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EfficiEnt and REliablE PREdiction of dumP SloPE Stability in minES  
uSing machinE lEaRning: an in-dEPth fEatuRE imPoRtancE analySiS

this study rigorously examines the pressing issue of dump slope stability in indian opencast coal 
mines, a problem that has led to significant safety incidents and operational hindrances. Employing machine 
learning algorithms such as random Forest (rF), k-nearest neighbors (Knn), Support vector Machine 
(SvM), Logistic regression (Lr), decision tree (dt), and gaussian naive bayes (gnb), the study aims 
to achieve a scientific goal of predictive accuracy for slope stability under various environmental and 
operational conditions. Promising accuracies were attained, notably with rF (0.98), SvM (0.98), and dt 
(0.97). to address the class imbalance issue, the Synthetic Minority Oversampling technique (SMOtE) 
was implemented, resulting in improved model performance. Furthermore, this study introduced a novel 
feature importance technique to identify critical factors affecting dump slope stability, offering new insights 
into the mechanisms leading to slope failures. these findings have significant implications for enhancing 
safety measures and operational efficiency in opencast mines, not only in india but potentially globally.

Keywords: dump slope stability; Machine Learning; Limit Equilibrium method; SMOtE; Feature 
importance

1. introduction

india is the second-largest coal producer in the world, and its reliance on opencast min-
ing methods has been growing to meet rising domestic energy demands. in the financial year 
 2019-20, india produced a total of 730.84 million tonnes of coal, with 690.393 million tonnes 
coming from opencast mines and 40.481 million tonnes from underground mines [1]. this in-
creasing dependence on opencast mining has led to the critical issue of managing the stability of 
overburden dump slopes. india has witnessed several catastrophic slope failure incidents, such 
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as the rajmahal accident in 2016, resulting in 23 fatalities and significant property and resource 
losses [2]. traditional methods for slope stability analysis, such as limit equilibrium models and 
numerical modeling, have been effective but are often time-consuming and resource-intensive 
[3,4]. these methods have been applied in different parts of the world to analyze the impact of 
factors like rainfall on slope stability [5-12]. however, these methods struggle when dealing with 
complex and uncertain situations involving a multitude of interrelated factors. to address these 
challenges, machine learning and deep learning techniques have gained prominence in geotech-
nical engineering and geoengineering [13,14]. these techniques have been comprehensively 
reviewed and their future challenges have been discussed in several studies [13-15]. Machine 
learning has been successfully applied in various geotechnical applications [16-21]. in the 
early 1990s, Artificial neural networks (Anns) were introduced as a multi-criteria assessment 
tool [22]. Since then, Anns and other machine learning algorithms have been applied to study 
the stability of pit slopes and dump slopes in opencast mines [23-36]. While these studies have 
contributed to our understanding of dump slope stability, they often focus on a limited set of 
parameters, neglecting crucial variables like weather conditions, blasting vibrations, and others 
[37-40]. in contrast to existing studies that often employ numerical modeling to understand the 
influence of rainfall on slope stability [6-12], this paper introduces machine learning to assess 
the stability of dump slopes in the presence of diverse external factors. A comprehensive analysis 
of 1620 cross-sections of existing dump profiles in indian mines was conducted. this paper also 
aims to address the limitations observed in previous studies, such as limited datasets and class 
imbalances. Furthermore, a novel approach is presented to understand the contribution of each 
parameter affecting dump slope stability, based on p-values.

it is important to note that this paper does not introduce new machine learning algorithms; 
rather, it leverages existing algorithms in an innovative manner to solve critical challenges related 
to dump slope stability. the following sections will elaborate on the methodology used in this 
study, discuss our findings, and conclude with recommendations for future work. 

