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SPECIAL SECTION

Numerical investigation of rotor-bearing systems
with fractional derivative material damping models
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Graz University of Technology, Institute of Mechanics, Kopernikusgasse 24/IV, 8010 Graz, Austria

Abstract. The increasing demand for high-speed rotor-bearing systems results in the application of complex materials, which allow for a better
control of the vibrational characteristics. This paper presents a model of a rotor including viscoelastic materials and valid up to high spin speeds.
Regarding the destabilization of rotor-bearing systems, two main effects have to be investigated, which are strongly related to the associated
internal and external damping of the rotor. For this reason, the internal material damping is modeled using fractional time derivatives, which
can represent a large class of viscoelastic materials over a wide frequency range. In this paper, the Numerical Assembly Technique (NAT) is
extended for the rotating viscoelastic Timoshenko beam with fractional derivative damping. An efficient and accurate simulation of the proposed
rotor-bearing model is achieved. Several numerical examples are presented and the influence of internal damping on the rotor-bearing system is
investigated and compared to classical damping models.

Key words: Numerical Assembly Technique; rotor-bearing system; steady-state harmonic vibration; unbalance response; fractional derivative
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1. INTRODUCTION
Accurate knowledge of the dynamic behaviour of a rotating ma-
chine is necessary in the design process, and therefore, the fo-
cus on the material model is gaining more importance due to
the application of complicated materials in rotors. In this pa-
per, different material models are compared and the dynamic
behaviour of the rotor under the influence of internal damping
is investigated.

For various materials different material damping models ex-
ist. In this work, the material is described by fractional time
derivatives, which were first introduced by Nutting [2] in a vis-
coelastic deformation law. This fractional material model has
been modified and validated by several authors, e.g. [3], and
describes materials in a wide frequency range [3].

Several beam theories are available to model a structure,
where two dimensions are significantly smaller than the third
one, e.g. the Euler-Bernoulli beam or the Timoshenko beam
theory. Labuschagne et al. [4] compared the linear beam the-
ories and depicted that the Timoshenko beam theory leads to
better results, particulary for higher modes, as compared to the
Euler-Bernoulli beam theory. Also, Ruge and Birk [5] outlined
that the Timoshenko beam theory delivers physically more re-
alistic results. Additionally, Tamraker and Mittal [6] validated
with an experiment the importance of the Timoshenko beam
theory for predicting the dynamic performance of a rotor. To
solve the resulting mathematical problem, several numerical
methods can be utilized. The most common approach is the Fi-
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nite Element Method (FEM). For an analytical description and
solution of the problem, the Transfer Matrix Method (TMM) is
often applied.

Zorzi and Nelson [7] considered internal viscous and hys-
teretic damping in their extension of the linear finite element
concept for evaluating the stability of a damped rotor. For de-
scribing a rotor, internal and external damping plays a major
role. Genta [8] clarified the correct understanding of the stabil-
ity of hysteretic (internal) damping of rotating elements stat-
ing that the system stays stable for subcritical speeds even with
internal damping. Baumann et al. [9] investigated the stabil-
ity of the rotor vibration with internal and external damping
and showed the stability limits for different material models.
Several authors improved the accuracy of the solution of FEM
by considering effects, e.g. rotary inertia, gyroscopic moment,
shear effects, and axial load [10, 11].

For calculating the critical speeds and the unbalance response
of the system, TMM can be applied. Prohl [12] first introduced
the TMM to rotor-bearing systems. Several authors [13, 14]
extended TMM by including, e.g. gyroscopic effects, internal
friction, aerodynamic cross-coupling forces, tangential torque,
and distributed unbalance, and outlined the effectiveness of the
method for the steady-state analysis of rotor-bearing systems
with an unbalanced shaft.

In the literature, several other analytical methods can be
found, which mitigate certain challenges arising in TMM. The
higher accuracy and reduction of computational time are de-
picted in [15]. Furthermore, the Numerical Assembly Tech-
nique (NAT) is an efficient way of treating rotor problems.
Wu and Chou [16] first introduced this method. Klanner et
al. [1, 17] extended NAT for the two-dimensional Timoshenko
beam and the rotating Rayleigh beam and presented the effi-
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ciency and accuracy of NAT. Quinz et al. [18–21] showed an
application of NAT for the balancing of rotors.

