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In our digitally driven era, safeguarding information  
has become paramount. Encrypting data is essential  

for keeping it safe and secure.
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The twenty-first century is the era of infor-
mation. We live our lives immersed in an 

unending stream of data, unparalleled in any previous 
era in history. To transmit all this data effectively and 
securely, we make constant use of highly sophisticated 
encryption methods. The fundamental ideas of such 
encryption in fact date back to ancient times.
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To illustrate the basic concept of encryption, 
let’s say we want to send a message to someone in 
another room: a short sentence like “I am in the next 
room.” This information is intended for one person 
only. Anyone who speaks English, however, will eas-
ily understand the sentence and draw the obvious 
conclusions. We need a way to encode the text, but 
in a way that makes it easy to undo, i.e., decode the 
original message. We can encrypt the message using 
a simple method.

Let’s start with a string of capital letters IAMIN- 
THENEXTROOM (removing spaces does not pose 
a significant challenge to reading). We replace the let-
ter A with B, B with C, etc., moving through all 26 let-
ters, with letter Z changing back to A. As a result, we 
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get the text: JBNJOUIFOFYUSPPN. It doesn’t look 
very intelligible, right? If we openly exchange a scrap 
of paper with this text written on it, even visibly to 
strangers in the room, no one will be able to easily 
read the message. How can the recipient decode the 
message? Simply by shifting the letters one posi-
tion back in the alphabet, to arrive at the message: 
IAMINTHENEXTROOM.

This method of encoding information is known 
as a Caesar cipher. The Roman statesman Julius Cae-
sar used this simple technique to conceal informa-
tion from prying eyes. The most important features 
of this method include quick encoding of the message, 
reversibility of the process, keeping the message con-
cealed from outsiders, and a small amount of infor-
mation needed for encoding/decoding.

These four features in fact remain the fundamental 
postulates of today’s information security. The essence 
of modern cryptography – the science of creating and 
breaking ciphers – is to develop procedures that meet 
these very same requirements and guarantee us a high 
level of security: in other words, guaranteeing that it 
is virtually impossible to read the original message 
without knowing a secret key.

When surfing the Internet today, we no longer 
exchange scraps of paper with symbols written on 
them, but the above principles of data transmission 
still very much apply. Today’s data-processing proce-

dures nevertheless have to cope with sending a huge 
number of messages: an amount of information that 
can roughly be represented by a set of symbols reach-
ing 1020 elements. A basic Caesar cipher is too simple 
to safely encode such a hard-to-imagine quantity of 
data.

The Middle Ages
An idea devised by Blaise de Vigenère, a French 
scholar from the sixteenth century, comes to our res-
cue here. The Caesar cipher, which involves shifting 
letters by a fixed number of positions, is very easy to 
break. For each language (English or Polish, say), we 
can draw up a table of letter frequencies in normal 
text. If we compare this to a text in the encoded alpha-
bet, aligning the most frequently occurring letters will 
often enable us to easily guess by how many positions 
the text needs to be shifted to decode the message. 
Vigenère’s clever idea was that we can set a code-
word key of unknown length, the individual letters 
of which will then determine by how many positions 
we shift each successive character in the message to 
be encoded.

For example, let’s say we agree on the key “ABC.” 
Translating these letters into the number of shifts, 
we get:

A => 0; B => 1; C => 2.

Diffie-Hellman Exchange

Two individuals agree on a number, for instance, 2. Each of them then arbitrarily 
selects a secret integer, say a and b. They calculate 2a and 2b and send each 
other the result. They now compute (2a)b and (2b)a – in both cases, the result 
is equal to 2(a*b) – and this becomes their shared secret. If the exponentiation 
operation is performed in modular arithmetic (that is, stated as a remainder after 
division by N), we get a result for which the task of reconstructing the original 
exponents a and b is extremely complex. The problem of recovering a number 
a from (2a modulo N) is known as the discrete logarithm problem. Generating 
shared secrets in this way is incredibly simple and effective. It is a solution to the 
problem of creating a common key for block cipher exchange (Fig. 2).
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Fig. 1
Diffie-Hellman Exchange 

Fig. 2
The method of encryption 
commonly used for 
webpages
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Let’s say the message is: THEQUICKBROWN-
FOX. They key is reiterated to match the length of the 
message, so we use ABCABCABCABCABCA (which 
means: shift the first letter by zero positions, the next 
letter by one, the next by two, then repeat). The result-
ing encoded message is: TIGQVKCLDRPYNGQX.

By using a long enough codeword, we can make it 
very difficult to break such a cipher. When the length 
of the key is equal to the length of the message, so that 
each letter is shifted a different number of positions, 
we get a perfect cipher, called a one-time pad.

Breaking such codes is so difficult that in practice 
it is impossible without special methods. A complex 
device using a complex version of Vigenère’s cipher, 
called the Enigma, was developed by the German 
military for use in World War II. An intricate sys-
tem, encrypting virtually every letter with a different 
alphabet, made it nearly impenetrable. However, this 
code was first cracked in 1932 by Marian Rejewski, 
a graduate of the University of Poznań. Also instru-

mental to this breakthrough were Jerzy Różycki and 
Henryk Zygalski, Rejewski’s colleagues at the Polish 
Cipher Bureau. They identified and exploited certain 
regularities in the Enigma’s encryption patterns.

Block ciphers
The era of the World Wars and post-war years saw 
the gradual transformation of encryption from the 
classical domain of linguistics into what we now call 
modern cryptography. A great leap forward came in 
the 1970s, when traditional character-based encryp-
tion was replaced by more sophisticated block ciphers.