2. methodology

the methodology used in this paper is based on supervised machine learning algorithms. 
Machine learning is a field of study that focuses on the development of computer algorithms 
that can learn patterns from data and make predictions based on that learning. there are various 
types of machine learning, including supervised, unsupervised, and reinforcement learning. in this 
paper, we use a supervised learning approach, which involves training a model on labelled data 
to make predictions on new, unseen data. Within the supervised learning framework, two main 
types of models can be developed: classification and regression. Classification models aim to 
predict the class of a given observation based on a set of input features. in contrast, regression 
models aim to predict a continuous numerical output based on the input features.

the data used in this study consists of input parameters that have been collected from the 
field. to provide labelled output to the classification model, we have adopted the limit equilibrium 
method. this method is widely used in geotechnical engineering to analyse the stability of slopes 
and foundations. it is based on the assumption that the slope section can be divided into a series 
of slices, and the equilibrium of each slice can be analysed separately. the method is used to 
generate the output using the collected input parameters from the field. the limit equilibrium 
method has various sub-methods which are shown in tAbLE 1, and in this paper, we use the 
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Morgenstern-Price method. the reason for selecting Morgenstern Price is that it is the most 
comprehensive method among others and takes into account least number of assumptions. this 
method considers all moment and force equilibrium, shear and normal interslice forces, and in-
clination of shear to normal interslice force as variable while other methods lack one or the other 
components mentioned. this method involves analysing the stability of the slope by considering 
the forces acting on each slice and calculating the factor of safety (FOS) for each slice. the FOS 
is a measure of the stability of the slope, and a FOS greater than one indicates a stable slope.

the dataset consists of 1620 dump slope profiles from opencast mines in Jharkhand, in-
dia. Figs. 1 and 2 show the cross-section and model geometry of one of the dump slopes, and 
the stability of these slopes was analysed using the Morgenstern & Price method in geoSlope 
(a student-licensed version (serial number –6801-190910-194630) of the software that includes 
the SLOPE/W, SEEP/W, and QuAKE/W applications). Among the existing method for per-
forming Limit Equilibrium method. Each of these profiles has been tested under various static 
and dynamic loading conditions to account for the various factors that could contribute to slope 
failure, including dry conditions with just geomechanical properties and slope geometry, saturated 
conditions, the effects of wind and rain, blasting vibrations, and the impact of cloudbursts. the 
resulting failure surface and the corresponding FOS value for one of the profiles are shown in 
Figs. 3 to 7, respectively. the exact names of the mines where these profiles were collected have 
not been disclosed due to confidentiality concerns. generally, a FOS value above 1 is considered 
stable, but the required level of safety may vary depending on the accuracy of the input data [41] 
and other factors such as the size of the slope, the potential consequences of failure, uncertainty 
in input parameters, the lifespan of the structure, expected changes in design conditions, and the 
availability of monitoring systems [42]. time is also a significant factor in the long-term stabil-
ity of slopes, as the strength of rocks can decrease over time due to continuous deformation. 
As a result, the FOS value may decrease over time [43]. therefore, the resulting FOS values 
have been divided into three classes, as shown in tAbLE 2.

tAbLE 1

different LEM methods comparison

method moment 
equilibrium

horizontal force 
equilibrium

interslice 
normal (E)

interslice 
shear (X)

inclination of 
X/E resultant

Ordinary or Fellenius [44] yes no no no no force
Bishop’s simplified [45] yes no yes no horizontal
Janbu’s simplified [46] no yes yes no horizontal

Spencer [47] yes yes yes yes Constant
Morgenstern-Price [48] yes yes yes yes variable

tAbLE 2

Stability conditions of Slope [27]

condition category class label
FOS < 1 unstable 0

1 < FOS <= 1.25  
(For period up to 6 months) Short-term stable 1

FOS > 1.25
(For period of more than 6 months) Long-term stable 2
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Fig. 1. Cross-section of dump slope

Fig. 2. Model geometry of dump slope

Fig. 3. Critical slip surface (dry condition) Fig. 4. Critical slip surface (Saturated condition)

Fig. 5. Critical slip surface (Wind & rain condition) Fig. 6. Critical slip surface (blasting condition)

