
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 72(2), 2024, Article number: e148834
DOI: 10.24425/bpasts.2024.148834

MECHANICAL AND AERONAUTICAL ENGINEERING, THERMODYNAMICS

A global path-planning algorithm based on critical
point diffusion binary tree for a planar mobile robot

Zhiyong YANG, Lipeng WANG ∗ , Zejun CAO, Zhi ZHANG, and Zhuang XU

College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, 150001, China

Abstract. A global path-planning algorithm for robots is proposed based on the critical-node diffusion binary tree (CDBT), which solves the
problems of large memory consumption, long computing time, and many path inflection points of the traditional methods. First of all, the concept
of Quad-connected, Tri-connected, Bi-connected nodes, and critical nodes are defined, and the mathematical models of diverse types of nodes
are established. Second, the CDBT algorithm is proposed, in which different planning directions are determined due to the critical node as the
diffusion object. Furthermore, the optimization indices of several types of nodes are evaluated in real-time. Third, a path optimization algorithm
based on reverse searching is designed, in which the redundant nodes are eliminated, and the constraints of the robot are considered to provide
the final optimized path. Finally, on one hand, the proposed algorithm is compared with the A* and RRT methods in the ROS system, in which
four types of indicators in the eight maps are analysed. On the other hand, an experiment with an actual robot is conducted based on the proposed
algorithm. The simulation and experiment verify that the new method can reduce the number of nodes in the path and the planning time and is
suitable for the motion constraints of an actual robot.

Keywords: robot; global path; rapid planning; critical point; reverse optimization.

1. INTRODUCTION

The planar mobile robot is a complex system that integrates
perception, decision-making, planning, control, and other func-
tions. Path planning is an indispensable part of the planar mobile
robot applications [1,2]. Excellent planning algorithms improve
the operational efficiency of the robot and provide a solid foun-
dation for subsequent decision-making and control [3–5]. In
planar mobile robot path-planning tasks, the grid map is the
primary representation, which greatly reduces the complexity
of path planning by dividing the map into uniform rectangular
blocks [6–8].

Path-planning algorithm is an important part of robot naviga-
tion, mainly referring to the automatic planning of a path from
the starting point to the target point within the corresponding
area. In this process, it is necessary to ensure no collision oc-
curs and the cost of pathfinding is low. When conducting path
planning, we need to consider the acquisition of the starting
and ending positions, the environmental representation of ob-
stacles, planning methods, and search methods. The objective
of the path-planning problem is to find the shortest, fastest, or
most economical path considering various constraints, to fulfil
specific requirements. Global path planning refers to the pro-
cess of finding the optimal path from a starting point to a target
point, considering the constraints of the environment. Global
path planning can help robots quickly find the optimal path in
complex environments, avoiding situations where robots get lost

© 2024 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

∗e-mail: wlp_heu@163.com

Manuscript submitted 2023-02-25, revised 2023-09-07, initially
accepted for publication 2023-10-08, published in March 2024.

or take detours in maze-like environments, thereby improving
the navigation efficiency of robots.

The major algorithms of global path planning include Dijk-
stra, A*, LPA*, D*, D* Lite, etc. [9–14]. LPA*, D*, and D*
Lite are mainly used to complete path planning under dynamic
conditions. A* algorithm is often used to deal with the static
environment. In recent years, many scholars have improved the
algorithm above from different viewpoints. For example, Song
et al. [15] have improved the heuristic function of A* to make
it closer to the actual distance between the start and to tar-
get. Yang et al. [16] combined A* with a bacterial foraging
optimization algorithm to improve planning efficiency. Kim et
al. [17] proposed a ray casting and tracking, which radiates lim-
ited light from the starting node, and reflects light through the
collision with obstacles until reaching the target area. Zhang
et al. [18] proposed two-phase A* with the adaptive heuristic
weights, which generates an approximately optimal global path,
effectively.

The DB-CNN proposed by Zhang et al. [19] combined deep
reinforcement learning with a path-planning mission, which es-
timates the value function through the neural network to com-
plete the global path planning. Xia et al. [20] improved the quan-
tum ant colony algorithm, which is an algorithm that benefits
from the high efficiency of quantum computing and the opti-
mization ability of the ant colony algorithm. Huang et al. [21]
improved the particle swarm optimization method. The final
candidate path competes with the overall best candidate path
based on the standard particle swarm optimization, which im-
proved the search speed and avoided local minimum. Luan et
al. [22] applied a genetic algorithm to path planning and a com-
bined memory algorithm to solve the global path-planning task
of a differential wheeled robot.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 2, p. e148834, 2024 1

https://orcid.org/0000-0002-7987-5947
mailto:wlp_heu@163.com

Z. Yang, L. Wang, Z. Cao, Z. Zhang, and Z. Xu

Yu et al. [23] designed the NPQ-RRT* algorithm, in which
the attitude of the robot is combined to adjust the angle of
the next planning step. Song et al. [24] propose a real-time
obstacle avoidance decision model based on machine learning
algorithms, an improved smooth rapidly exploring random tree
algorithm, and an improved hybrid genetic algorithm-ant colony
optimization. Wang et al. [25] designed a multi-heuristic strat-
egy for RRT and optimized the multiple modules such as col-
lision detection, goal-biased guidance, bidirectional extension,
goal-point attempt, and branch pruning. Pazderski [26] utilized
a motion controller and a navigation velocity field to plan the
path of the robot.

Among the methods mentioned above, the RRT series meth-
ods are not suitable for maps with narrow spaces, and their
operational efficiency will be extremely low on such maps. The
improved particle swarm and genetic algorithms are prone to
falling into local minima, which prevents them from finding the
optimal path under certain complex conditions. Furthermore,
although the improved A* algorithm with a heuristic function
can slightly enhance search efficiency, it does not significantly
reduce search time.

