ability of the robustly optimized results to withstand MEs, some post experiments
are conducted on the topologies in Figs. 13(a) and 13(b), respectively. To be specific, 20 real-
izations of 𝐻 (u), with the midpoint function 𝐻𝑚 (u) = 0 and the radius function 𝐻𝑟 (u) = 4,
are generated to represent the manufacturing errors conducted on the topologies in Figs. 12(a)
and 12(b). Figures 13(a) and 13(b) illustrate the magnetic force of each topology with varies
geometries. The mean and standard deviation of the magnetic force are tabulated in Table 1.

(a) (b)

Fig. 13. Performance variance of the test experiments on robust optimized topology (a) and deterministic
optimized topology (b)

Table 1. The results of the post experiment

Expected value of the
magnetic force (N/m)

Standard deviation of
the magnetic force

Deterministic result –28 668

Robust result –51.97 4.21
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Evidently, the optimized topology under robust optimization demonstrates a notable resilience to
geometric uncertainties.

5. Conclusions

This study extends the Min-Cut based methodology for the discrete-variable-based TO to
a TO considering spatially uneven manufacturing errors by introducing an interval field and
morphological operations to appropriately represent a spatially uneven geometry deviations. The
key advantage of the MOIF lies in its ability to rigorously quantify spatially nonuniform MEs
in the TO with limited prior information, thereby enhancing the resilience of the optimized
topologies. The numerical results have demonstrated that the proposed method is capable of
generating optimized topologies that exhibit the ability to withstand the effects of geometric
uncertainty.
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