Fig. 7. Critical slip surface (Cloudburst condition)
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2.1. understanding important input features  
and output Variables

the input features considered in this study are important for understanding the stability of 
dump slopes, and their effects cannot be ignored. the input features include cohesion, which is 
a measure of the strength of the forces holding the material together; unit weight, which is a ge-
omechanical parameter that reflects the weight of the material; internal angle of friction, which is 
a factor that affects the shear strength of the material; height, which reflects the geometry of the 
slope; overall slope angle, which also reflects the slope geometry; saturation, which refers to the 
water content present between the pores in the material; wind, which is an external factor that can 
cause instability; rain, which can reduce the shear strength of the material and potentially lead to 
slope failure; blast vibrations, which can cause instability through the peak particle velocity at-
tained by particles after blasting operations; and cb, which are sudden downpours of large volumes 
of water that can cause slope failure. Among these input features, only saturation is treated as 
a categorical variable, with values of 0 or 1, while the others are treated as continuous variables. 
tAbLE 3 presents the descriptive statistics for the input features used in this study. the values of 
the external factors used in the study to analyse slope stability were collected based on the weather 
and climate patterns in the different regions of Jharkhand, india where the study was conducted

tAbLE 3

descriptive statistics of input parameters

height 
(m)

unit weight 
(kn/m3)

cohesion 
(kPa)

Phi
(degree)

Slope angle 
(degree)

Wind 
(m/sec)

Rain 
(m/sec)

blast 
(mm/sec)

cb  
(m/sec)

count 1620 1620 1620 1620 1620 1620 1620 1620 1620
mean 42.51 24.56 62.10 25.38 23.18 15.14 0.00291 88.09 0.03176

std 25.80 0.89 5.05 0.59 10.84 2.86 0.00038 7.94 0.0034
min 3 22 50 24 4.5 14 0.0025 75 0.02428
25% 25 24 59 25 14.98 14.95 0.00278 83.80 0.02929
50% 40 24.6 62 25.3 20.51 15.54 0.00293 88.28 0.03178
75% 59 25.2 65 25.7 30.15 16.19 0.00309 92.72 0.03417
max 110 26.8 74 26.9 48.37 18.3 0.00363 104.029 0.03993

Examining the histograms in Fig. 8(a)-(i) of the different input features allows us to analyse 
the distributions of these features and how the range of values varies significantly from one 
feature to another. therefore, it is necessary to standardize the data before creating the machine 
learning models, as failing to do so may result in the model giving undue importance to factors 
with high numerical values and producing inaccurate results.

Fig. 9(a)-(i) provides the box plot against all the classes for all the input features used in 
the classification model

in a supervised machine learning classification model, it is important to have a balance 
between the output classes to reach an optimal solution, as an imbalanced distribution of the 
output classes can result in the model being biased towards the class with more instances. how-
ever, as shown in Fig. 10, we are dealing with an imbalanced distribution of the different output 
classes. to address this issue, the SMOtE has been applied, and the results before and after its 
application have been compared.
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(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

(i)

Fig. 8. histogram of different input features (a) blast, (b) cb, (c) rain, (d) wind, (e) phi,  
(f) slope angle, (g) cohesion, (h) unit weight, (i) height
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(a)

(e)

(g)

(c) (d)

(b)

(f)

(h)

(i)

Fig. 9. box plot of different input features (a) slope angle, (b) rain, (c) phi, (d) blast, (e) cb,  
(f) wind, (g) cohesion, (h) unit weight, (i) height
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2.2. correlation between the features

the correlation between the input features reflects the interaction among these features, that 
is, how well one feature can be explained using another feature. generally, if the correlation value 
is above 0.5 between two variables, one variable can explain the other to some extent, depending 
on how close the value is to 1. As shown in Fig. 11, there is little or no correlation among the 
variables, with the exception of cohesion and unit weight, and wind and rain. however, we can-
not simply remove one of the variables from each group based solely on the correlation values 
without considering the importance of each variable in the model.