A method for global path planning in dense environments
based on a critical node diffusion binary tree is proposed to
address the problems in global path planning in complex envi-
ronments. First, the node types in the grid map are classified
into four categories: Bi-connected nodes, Tri-connected nodes,
and Quad-connected nodes. Second, the entire path-planning
process is divided into two stages: the search stage and the dif-
fusion stage. In the search stage, the current node is searched
along a certain direction until the node type of the current node
changes, and then it transitions to the diffusion stage. In the dif-
fusion stage, the diffusion direction for the next search stage is
determined based on the critical nodes obtained from the pre-
vious search. Third, after finding the path, the path is reversed
by selecting the parent nodes to ensure the smoothness of the
global path. Finally, the turning radius is minimized to smooth
the path, and the stability of the robot movement is improved.

The sections of this paper are arranged as follows: The concept
and the model of critical nodes are proposed in Section 2. The
path optimization method based on the principle of critical node
diffusion binary tree is introduced in Section 3. The compared
simulations and actual experiments are described in Section 4.
Section 5 concludes the whole paper.

2. MAP DESCRIPTION
2.1. Grid map description
A grid map is a map represented by a large number of grids
composed of cells. For a two-dimensional space, the size of the
grid in the grid map is only determined by the dimensions of the
map. The grid map is shown in Fig. 1a. The blank grids are the
obstacles, and the white grids are the access area for the robot.

When the robot is in the blank area, the walking direction is
shown in Fig. 1b. The red dot represents the current position
of the robot, and the arrow represents the direction, where the
robot can move. When there is no obstacle, the robot can move
in eight directions.

(a) Obstacles in the map (b) Walking direction of the robot

Fig. 1. Grid map and the movement directions of the robot

A* algorithm spreads all adjacent nodes so that the search
time is long. To solve this problem, the node is restricted to
moving in the directions of up, down, left, or right, and is not
allowed to move diagonally in this paper. Therefore, each node
in the grid map can be divided into the following five categories:
1. Quad-connected node: there are no obstacles in any of the

four directions of movement at the current node, indicating
that the node is free to move in any of the four directions,
which are marked as 𝑁4.

2. Tri-connected node: among the four directions of movement
at the current node, only one direction is obstructed, allow-
ing the node to move freely in any of the remaining three
directions, which is marked as 𝑁3.

3.) Bi-connected node: among the four directions of movement
at the current node, two directions have obstacles, indicating
that the node can freely move in any of the remaining two
directions, which are marked as 𝑁2.

4. Obstacle node: impassable node, marked as 𝑁0.
5. Target node: the endpoint of the path is represented as 𝑁𝑇 .

The nodes described above are shown in Fig. 2.

(a) Quad-connected
node

(b) Tri-connected
node

(c) Bi-connected
node

Fig. 2. Node types of this paper

2.2. Critical node model description
The critical node in the robot global path planning is proposed
in this paper, which is represented by 𝑁crit. The critical node
represents the mutation of the node type. If a node 𝑁 in the grid
map meets one of the following conditions, it is the critical node
in this paper:

(1) When Quad-connected nodes are searching in a certain
direction, the obstacle nodes or Tri-connected nodes appear in

2 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 2, p. e148834, 2024

A global path-planning algorithm based on critical point diffusion binary tree for a planar mobile robot

front of them, which can be represented as follows:

𝑁crit = 𝑁

(
𝑁4

𝐴𝑁𝑌−−−−→ 𝑁0 |𝑁3

)
. (1)

Equation (1) represents that if the current node is Quad-
connected, the critical node can be searched along any direction
until a Tri-connected node is found or an obstacle is encountered
in the search direction. The node found during this search is the
critical node, denoted as 𝑁crit.

(2) When the Quad-connected nodes are searching in a certain
direction, the passing node is the same as the coordinate of the
target node, which can be represented as follows:

𝑁crit = 𝑁

(
𝑁4

𝐴𝑁𝑌−−−−→ 𝑁𝑇 (𝑥) |𝑁𝑇 (𝑦)
)
. (2)

Equation (2) represents that if the current node is Quad-
connected, the critical node can be searched along any direction
until the 𝑥-coordinate or y-coordinate is the same as the desti-
nation. The node found during this search is the critical node,
denoted as 𝑁crit.

(3) When a Tri-connected node or a Bi-connected node is
searching along an obstacle, an obstacle appears in front of it,
which can be represented as follows:

𝑁crit = 𝑁

(
𝑁2 |𝑁3

𝑂𝐵𝑆−−−−→ 𝑁0

)
. (3)

Equation (3) represents that if the current node is a Tri-connected
node or a Bi-connected node, the critical node can be searched
along the obstacle-free direction until an obstacle is encountered.
The node found during this search is the critical node, denoted
as 𝑁crit.

(4) When a Tri-connected node or a Bi-connected node is
searching along an obstacle, the passing node suddenly changes
to a Quad-connected node, which can be represented as follows:

𝑁crit = 𝑁

(
𝑁2 |𝑁3

𝑂𝐵𝑆−−−−→ 𝑁4

)
. (4)

Equation (4) represents that if the current node is a Tri-connected
node or a Bi-connected node, it is possible to search for critical
nodes in the direction without obstacles until the x-coordinate
or y-coordinate is the same as the endpoint. The nodes found
during this search process are critical nodes, denoted as 𝑁crit.

The four critical nodes described above can be shown in
Figs. 3, 4, and 5.

Fig. 4. Condition of meeting the Tri-connected critical node

Fig. 5. Condition of meeting the Bi-connected critical node

In the figures above: the red node is the starting node, the
blue node is the target node, the black node is the obstacle, the
grey node is the path node in the search process, the yellow node
is the critical node, the orange node is a special critical node,
which will be added to the search list in diffusion.