Using a block cipher can be likened to shuffling 
a deck of cards. In each round, we perform opera-
tions that are seemingly trivial: confusion, masking 
with a key, diffusion (Fig. 3). Repeated many times, 
they give rise to tremendous complexity in the cipher. 
The Data Encryption Standard, invented in 1975, and 
its successor, the Advanced Encryption Standard 
from 2001, are currently the primary ciphers used for 
securely encoding very large messages. Practically all 
internet traffic is encrypted with the AES standard.

Interestingly, this cipher fundamentally relies on 
a single, computationally simple operation: calculat-
ing the inverse of an element in a finite field (specifi-
cally, a 256-element field). This gives us an improved 
Caesar cipher, ideal for encrypting a movie or other 
large datasets.

For ciphers to be used successfully, both the sender 
and receiver of the message must know the encryp-
tion key. In the mid-1970s, two solutions to this prob-
lem emerged in cryptography. The first idea involves 
generating a shared secret using the so-called Dif-
fie-Hellman protocol. The second involves creating 
a procedure with two keys (Fig. 4): a public one, used 
only for encrypting messages, and a private one, used 
only for decoding them. We still need a procedure 
that will generate such a pair of keys and allow us to 
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Fig. 3
Block encryption  

– the example photo  
is of Henryk Zygalski,  

one of the three Poznan 
cryptologists who broke 

the Enigma system

Fig. 4
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a public key
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publicly share only the key marked as “public.” This 
way, anyone can send us a secret, but no unauthorized 
person can read it without the private key. This idea 
was implemented in a concrete way by Ron Rivest, Adi 
Shamir and Leonard Adleman – their now widespread 
method is known as the RSA algorithm.

Forward into the future
Since the 1990s, the field of cryptography has increas-
ingly become the domain of mathematicians special-
izing in numerical and algebraic theories. A notable 
advancement in recent years has been the transition 
from traditional exponentiation (raising a number to 
a power) to a more complex algebraic process known 
as elliptic curve addition. Elliptic curves are objects 
developed in the field of algebra and geometry, which 
have proved enormously useful in such diverse fields 
of science as high-energy physics, differential geom-
etry, analysis, and number theory. The famous proof 
of the Fermat’s Last Theorem put forward by Andrew 
Wiles in 1994 uses elliptic curves at crucial parts of the 
argument. Cryptographers were relatively slow to dis-
cover these mathematical objects, but when they did 
it was with great effect. Every aspect of our “online 
life” now uses elliptic curves to ensure a high level of 
security against password breaking.

In the 1980s, a certain threat to the security of 
the RSA algorithm and the Diffie-Hellman proto-
col emerged in the form of Peter Shor’s factorization 
algorithm. Given a large quantum computer, this 
algorithm would easily break codes based on multi-
plication.

The increasingly robust development of quantum 
computing and quantum information theory has 
touched off another great leap forward by cryptogra-
phers dealing with RSA, elliptic curves, and factoriza-
tion. Recent years have witnessed the birth of a com-
pletely new field, known as post-quantum cryptogra-
phy. Currently, several encryption algorithms are com-
peting to become the frontrunner, poised to replace all 
the existing protocols, which large quantum comput-
ers are expected to easily break in the future. The field 
is evolving rapidly and with high stakes. Among the 
dozens of candidates that were to the Post-Quantum  
Cryptography contest, announced in 2016 by the 
American National Institute of Standards and Tech-
nology, most have already been broken. The race con-
tinues among the winners of the fourth round of the 
contest, announced in 2022: CRYSTALS-Kyber (for 
generating a common secret), CRYSTALS-Dilithium,  
FALCON, and SPHINCS+ (algorithms for obtaining 
an electronic signature).

Another alternative is quantum cryptography: an 
extremely rapidly developing field of physics and 
quantum computing theory, working to construct 
laser-based systems for long-distance transmission 

of information that is highly secure (on the level of 
physical laws). The basic idea here involves generating 
a shared secret by utilizing the enigmatic phenom-
enon of quantum entanglement of particles. Polish 
scientists have significantly contributed to advancing 
this technology. Professor Artur Ekert, a theoretical 
physicist, was recently with the Milner Award for his 
contributions to the field.

Contemporary civilization is based on information 
and requires strong certifications of data transmission 
security. The security postulates are so demanding that 
to meet them, the complex and incredibly advanced 
mathematical apparatus of algebra, number theory, 
combinatorics, and statistics is marshalled into ser-
vice. Therefore, it can be confidently said that math-
ematics has appeared practically everywhere thanks 
to the global Internet. It acts as a mysterious, “quiet 
and well-oiled” mechanism that, in a hidden way like 
in Umberto Eco’s Foucault’s Pendulum, governs our 
world and allows us to sleep peacefully as computa-
tional machines work hard to ensure our safety and 
prosperity. ■
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RSA encryption
starts with selecting two very large prime numbers. We calculate their 
product, N = pq. Finding the values of p and q from the number N is an 
extremely difficult task (Fig. 5). A message sent using the RSA algorithm 
is a number, say m. Using the numbers p and q, we prepare a private 
and public key. We randomly choose a number e, which is coprime with 
(p-1)(q-1). We calculate the number d, which has the property that ed = 1 
modulo (p-1)(q-1). We have obtained the private key (N, d) and the public 
key (N, e). A message can be safely transmitted by performing modular 
exponentiation: c = me modulo N. A third party without knowledge of 
the numbers p and q cannot recreate the message m. To decode the 
message, use: m = cd modulo N. 

Ron 
RIVEST

Adi 
SHAMIR

Leonard 
ADLEMAN

 ● We choose a large integer N. We establish two integers 
e and d, which provide reversible modulus operations 
(“wrapping around the clockface”).

 ● RSA Encryption: we encode the message m as c = me.
 ● RSA Decoding: we decode the ciphertext c using c d.
 ● Calculations are performed modulo N (“wrapping around 
the clockface”). 
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