Fig. 11. Correlation matrix of input features
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Fig. 10. distribution of different output classes
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2.3. Supervised classification algorithms

Machine learning algorithms are powerful tools for modelling the nonlinear and complex 
relationships among the input features in order to predict the target variable. these algorithms 
can quickly and efficiently perform calculations that would be time-consuming and compu-
tationally expensive using traditional methods, by learning the complex behaviour from the 
available dataset. these techniques have been widely implemented in various engineering 
fields, including geotechnical engineering. For this study, six different advanced classifica-
tion algorithms were used: rF, Knn, SvM, Lr, dt, and gnb. detailed descriptions of these 
individual classification algorithms can be found in the literature [49-51]. two different models 
were created for each classification algorithm, and the results were compared. these models in-
clude Model 1, which takes into account all the input features but does not balance the output 
class. Model 2, which takes into account all the input features and applies SMOtE to address  
imbalanced data.

grid Search Cv and Stratified 10-fold Cross-validation were performed for all the models 
to tune the hyperparameters and prevent overfitting.

2.4. Synthetic minority oversampling technique

SMOtE is a powerful technique for dealing with imbalanced data in classification prob-
lems. the method, proposed in a 2002 paper by [52] creates synthetic data points based on the 
original data points, rather than generating duplicates. this ensures that the synthetic data points 
are slightly different from the original data points, making the algorithm more effective. When 
dealing with imbalanced data, accuracy is not good machine learning metric as it may lead to 
a model that appears very accurate but is actually useless. instead, precision and recall are used 
to evaluate the performance of the model. When evaluating the performance of a classification 
model, it is important to consider both precision and recall, which measure how well the model 
identifies positive cases and all positive cases, respectively. False positives and false negatives 
are both incorrect predictions, but false negatives may go undetected in business processes 
while false positives are easier to filter out. using SMOtE can help reduce false negatives and 
increase recall, but at the cost of lower precision. in cases of imbalanced data, stratified sampling 
is recommended to ensure the same class balance in the train and test datasets. Overall, SMOtE 
is an effective method for dealing with imbalanced data and can help improve the performance 
of classification models.

the SMOtE algorithm works by selecting instances that are close in the feature space, 
drawing a line between the instances in the feature space and generating new instances at points 
along that line. Specifically, it takes a minority class instance and computes the k-nearest neigh-
bors for this instance. the synthetic instances are then created by choosing between the k-nearest 
neighbors and combining the features of the chosen neighbor with the features of the current 
instance. Mathematically, the synthetic instance is generated as follows:

 New instance = xi + λ*(xzi – xi) 

Where xi and xzi are feature vectors for the instance under consideration and its chosen neighbor, 
respectively. λ  is a random number between 0 and 1.
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in research scenarios such as predicting mining hazards or assessing slope stability, where 
the number of positive instances (e.g., occurrences of hazards) could be significantly lower than 
negative instances (e.g., non-occurrences), SMOtE can be particularly useful. by creating syn-
thetic instances of the minority class, you can train a model that has a much better understanding 
of the minority class’s characteristics.

2.4.1. Without SmotE

high false negatives: Without SMOtE, the model may predict fewer instances of the 
minority class (e.g., fewer instances of mining hazards), leading to higher false negatives.

low Recall: the model may not capture all the positive cases, leading to low recall.

2.4.2. With SmotE

Reduced false negatives: by using SMOtE, the model is exposed to more instances of 
the minority class during training, reducing false negatives.

higher Recall: the model is likely to have improved recall since it is now better trained 
to recognize the minority class.

Potential for lower Precision: the downside is that the model may start to misclassify 
some of the majority class instances as belonging to the minority class, reducing precision.