Remark 1. When the critical node is found, the search mission
in this direction is completed, and the found critical node is
treated as the current node. Furthermore, the search direction
will be confirmed by the critical node type.

Remark 2. To improve the search efficiency and applicability of
the proposed algorithm, the current search direction is neglected
in the next search process, which guarantees the search area is
not repeated.

3. SEARCH ALGORITHM BASED ON CRITICAL-NODE
DIFFUSION BINARY TREE

3.1. Critical-node diffusion binary tree
The critical node diffusion binary tree algorithm in this paper
divides the finding process of the key nodes into two stages: the
search stage and the diffusion stage. The search stage refers to
finding a critical node in a certain direction from the previous
critical node. The diffusion stage refers to specifying the multi-
ple directions for the search task from the previous critical node.
Both processes can be shown in Fig. 6.

In the figure above, the search stage is stopped until a critical
node is found during the search process. All the critical nodes
found in the search process are added to the OpenList, which
is a priority queue that stores the critical nodes obtained during
each search. In the OpenList, the critical nodes are arranged in
ascending order based on the cost value of the critical nodes.Fig. 3. Condition of meeting the Quad-connected critical node

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 2, p. e148834, 2024 3

Z. Yang, L. Wang, Z. Cao, Z. Zhang, and Z. Xu

Fig. 6. Search and diffusion stages

Then the diffusion stage is started, in which the search directions
are decided so that the search phase goes on again.

In the diffusion stage, if the start node is a Quad-connected
one, the 𝑥-axis and 𝑦-axis of the node that points towards the
target node are specified as the search directions. If the start node
is a Tri-connected or Bi-connected one, the direction along the
obstacle is specified as the searching direction. It is noted that
the repeated search direction should be eliminated due to its
parent node position.

In the search process, when the fourth type of a critical node
(in Section 2.2) is found, these critical nodes and the nodes
where the obstacle disappears are all added to the OpenList.
The latter is a type of free critical node.

Remark 3. There is a strong purpose for the Quad-connected
node. That means if the next critical node is the Quad-connected
node (It is noted that this node is a four-connected node, which
is neither the start node nor the target node), the target node will
be finally searched. In this process, other critical nodes may be
found, and result in repeated search missions. Therefore, when
a Quad-connected node is searched, i.e., the node where the
obstacle disappears is also regarded as a special critical node,
which provides more effective search efficiency.

3.2. Critical-node diffusion binary tree algorithm
After the determination of the search direction and acquirement
of the critical node in the diffusion and search stages, the cost
function of all nodes stored in the OpenList is calculated as
follows:

𝐹cost = 𝐺𝑠𝑐 +𝐻𝑐𝑡 . (5)

where, 𝐹cost is the total generation value of the nodes, 𝐺𝑠𝑐 is
the actual path from the start node to the current node. 𝐻𝑐𝑡 is
the heuristic distance, which represents the estimated Euclidean
distance from the current node to the target node. The node with
the lowest generation value is selected as the current node to
execute the subsequent diffusion and search stages. It is worth
mentioning that the heuristic function only affects the shape of
the path and the path-planning time. In other words, using any
heuristic function, CDBT can find a path from the starting node
to the target node.

The pseudo-code of the algorithm is as follows:

Algorithm 1. CDBT Algorithm
Input: 𝑁𝑆 , 𝑁𝑇 .
Output: A path Γ from 𝑁𝑆 to 𝑁𝑇 .
1: 𝑁cur← 𝑁𝑆 ;
2: 𝑂𝑝𝑒𝑛𝐿𝑖𝑠𝑡← 𝑁𝑈𝐿𝐿;
3: 𝐺𝑁𝑆

← 0;
4: while (𝑁cur ≠ 𝑁𝑇) do
5: if (𝑁𝑐𝑢𝑟 = 𝑁4) then
6: 𝑁crit← 𝑁 (𝑁4

𝐴𝑁𝑌−−−−−→ 𝑁0 |𝑁3 |𝑁𝑇 (𝑥) |𝑁𝑇 (𝑦));
7: end if
8: if (𝑁cur = 𝑁3 |𝑁2) then
9: 𝑁crit = 𝑁 (𝑁2 |𝑁3

𝑂𝐵𝑆−−−−→ 𝑁0 |𝑁4);
10: end if

11: 𝑁crit
𝑓 𝑎𝑡ℎ𝑒𝑟
−−−−−−−→ 𝑁cur;

12: 𝐺𝑁crit ← 𝐺𝑁cur +𝐷𝑁cur→𝑁crit ;
13: 𝐹𝑁crit ← 𝐺𝑁crit +𝐻𝑁crit→𝑁𝑇

;

14: 𝑂𝑝𝑒𝑛𝐿𝑖𝑠𝑡
𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘
←−−−−−−−−−− 𝑁crit;

15: for (𝑁crit in 𝑂𝑝𝑒𝑛𝐿𝑖𝑠𝑡) do
16: 𝑁cur← 𝑁𝐹min ;
17: end for
18: end while
19: 𝑁cur← 𝑁𝑇 ;
20: while (𝑁cur ≠ 𝑁𝑈𝐿𝐿) do

21: Γ
𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘
←−−−−−−−−−−−− 𝑁cur;

22: 𝑁cur← 𝑁 𝑓cur ;
23: end while
24: return Γ;

In the table above, 𝑂𝑝𝑒𝑛𝐿𝑖𝑠𝑡 is the set of expansion nodes,
𝐺∗, 𝐻∗, and 𝐹∗ are the real cost, estimated cost, and total cost
of a node ∗, respectively. 𝑓∗ is the parent node of the node ∗.

The start position of the robot is the current node, and the
destination is the target node. 𝐺𝑠𝑐 of the start, node is set as 0. If
the current node is Quad connected, the target node is searched
along the 𝑥-axis and 𝑦-axis until the critical node is acquired. If
the current node is Tri-connected, the parent node of the current
node is recorded, and then the direction of the parent node will
not be searched during searching along the obstacle. When a
special node (mentioned by Remark 3) is encountered in the
search process, the critical node and this special node are also
marked as the critical nodes. All the critical nodes are added to
the OpenList and then are calculated, and the current node is
selected as the parent node of the critical nodes that are added
to the OpenList during this search stage. The node with the
minimal 𝐹cost in the OpenList is selected as the current node,
and the search and diffusion stages are repeated until the current
node is the destination.

Remark 4. The search strategy of A* is to calculate all the
neighbour nodes around the current node. In other words, A*
has to judge eight nodes (around the current node) in each search
process, even if these nodes were judged in the previous judg-
ment. On the contrary, the CDBT in our manuscript only judges
one, two, or three nodes. Though the computational complexity

4 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 2, p. e148834, 2024

A global path-planning algorithm based on critical point diffusion binary tree for a planar mobile robot

of CDBT and A* cannot be described by a specific expression,
the computational complexity of CDBT is lower than that of A*
in all kinds of scenarios from the perspective of node search
strategy.

4. SECONDARY OPTIMIZATION BASED ON REVERSE
SEARCHING AND ROBOT CONSTRAINTS

4.1. Reverse parent node selection
In global path planning, it is generally desired to minimize
the number of turning points on the desired path, to achieve
a smoother trajectory. Additionally, it is important to ensure that
the direction of the path does not change abruptly, as this pro-
motes stability in the robot movement and enhances its overall
efficiency. In this article, the smoothness of the path refers to
the number of turning points in the path. The fewer inflection
points, the higher the smoothness of the path. Motion efficiency,
on the other hand, refers to the angle of change in direction when
the path changes. The smaller the angle, the higher the motion
efficiency is considered to be. There are redundant nodes in the
feasible path in Section 3. Thus, a reverse searching method is
designed to minimize the nodes, which guarantees the smooth-
ness of the motion path and improves the motion efficiency of
the robot.

In the initial feasible path, a trace backward is conducted from
the target node to the start node. The 𝑛𝑖th and 𝑛𝑖−2th nodes can
be connected and the 𝑛𝑖−1 can be eliminated under the condition
of the following equation:

𝜁 (𝑛𝑖 , 𝑛𝑖−2) = ∅, 𝑛𝑖−2 ≠ 0, 𝑖 = 𝑁,𝑁 −1, . . . ,0, (6)

where, 𝑛𝑖 and 𝑛𝑖−2 are the two nodes selected in the reverse trac-
ing process. 𝜁 (∗,∗) represents whether the connection between
both nodes passes through the obstacle. 𝜁 (∗,∗) = ∅ indicates that
it does not pass through the obstacle. Otherwise, it indicates that
it passes through the obstacle. The equation above completes the
path-smoothing process.

The pseudo-code for path optimization is as follows:

Algorithm 2. Reverse node finding algorithm
Input: the old path Γ

Output: a new path P

1: 𝑁𝑐𝑢𝑟
𝑡𝑎𝑖𝑙_𝑛𝑜𝑑𝑒←−−−−−−−−− Γ;

2: while (𝑓Ncur ≠ 𝑁𝑈𝐿𝐿) do
3: 𝑁1← 𝑓 𝑓𝑁cur

;
4: if (No obstacle between 𝑁cur and 𝑁1) then
5: 𝑓𝑁cur ← 𝑓 𝑓𝑁cur

;
6: Else
7: 𝑁cur← 𝑓𝑁cur ;
8: end if
9: end while

10: 𝑁cur
𝑡𝑎𝑖𝑙_𝑛𝑜𝑑𝑒←−−−−−−−−− Γ;

11: while (𝑁cur ≠ 𝑁𝑈𝐿𝐿) do

12: 𝑃
𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘
←−−−−−−−−−− 𝑁cur;

13: 𝑁cur← 𝑁 𝑓cur ;
14: end while
15: return P;

The flow of the critical node diffusion-based binary tree
search algorithm and the path optimization algorithm based on
reverse searching are shown in Fig. 7.

Start

World map to grid map

Set start node as current

node

Find target node?

Yes

Acquire the initial path

Reverse optimization

Acquire the final path

End

Search and

add critical
nodes

Select node

with
smallest cost

No

Fig. 7. Reverse search schematic diagram

Taking the grid map in Fig. 8a as an example, the planning and
optimization effects of the critical node diffusion-based binary
tree search algorithm and the path optimization algorithm based
on reverse searching are as follows in Fig. 8b.

10

98

6

3 1 4

2

5 7

11

12

(a) Path before optimization

10

98

6

3 1 4

2

5 7

11

12

(b) Path after optimization

Fig. 8. Path reverse optimization

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 2, p. e148834, 2024 5

Z. Yang, L. Wang, Z. Cao, Z. Zhang, and Z. Xu

Figures 8a and 8b illustrate that the optimization algorithm
eliminates unnecessary path-turning nodes and can quickly find
paths with fewer turning nodes from the starting node to the
target node, improving the overall smoothness of the path.

4.2. Path secondary search based on critical nodes
The planned path in Section 4.1 does not consider the maximum
steering angle of the actual robot. A secondary search scheme
based on critical nodes is proposed, which optimizes the global
path twice. The principle of this method is to make the path
corner so small that the burden of subsequent local planning is
reduced. The principle can be shown in Fig. 9.