2.5. feature importance analysis

After developing a machine learning model, it is essential to understand the importance of 
each and every feature involved in model development. because presence of unnecessary fea-
tures results in higher computational time and complexity. if some features are not significant 
to the model it should be eliminated to reduce the complexity of model and the feature should 
be eliminated only if the performance of the model remains unchanged. therefore, this study 
utilizes a new technique for determining the importance and significance of each input feature 
used in developing the model.

Following steps are performed to determine the significance and importance of each feature 
in the model: 

• The best performing model is identified based on the performance metrics score.
• After the model selection is done the same model is trained and tested by first eliminating 

one feature at a time, then all possible combination of two features at a time, till (n/2) 
combination of features are eliminated. in our case n = 10 therefore, combination of 
5 features is eliminated.

• The model is run after eliminating the features and test accuracy is recorded.
• Then, a database is made by combining all the above feature elimination steps (dropping 

one feature, then two feature, then three so on till set of 5 features) and corresponding 
accuracy obtained. 

• Then a multiple linear regression model is fit to above data and significance of each 
variable is tested using p-value and value of coefficients is obtained. 

based on the value of coefficients for each variable and whether each variable is significant 
the real importance of each feature is computed.
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2.6. Performance metrics used in the study

the dataset was divided into training (75%) and testing (25%) datasets for the purpose of 
model training and testing. the confusion matrix for the different classification algorithms on 
the test dataset is presented in a subsequent section. Equations 1 to 4 present the metrics used to 
measure the performance of the classification algorithms.

Equation 1: Accuracy Calculation

 
 TN TPAccuracy

TN FP TP FN



  

Equation 2: Precision Calculation

 
 TPPrecision

TP FP




Equation 3: recall Calculation

 
TPRecall

TP FN




Equation 4: F1-score Calculation

 
* 1 2* Precision RecallF score

Precision Recall



 

3. Results and discussions

this section presents the findings of the machine learning based solution implemented for 
predicting the stability of dump slopes. Six different classification models namely rF, Knn, 
SvM, dt, Lr, and gnb has been deployed in order to achieve the desired objective. All clas-
sification models are evaluated based on the performance metrics mentioned in the previous 
sections.

tAbLES 4-27 presents the confusion matrix and values for the performance metrics for the 
test set before and after applying SMOtE for each of the six models considered in the following 
study. As discussed in above section that for this study it is desirable for the model to have a high 
recall which may come at a price of slight decrease in precision. So, we can clearly see from the 
tables below that after applying SMOtE the recall for all the models has improved significantly 
but as discussed above precision has reduced slightly which is acceptable in our case. Overall 
accuracy for all the models except Lr and gnb has also increased. therefore, the overall best 
performing model in our study is found to be random Forest with overall accuracy of 98% very 
closely followed by SvM also having overall accuracy of 98%. 
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tAbLE 5

Confusion Matrix for rF after SMOtE

actual/Predicted class 0 class 1 class 2
Class 0 323 5 2
Class 1 2 347 2
Class 2 6 6 372

tAbLE 7

Confusion Matrix for Knn after SMOtE

actual/Predicted class 0 class 1 class 2
Class 0 296 33 1
Class 1 3 347 1
Class 2 38 38 308

tAbLE 9

Confusion Matrix for SvM after SMOtE

actual/Predicted class 0 class 1 class 2
Class 0 321 9 0
Class 1 0 351 0
Class 2 11 11 362

tAbLE 11

Confusion Matrix for Lr after SMOtE

actual/Predicted class 0 class 1 class 2
Class 0 211 71 48
Class 1 59 244 48
Class 2 69 69 246

tAbLE 13

Confusion Matrix for dt after SMOtE

actual/Predicted class 0 class 1 class 2
Class 0 317 5 8
Class 1 5 338 8
Class 2 6 6 372

tAbLE 15

Confusion Matrix for gnb after SMOtE

actual/Predicted class 0 class 1 class 2
Class 0 130 188 12
Class 1 9 330 12
Class 2 96 96 192

tAbLE 4

Confusion Matrix for rF before SMOtE

actual/Predicted class 0 class 1 class 2
Class 0 24 1 5
Class 1 0 18 9
Class 2 0 4 363

tAbLE 6

Confusion Matrix for Knn before SMOtE

actual/Predicted class 0 class 1 class 2
Class 0 16 1 13
Class 1 11 3 13
Class 2 2 2 363

tAbLE 8

Confusion Matrix for SvM before SMOtE

actual/Predicted class 0 class 1 class 2
Class 0 28 1 1
Class 1 4 19 4
Class 2 2 2 363

tAbLE 10

Confusion Matrix for Lr before SMOtE

actual/Predicted class 0 class 1 class 2
Class 0 11 0 19
Class 1 0 5 22
Class 2 0 7 360

tAbLE 12

Confusion Matrix for dt before SMOtE

actual/Predicted class 0 class 1 class 2
Class 0 23 4 3
Class 1 2 22 3
Class 2 3 3 361

tAbLE 14

Confusion Matrix for gnb before SMOtE

actual/Predicted class 0 class 1 class 2
Class 0 10 0 20
Class 1 0 15 12
Class 2 0 77 290
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3.1. Random forest
tAbLE 16

rF performance before SMOtE

class Precision Recall f1 score Support
0 1 0.87 0.93 30
1 0.86 0.67 0.75 27
2 0.97 0.99 0.98 367

accuracy 0.96 424
macro avg. 0.94 0.84 0.89 424

Weighted avg. 0.96 0.96 0.96 424

3.2. Knn
tAbLE 18

Knn performance before SMOtE

class Precision Recall f1 score Support
0 0.88 0.77 0.82 30
1 0.67 0.15 0.24 27
2 0.93 0.99 0.96 367

accuracy 0.92 424
macro avg. 0.83 0.64 0.67 424

Weighted avg. 0.91 0.92 0.90 424

3.3. SVm
tAbLE 20

SvM performance before SMOtE

class Precision Recall f1 score Support
0 0.96 0.90 0.93 30
1 0.82 0.67 0.73 27
2 0.97 0.99 0.98 367

accuracy 0.96 424
macro avg. 0.92 0.85 0.88 424

Weighted avg. 0.96 0.96 0.96 424

3.4. lR
tAbLE 22

Lr performance before SMOtE

class Precision Recall f1 score Support
0 0.55 0.37 0.44 30
1 0.83 0.19 0.30 27
2 0.90 0.98 0.94 367

accuracy   0.88 424
macro avg. 0.76 0.51 0.56 424

Weighted avg. 0.87 0.88 0.86 424

tAbLE 17

rF performance after SMOtE

class Precision Recall f1 score Support
0 0.99 0.99 0.99 330
1 0.97 0.99 0.98 351
2 0.99 0.97 0.98 384

accuracy 0.98 1065
macro avg. 0.98 0.98 0.98 1065

Weighted avg. 0.98 0.98 0.98 1065

tAbLE 19

Knn performance after SMOtE

class Precision Recall f1 score Support
0 0.95 1.00 0.97 330
1 0.84 0.98 0.91 351
2 0.99 0.80 0.88 384

accuracy 0.92 1065
macro avg. 0.93 0.93 0.92 1065

Weighted avg. 0.93 0.92 0.92 1065

tAbLE 21

SvM performance after SMOtE

class Precision Recall f1 score Support
0 0.98 1.00 0.99 330
1 0.95 1.00 0.97 351
2 1.00 0.94 0.97 384

accuracy 0.98 1065
macro avg. 0.98 0.98 0.98 1065

Weighted avg. 0.98 0.98 0.98 1065

tAbLE 23

Lr performance after SMOtE

class Precision Recall f1 score Support
0 0.73 0.77 0.75 330
1 0.62 0.66 0.64 351
2 0.72 0.64 0.68 384