B

C

D

A

E

(a) Before the first optimization

B

C

D

A

E

(b) After the first optimization

Fig. 9. Path optimization for the first time

In the figure above, yellow nodes are critical ones, black
nodes are obstacles, and grey nodes are the search direction.
When there is no secondary search, the planned path is shown
in Fig. 9b. The path corner at the critical node 𝐶 is large, which
may be larger than the maximum steering angle of the robot.
The path shown in Fig. 9b is searched again. The path corner of
the planned route at the processed critical node 𝐶 is as follows:

𝜃𝐶 = arccos
©«
−−→
𝐸𝐶 · −−→𝐶𝐴−−→𝐸𝐶 · −−→𝐶𝐴

ª®®¬ ≥ 𝛿, (7)

where, ‖ ∗ ‖ represents the Euclidean distance. 𝛿 is the maximum
steering angle of the robot. It is important to note that some types
of planar mobile robots such as differential drive robots and om-
nidirectional robots can rotate in place without requiring a min-
imum turning radius. However, to achieve a smoother trajectory
for the entire robot, it is necessary to utilize the optimization
methods mentioned earlier. In such cases, the minimum turning
radius of the vehicle can be set as either the radius of the robot
or the length of the vehicle.

In Fig. 10, a new critical node 𝑂 on the segment 𝐴𝐵 is
searched, where 𝐴 and 𝐵 are the previous two critical nodes of
the processed critical node 𝐶.

Therefore, the following equation is satisfied:{
𝜃𝐶 ≤ 𝛿,

𝜃𝑂 ≤ 𝛿,
(8)

B

C

D

A

O E

Fig. 10. Secondary path optimization

where, 𝜃𝐶 and 𝜃𝑂 are shown below:

𝜃𝐶 = arccos
©«
−−→
𝐴𝐶 · −−→𝐶𝑂−−→𝐴𝐶 · −−→𝐶𝑂ª®®¬ ,

𝜃𝑂 = arccos
©«
−−→
𝐶𝑂 · −−→𝑂𝐸−−→𝐶𝑂 · −−→𝑂𝐸

ª®®¬ .
(9)

The path corner at each critical node can be less than the maxi-
mum steering angle of the robot as far as possible, which makes
the global path consistent with the robot motion.

5. EXPERIMENT AND ANALYSIS
In this section, we conducted a total of four experiments to com-
pare four algorithms: CDBT, A*, RRT, and RRT*. We used path
length, planning time, number of expanded nodes, and number
of turning points as indicators. The first experiment displayed
the expanded nodes for the four algorithms. The second and
third experiments compared the four algorithms on the same
map and different maps, respectively. The final experiment ap-
plied the CDBT algorithm to a real-world scenario.

5.1. Comparison of the number of expansion nodes
Firstly, we specified the starting and ending points on a blank
map, and the diffusion nodes corresponding to the four path-
planning algorithms are shown in Fig. 11.

As shown in Fig. 11 and Table 1, the green nodes depict
the paths planned by different algorithms, and the red nodes
signify the expansion nodes required by each algorithm. It is
evident from the figure that the A* algorithm exhibits a higher

Table 1
Expansion nodes number

Algorithm The number of expansion nodes

A* 168

CDBT 12

RRT 48

RRT* 1458

6 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 1, p. e148834, 2024

A global path-planning algorithm based on critical point diffusion binary tree for a planar mobile robot

(a) A* (b) CDBT

(c) RRT (d) RRT*

Fig. 11. Comparison of the number of expansion nodes

number of expansion nodes due to its selection of only adjacent
nodes for diffusion. The RRT algorithm obtains expansion nodes
through random sampling, resulting in a relatively smaller num-
ber of nodes compared to A*. The RRT* algorithm necessitates
continuous sampling for path optimization once it is obtained,
leading to the highest number of expansion nodes among the
four algorithms. Fortunately, the path generated by RRT* is
considerably smoother than that of RRT. The CDBT algorithm
selectively chooses critical nodes for diffusion, resulting in the
fewest expansion nodes compared to the aforementioned three
algorithms. This is also the primary factor enabling the CDBT
algorithm to plan faster than the other three algorithms.

5.2. Comparison on the same map
Firstly, we conducted experiments on the same map, selecting
four different starting points and destinations for comparison of
the four indicators mentioned above, as shown in Fig. 12.

(a) Experiment (1) (b) Experiment (2)

(c) Experiment (3) (d) Experiment (4)

Fig. 12. Comparison of algorithms on the same map (The paths planned
by the A*, RRT, RRT*and CDBT algorithms are depicted by the green,

red, purple, and blue paths, respectively.)

The yellow nodes in Fig. 12 indicate the starting point, while
the orange nodes represent the destination. Table 2 and Figs. 13–
16 illustrate the comparison of these four algorithms based on
four indicators.

Table 2
Comparison of algorithms on the same map

Method ID
Path

length
(m)

Expansion
nodes

number

Path-turning
nodes

number

Path-planning
time
(ms)

A* (1) 31 20926 82 805.4

A* (2) 35 44723 105 1535.8

A* (3) 26 12142 67 898.7

A* (4) 44 76856 161 2512.3

CDBT (1) 33 1004 13 9.3

CDBT (2) 38 3211 13 63.1

CDBT (3) 31 278 11 3.2

CDBT (4) 48 8792 13 438.6

RRT (1) 39 4679 75 245.1

RRT (2) 45 2252 65 56.1

RRT (3) 34 394 82 4.1

RRT (4) 63 6029 165 343.4

RRT* (1) 36 19832 70 1690.6

RRT* (2) 44 24478 79 2392.3

RRT* (3) 30 25114 43 1611.2

RRT* (4) 55 32786 96 2824.1

Fig. 13. Comparison of path-planning time on the same map

As shown in Figs. 12–15, it can be observed that both CDBT
and RRT achieve paths in a similar amount of time for path plan-
ning, which is faster than A* and RRT*. In terms of path length,
the path length obtained by the CDBT algorithm is approximate

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 2, p. e148834, 2024 7

Z. Yang, L. Wang, Z. Cao, Z. Zhang, and Z. Xu

Fig. 14. Comparison of path length on the same map

Fig. 15. Comparison of expansion nodes on the same map

Fig. 16. Comparison of turning nodes on the same map

to the path length obtained by A*. CDBT also outperforms in
terms of the number of expanded nodes and turning points.
These findings suggest that CDBT possesses the capability to
rapidly plan paths similar to RRT while maintaining path lengths
similar to A*.

To further validate the superiority of the CDBT algorithm,
we conducted experiments on eight diverse types of maps.

5.3. Comparison of different maps
To further validate the path-planning performance of CDBT,
a comparison was conducted between A*, RRT, RRT*, and
CDBT in eight different simulated environments. The map types
included simple maps, complex scenes, and large-scale maps.
The comparison results are shown in Fig. 17.

(a) Map (1) (b) Map (2)

(c) Map (3) (d) Map (4)

(e) Map (5) (f) Map (6)

8

(g) Map (7) (h) Map (8)

Fig. 17. Comparison of algorithms on different maps (The green, red,
purple, and blue paths in the figure represent the planned routes by the

A*, RRT, RRT*, and CDBT algorithms, respectively.)

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 2, p. e148834, 2024

A global path-planning algorithm based on critical point diffusion binary tree for a planar mobile robot

The yellow nodes in Fig. 17 denote the initial point, while the
orange nodes indicate the target location. Table 3 and Figs. 18–
21 present a comparison of these four algorithms using four
metrics.

Table 3
Comparison of algorithms on eight maps

Method Map
ID

Path
length
(m)

Expansion
nodes

number

Path-turning
nodes

number

Path-planning
time
(ms)

A* (1) 39 46275 149 1165.7

A* (2) 12 5316 44 107.8

A* (3) 21 13883 77 405.0

A* (4) 37 33465 132 808.3

A* (5) 14 11371 35 683.8

A* (6) 31 6243 183 154.1

A* (7) 12 4012 36 56.5

A* (8) 26 19620 81 561.9

CDBT (1) 46 5451 12 110.9

CDBT (2) 15 2084 19 17.1

CDBT (3) 22 6350 22 143.9

CDBT (4) 38 4419 44 250.3

CDBT (5) 14 427 5 2.3

CDBT (6) 30 5061 13 100.7

CDBT (7) 13 2364 6 22.5

CDBT (8) 28 7879 25 341.3

RRT (1) 48 5141 97 157.5

RRT (2) 17 804 37 15.0

RRT (3) 27 960 62 9.8

RRT (4) 48 1167 83 20.9

RRT (5) 21 1437 54 32.8

RRT (6) 43 1650 103 47.5

RRT (7) 16 387 32 10.9

RRT (8) 42 2213 85 79.7

RRT* (1) 46 25028 87 2738.2

RRT* (2) 16 4032 40 387.7

RRT* (3) 24 10810 56 1523.8

RRT* (4) 45 7501 75 1029.5

RRT* (5) 19 5284 48 550.5

RRT* (6) 31 4231 67 431.6

RRT* (7) 14 2298 23 200.7

RRT* (8) 29 14001 70 2242.2

Fig. 18. Comparison of path-planning time on different maps

Fig. 19. Comparison of path length on different maps

Fig. 20. Comparison of expansion nodes on different maps

Fig. 21. Comparison of path-turning nodes on different maps

the CDBT algorithm possesses fast path-planning capabilities
similar to RRT while maintaining path lengths similar to A*.
In summary, the CDBT algorithm can quickly plan a path with
a length close to that planned by the A* algorithm, with much
fewer turning points than the A* path. This is highly beneficial
for robot motion, as it greatly reduces the challenges associated
with robot control and subsequent path smoothing.

5.4. Experiment with robot navigation
To verify the practicability of the actual robots, the Qingzhou
robot is selected to complete an experiment based on the pro-

In the figure above, four path-planning methods can achieve
global path planning. However, the CDBT method has signifi-
cantly fewer expansion nodes compared to other planning meth-
ods. Based on previous experiments, it can be demonstrated that

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 2, p. e148834, 2024 9

Z. Yang, L. Wang, Z. Cao, Z. Zhang, and Z. Xu

posed CDBT method, which can be seen in Fig. 22. The
Qingzhou robot is an unmanned learning robot, which provides
a set of hardware platforms. The Ackerman structure in the
Qingzhou robot provides the maximum steering radius and an-
gle of 35 cm and 45 degrees, respectively. The LiDAR on the
robot is Ydlidar X4 with a maximum measurement distance of
10 m. The mapping method for the robot adopted the Gmapping
algorithm, which is not described here.

Fig. 22. Qingzhou robot

Like A* and RRT, CDBT is a global path-planning algorithm
that can only be used in static maps. The path generated by
CDBT only includes position information and does not con-
tain trajectory information such as velocity and acceleration.
The global path serves as a rough planning direction for lo-
cal path planning. CDBT can be combined with existing local
path-planning algorithms to control vehicle motion.

After determining the starting and ending points of the robot,
the CDBT algorithm is employed to plan the global path. Once
the robot acquires the path information, it utilizes the DWA
algorithm for trajectory tracking. However, due to the limited
length of this article and the fact that the DWA algorithm is not
the primary focus of this research, this article only employs DWA
to verify the feasibility of CDBT path planning. The principles
of DWA will not be further elaborated on.

The CDBT algorithm is deployed to the Qingzhou robot. The
experiment scene is an indoor environment, which is shown in
Fig. 23.

Fig. 23. Experiment environment

The planning and actual paths of the robot are shown in
Fig. 24.

10

Fig. 24. Planning and actual paths of robot

 In Fig. 24, the orange point is the start point, the green point
is the goal point, the blue dotted line is the global path, and the
red solid line is the actual driving path of the robot. It can be
seen that the CDBT algorithm can plan the path of the robot,
and the final path of the Qingzhou robot is highly consistent
with global planning.