accuracy 0.69 1065
macro avg. 0.69 0.69 0.69 1065

Weighted avg. 0.69 0.69 0.69 1065
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3.5. dt
tAbLE 24

dt performance before SMOtE

class Precision Recall f1 score Support
0 0.96 0.87 0.91 30
1 0.74 0.85 0.79 27
2 0.98 0.98 0.98 367

accuracy 0.96 424
macro avg. 0.89 0.90 0.89 424

Weighted avg. 0.96 0.96 0.96 424

3.6. gnb
tAbLE 26

gnb performance before SMOtE

class Precision Recall f1 score Support
0 0.50 0.33 0.40 30
1 0.16 0.56 0.25 27
2 0.93 0.79 0.85 367

accuracy 0.74 424
macro avg. 0.53 0.56 0.50 424

Weighted avg. 0.85 0.74 0.78 424

tAbLE 25

dt performance after SMOtE

class Precision Recall f1 score Support
0 0.98 0.98 0.98 330
1 0.97 0.97 0.97 351
2 0.96 0.97 0.96 384

accuracy 0.97 1065
macro avg. 0.97 0.97 0.97 1065

Weighted avg. 0.97 0.97 0.97 1065

tAbLE 27

gnb performance after SMOtE

class Precision Recall f1 score Support
0 0.87 0.36 0.51 330
1 0.47 0.95 0.63 351
2 0.89 0.50 0.64 384

accuracy 0.61 1065
macro avg. 0.74 0.60 0.59 1065

Weighted avg. 0.74 0.61 0.60 1065

now, after model evaluation is done, we need to find out the importance of each feature 
and how significant it is in developing a model. So, as we saw above that random Forest is the 
best performing models among others therefore feature importance has been derived on the basis 
of random Forest model and the same has been presented in Fig. 12. Slope angle seems to be 
most influential among all followed by height and unit weight. the feature importance obtained 
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from random Forest just gives the importance score it does not tell us about the significance of 
the parameter whether the parameter is really important from model point of view or the model 
performs equally as well by eliminating that feature or group of features. So, as discussed in the 
previous section the random Forest model has been run by eliminating each feature at a time 
and significance testing in the form of p-value has been obtained for each parameter. And it has 
been found that the p-value for each parameter is less than 0.05 threshold thus, proving the sig-
nificance of each parameter. And also, a plot has been presented in Fig. 13 showing the value of 
coefficients for each parameter after showing the real importance of each feature in contributing 
to the accuracy of the model.
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Fig. 13. Feature importance using new technique

4. Validation

For the purpose of validation two actual existing mines in Jharkhand, india has been con-
sidered. due to data confidentiality policy the exact location and name of mines has not been 
disclosed but the plans and sections for different dump profiles has been presented in the Fig. 14 
and Fig. 18. For the purpose of validation, the values of geomechanical properties and external 
factors have been taken as mean value of the respective parameters provided in table. 

4.1. mine 1

For Mine 1, dump section 100, section 300, section 600 has been considered for valida-
tion in this study. Fig. presents the model geometry for different dump slopes which has been 
used as input in geoStudio for predicting the stability of slopes. tAbLE 28 presents the com-
parison of stability status of the section of slopes under different conditions mentioned in the 
table between Morgenstern-price method predicted stability and random forest based predicted  
Stability.
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Fig. 14. Section of overburden dumps for Mine 1

Fig. 15. Model geometry of section-100
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tAbLE 28