6. CONCLUSION
A robot global path-planning algorithm is developed, which is
based on the diffusion binary tree of critical nodes. This algo-
rithm effectively addresses the issues of low efficiency, excessive
path-turning nodes, and lengthy traditional path optimization.
The following conclusions are obtained: (1) the proposed algo-
rithm can improve the path optimization efficiency by diffusing
the critical node and improve the path smoothness by combining
the path reverse optimization process so that the robot can reach
the target node efficiently and safely. (2) In this paper, the CDBT
algorithm is second only to A* in path length and approximates
RRT in planning time. It also has superior performance in terms
of the number of path expansion nodes and path turning nodes.
(3) An experiment with the Qingzhou robot is completed, which
verifies the effectiveness of the proposed method. In conclusion,
the new global path-planning algorithm proposed in this paper
has a beneficial effect on path-turning nodes, optimization time,
etc. However, global path planning does not consider local path
planning in the presence of dynamic obstacles, which will be
further studied in the future.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 2, p. e148834, 2024

A global path-planning algorithm based on critical point diffusion binary tree for a planar mobile robot

ACKNOWLEDGEMENTS
This work was supported by the National Natural Science
Foundation of China (62173103), and by the Fundamental
Research Funds for the Central Universities of China (No.
3072022JC0402, 3072022JC0403).

NOMENCLATURE

∗−−−→

the search in a certain direction, and ∗ on the arrow
can be 𝐴𝑁𝑌 or 𝑂𝐵𝑆, which means searching in
any direction or along the edge of the obstacle,
respectively

𝑁2, 𝑁3, 𝑁4
Bi-connected node, Tri-connected node, and Quad-
connected node

𝑁0 the obstacle node

𝑁𝑆
the start node. 𝑁𝑆 (𝑥) and 𝑁𝑆 (𝑦) are the coordi-
nates of the start node

𝑁𝑇
the target node. 𝑁𝑇 (𝑥) and 𝑁𝑇 (𝑦) are 𝑥 and 𝑦

coordinates of the target node

REFERENCES
[1] W. Kowalczyk and K. Kozlowski, “Trajectory tracking and colli-

sion avoidance for the formation of two-wheeled mobile robots,”
Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 5, pp. 915–924, 2019.

[2] U. Libal and J. Plaskonka, “Noise sensitivity of selected kinematic
path following controllers for a unicycle,” Bull. Pol. Acad. Sci.
Tech. Sci., vol. 62, no. 1, pp. 3–13, 2014, doi: 10.2478/bpasts-
2014-0001.

[3] W. Chi, Z. Ding, and J. Wang, “A Generalized Voronoi Diagram-
Based Efficient Heuristic Path Planning Method for RRTs in Mo-
bile Robots,” IEEE Trans. Ind. Electron., vol. 69, no. 5, pp. 4926–
4937, 2021, doi: 10.1109/TIE.2021.3078390.

[4] J. Yang, C. Wang, and B. Jiang, “Visual perception enabled in-
dustry intelligence: state of the art, challenges and prospects,”
IEEE Trans. Ind. Inform., vol. 17, no. 3, pp. 2204–2219, 2020,
doi: 10.1109/TII.2020.2998818.

[5] K. Shu, H. Yu, and X. Chen, “Autonomous driving at intersec-
tions: A behavior-oriented critical-turning-point approach for de-
cision making,” IEEE-ASME Trans. Mechatron., vol. 27, no. 1,
pp. 234–244, 2021, doi: 10.1109/TMECH.2021.3061772.

[6] K. Wu, H. Wang, and M. A. Esfahani, “Achieving real-time
path planning in unknown environments through deep neural
networks,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 3, pp.
2093–2102, 2020, doi: 10.1109/TITS.2020.3031962.

[7] Q. Wei, H. Li, and X.S. Yang, “Continuous-time distributed
policy iteration for multicontroller nonlinear systems,” IEEE T.
Cybern., vol. 51, no. 5, pp. 2372–2383, 2020, doi: 10.1109/
TCYB.2020.2979614.

[8] S. Zhao, L. Shi, and W. Zhang, “Global dynamic path-planning
algorithm in gravity-aided inertial navigation system,” IET Sig-
nal Process., vol. 15, no. 80, pp. 510–520, 2021, doi: 10.1049/
sil2.12056.

[9] V. Venkatesan, J. Seymour, and D. J.Cappelleri, “Micro-assembly
sequence and path planning using subassemblies,” J. Mech.
Robot., vol. 10, no. 6, 2018, doi: 10.1115/1.4041333.

[10] E. Çakır, Z. Ulukan, and T. Acarman, “Time-dependent Dijk-
stra’s algorithm under bipolar neutrosophic fuzzy environment,”
J. Intell. Fuzzy Syst., vol. 42, no. 1, pp. 227–236, 2022, doi:
10.3233/JIFS-219188.

[11] G. Dong, F. Yang, and K. L. Tsui, “Active Balancing of Lithium-
Ion Batteries Using Graph Theory and A-Star Search Algorithm,”
IEEE Trans. Ind. Inform., vol. 17, no. 4, pp. 2587–2599, 2021,
doi: 10.1109/TII.2020.2997828.

[12] P. Skačkauskas and E. Sokolovskij, “Analysis of the Hybrid
Global Path Planning Algorithm for Different Environments,”
Transp. Telecommun. J., vol. 20, no. 1, pp. 1–11, 2019, doi:
10.2478/ttj-2019-0001.

[13] S. Kadry, G. Alferov, and V. Fedorov, “D-Star Algorithm Modifi-
cation,” Int. J. Online Biomed. Eng., vol. 16, no. 8, pp. 108–113,
2020, doi: 10.3991/ijoe.v16i08.14243.

[14] N. Ma, J. Wang, and J. Liu, “Conditional Generative Adversar-
ial Networks for Optimal Path Planning,” IEEE Trans. Cogn.
Dev. Syst., vol. 14, no. 2, pp. 662–671, 2022, doi: 10.1109/
TCDS.2021.3063273.

[15] X. Song, S. Gao, and C. B. Chen, “A New Hybrid Method in
Global Dynamic Path Planning of Mobile Robot,” Int. J. Comput.
Commun. Control, vol. 13, no. 6, pp. 1032–1046, 2022, doi:
10.15837/ijccc.2018.6.3153.

[16] Y. Long, Z. Zuo, and Y. Su, “An A*-based bacterial foraging
optimisation algorithm for global path planning of unmanned
surface vehicles,” J. Navig., vol. 73, no. 6, pp. 1–16, 2020, doi:
10.1017/S0373463320000247.

[17] I.S. Kim, W.K. Lee, and Y.D. Hong, “Simple global path plan-
ning algorithm using a ray-casting and tracking method,” J.
Intell. Robot. Syst., vol. 90, no. 6, pp. 101–111, 2018, doi
10.1007/s10846-017-0642-2.

[18] K. Zhang, Y. Yang, andM. Fu, “Two-phase A*: A real-time global
motion planning method for non-holonomic unmanned ground
vehicles,” Proc. Inst. Mech. Eng. Part D-J. Automob. Eng., vol.
235, no. 4, pp. 1–16, 2021, doi: 10.1177/0954407020948397.

[19] J. Zhang, Y. Xia, and G. Shen, “A novel learning-based global path
planning algorithm for planetary rovers,” Neurocomputing, vol.
361, no. 1, pp. 69–76, 2019, doi: 10.1016/j.neucom. 2019.05.075.

[20] G. Xia, Z. Han, and B. Zhao, “Global path planning for un-
manned surface vehicle based on improved quantum ant colony
algorithm,” Math. Probl. Eng., vol. 7, pp. 1-10, 2019, doi:
10.1155/2019/2902170.

[21] C. Huang and J. Fei, “UAV path planning based on particle
swarm optimization with global best path competition,” Int. J.
Pattern Recognit. Artif. Intell., vol. 32, no. 1, pp. 1–23, 2018, doi:
10.1142/S0218001418590085.

[22] P.G. Luan, and N.T. Thinh, “Hybrid genetic algorithm based
smooth global-path planning for a mobile robot,” Mech. Based
Des. Struct. Mech., vol. 51, no. 3, pp. 1758–1774, 2023, doi:
10.1080/15397734.2021.1876569.

[23] Z. Yu and L. Xiang, “NPQ-RRT: an improved RRT approach to
hybrid path planning,” Complexity, vol. 2021, p. 6633878, 2021,
doi: 10.1155/2021/6633878.

[24] Q. Song, S. Li, and J. Yang, “Intelligent Optimization Algorithm-
Based Path Planning for a Mobile Robot,” Comput. Intell. Neu-
rosci., vol. 2021, p. 8025730, 2021, doi: 10.1155/2021/8025730.

[25] J. Wang, Y. Luo, and X. Tan, “Path Planning for Automatic Guided
Vehicles (AGVs) Fusing MH-RRT with Improved TEB,” Actua-
tors, vol. 10, no. 12, p. 314, 2021, doi: 10.3390/act10120314.

[26] D. Pazderski, ”Application of transverse functions to control dif-
ferentially driven wheeled robots using velocity fields,” Bull. Pol.
Acad. Sci. Tech. Sci., vol. 64, no. 4, pp. 831–851, 2016, doi:
10.1515/bpasts-2016-0092.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 2, p. e148834, 2024 11

https://doi.org/10.2478/bpasts-2014-0001
https://doi.org/10.2478/bpasts-2014-0001
https://doi.org/10.1109/TIE.2021.3078390
https://doi.org/10.1109/TII.2020.2998818
https://doi.org/10.1109/TMECH.2021.3061772
https://doi.org/10.1109/TITS.2020.3031962
https://doi.org/10.1109/TCYB.2020.2979614
https://doi.org/10.1109/TCYB.2020.2979614
https://doi.org/10.1049/sil2.12056
https://doi.org/10.1049/sil2.12056
https://doi.org/10.1115/1.4041333
https://doi.org/10.3233/JIFS-219188
https://doi.org/10.1109/TII.2020.2997828
https://doi.org/10.2478/ttj-2019-0001
https://doi.org/10.3991/ijoe.v16i08.14243
https://doi.org/10.1109/TCDS.2021.3063273
https://doi.org/10.1109/TCDS.2021.3063273
https://doi.org/10.15837/ijccc.2018.6.3153
https://doi.org/10.1017/S0373463320000247
https://doi.org/10.1007/s10846-017-0642-2
https://doi.org/10.1177/0954407020948397
https://doi.org/10.1016/j.neucom.2019.05.075
https://doi.org/10.1155/2019/2902170
https://doi.org/10.1142/S0218001418590085
https://doi.org/10.1080/15397734.2021.1876569
https://doi.org/10.1155/2021/6633878
https://doi.org/10.1155/2021/8025730
https://doi.org/10.3390/act10120314
https://doi.org/10.1515/bpasts-2016-0092

	Introduction
	 MAP DESCRIPTION
	Grid map description
	Critical node model description

	 SEARCH ALGORITHM BASED ON CRITICAL-NODE DIFFUSION BINARY TREE
	Critical-node diffusion binary tree
	Critical-node diffusion binary tree algorithm

	 SECONDARY OPTIMIZATION BASED ON REVERSE SEARCHING AND ROBOT CONSTRAINTS
	Reverse parent node selection
	Path secondary search based on critical nodes

	EXPERIMENT AND ANALYSIS
	Comparison of the number of expansion nodes
	Comparison on the same map
	Comparison of different maps
	Experiment with robot navigation

	CONCLUSION