Comparison of stability as predicted by Morgenstern price method and rF  
model for Mine 1

cross-section analysed 
for stability analysis

Sections subjected 
to different external 

factors

Stability by 
morgenstern Price 

method

Stability prediction by 
Random forest based 

classification model
Section 100 dry Long-term stable Long-term stable
Section 100 Saturated Long-term stable Long-term stable
Section 100 Wind & rain Long-term stable Long-term stable
Section 100 blast Long-term stable Long-term stable
Section 100 Cloud burst Short-term stable Long-term stable
Section 300 dry Long-term stable Long-term stable
Section 300 Saturated Long-term stable Long-term stable
Section 300 Wind & rain Long-term stable Long-term stable
Section 300 blast Long-term stable Long-term stable
Section 300 Cloud burst Long-term stable Long-term stable
Section 600 dry Long-term stable Long-term stable
Section 600 Saturated Long-term stable Long-term stable
Section 600 Wind & rain Long-term stable Long-term stable
Section 600 blast Long-term stable Long-term stable
Section 600 Cloud burst Long-term stable Long-term stable

Fig. 16. Model geometry of section-300

Fig. 17. Model geometry of section-600
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4.2. mine 2

For Mine 2, dump section aa1, section xx1 has been considered for validation in this study. 
Figs. 19 and 20 presents the model geometry for different dump slopes which has been used as 
input in geoStudio for predicting the stability of slopes. tAbLE 29 presents the comparison of 
stability status of the section of slopes under different conditions mentioned in the table between 
Morgenstern-price method predicted stability and random forest based predicted Stability.

Fig. 18. Section of overburden dumps for Mine 2

Fig. 19. Model geometry of section-aa1
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Fig. 20. Model geometry of section-xx1

tAbLE 29

Comparison of stability as predicted by Morgenstern price method and rF model for Mine 2

cross-section analysed 
for stability analysis

Sections subjected 
to different external 

factors

Stability by 
morgenstern Price 

method

Stability prediction by 
Random forest based 

classification model
Section xx1 dry Long-term stable Long-term stable
Section xx1 Saturated Long-term stable Long-term stable
Section xx1 Wind & rain Long-term stable Long-term stable
Section xx1 blast Long-term stable Long-term stable
Section xx1 Cloud burst Short-term stable Short-term stable
Section aa1 dry Long-term stable Long-term stable
Section aa1 Saturated Long-term stable Long-term stable
Section aa1 Wind & rain Long-term stable Long-term stable
Section aa1 blast Long-term stable Long-term stable
Section aa1 Cloud burst Long-term stable Long-term stable

From the tAbLE 28 and tAbLE 29 it can be observed that out of 25 cases analysed for 
the purpose of validation the model predicted 24 of them accurately and misclassified in one of 
the instances.

5. conclusion

in this comprehensive study, we’ve employed machine learning algorithms to address a criti-
cal issue in the mining industry – specifically, the stability of dump slopes in indian opencast 
mines. through meticulous hyperparameter tuning and rigorous testing with both training and 
validation datasets, we’ve demonstrated the exceptional performance of random Forest, Support 
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vector Machine (SvM), and decision tree algorithms. Our random Forest model exhibited the 
highest accuracy, reaching a remarkable 98% on the test data and 96% when validated using 
real-world dump slope sections from two different opencast mines in india. One of the significant 
contributions of this research is the solution it offers for previous challenges in the field of geo-
technical engineering. these include dealing with class imbalances in the dataset and accounting 
for a variety of external factors such as weather conditions, blast vibrations, and cloudbursts. 
these have often been overlooked or inadequately addressed in prior studies. Furthermore, we 
introduced a novel technique for determining feature importance, which establishes the signifi-
cance of each input parameter in model development. this analysis revealed that while all the 
input factors considered are significant, the overall slope angle and height emerged as the most 
crucial variables. Conversely, wind conditions were found to have the least impact on dump slope 
stability. the advantages of our approach are manifold. not only is it more economical, but it 
also requires less computational power compared to traditional methods like limit equilibrium 
and numerical modelling. this makes our model both efficient and reliable, opening new avenues 
for future research and potential real-world applications in maintaining the safety and operational 
efficacy of opencast mines.

in summary, this study represents a landmark contribution to both the field of machine learn-
ing and geotechnical engineering. it offers a robust, efficient, and economical solution to a long-
standing and complex problem, thereby laying a solid foundation for future research endeavours.
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