The aim of this paper is the analytical solution of a rotating
viscoelastic Timoshenko beam with occurring unbalanced discs
considering a fractional derivative damping material model. In
this way, NAT is extended for the rotating viscoelastic Timo-
shenko beam with fractional derivative damping. The newly im-
plemented material model is compared to different other classi-
cal material models and the occurring differences in the unbal-
ance response are shown.

2. PROBLEM DESCRIPTION AND MATHEMATICAL MODEL
A general multi-stepped rotor vibration problem with attached
discs supported on anisotropic bearings is formulated and de-
scribed by the Timoshenko beam theory.

2.1. General rotor-bearing system
In this section, a general multi-stepped rotor vibration prob-
lem is formulated and shown in Fig. 1. Each beam segment is
modeled by the Timoshenko beam theory and external viscous
damping is considered. The rotor is supported on anisotropic
bearings with a constant spin speed Ω about the z-axis. The
bearings are modeled by translational and rotational springs and
dampers. The shaft has several circular discs with mass m(i),

mass moment of inertia about the x- and y-axis Θ
(i)
t , mass mo-

ments of inertia about the z-axis Θ
(i)
p , and an unbalance with

eccentricity ε(i) and angular position β (i). For the rotor, the as-
sumption of no axial loading is made.

The shaft has (N) stations, where each station represents a
disc, a step, or bearing support of the rotor. The first (1) and the
last (N) stations are placed at the boundaries (z = 0 and z = L).
The intermediate stations (i) are located at z = Zi. Between the
stations, there are M = (N)−1 segments with a constant circu-
lar cross-section, and homogenous material parameters. Each
segment ` has a local coordinate system (O`,x`,y`,z`) with the
origin O` in the center of the circular cross-section at station (i).

2.2. Fractional derivative material damping models
The correlation between the stresses and strains is generalized
to achieve a better-fitted material model for viscoelastic materi-
als. The result is a model analysed by Bagley and Torvik [22],
which describes the generalised form of the Kelvin-Voigt mate-
rial model.

In the time domain, the correlation for the fractional Kelvin-
Voigt model is given by

σzz(x,y,z, t) = aE
0` εzz(x,y,z, t)+aE

1`
∂ αE

` εzz(x,y,z, t)

∂ tαE
`

, (1)

Fig. 1. General rotor problem [1]
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with aE
0` in N/m2 and aE

1` in NsαE
` /m2, positive real constants

and
0 < α

E
` < 1 (2)

due to the physical restrictions of solid materials, as Pritz
showed in [3]. Therefore, the argument was made that pure vis-
cous friction cannot be valid for a real solid material. The neces-
sity of a "lesser extent" for solid materials due to the behaviour
in the time variation of strain compared to fluids and can be
mathematically expressed as αE

` < 1. With the parameter αE
`

it is possible to handle the retardation and relaxation times of
the material [23]. This ability results in a memory mechanism
inherent in the material model [23]. ∂ •

∂ t• denotes a fractional
derivative of order •. In literature, different mathematical def-
initions of the fractional differential can be found. In this pa-
per, the Riemann–Liouville fractional derivative definition has
been used. It would also be possible to use the Caputo fractional
definition, where the order of the ordinary derivative has been
switched [24]. The Fourier transform of the Caputo operator for
fractional derivatives is demonstrated in [25]. Thereby, the re-
sult of the Fourier transform is independent of the lower bound
of the integral, which denotes the short-term memory parame-
ter. This observation shows that the results remain identical for
short-term and long-term memory as long as the calculations
are performed in the frequency domain.

To get simplified material models certain parameters can be
changed to specific values, e.g. defining aE

1` as zero, Hook’s law
is the result. If the parameter αE

` = 1 the Kelvin-Voigt material
model is given.

2.3. Equations of motion of a rotating Timoshenko beam
with mass unbalance

All beam segments are modeled by the Timoshenko beam the-
ory. Thereby, the consideration of the shear deformation, the in-
ertia of the cross-section for rotations about the x- and y- axis,
and the gyroscopic effect are the main advantages [26]. The as-
sumptions and the equilibrium of forces and moments of the
Timoshenko beam theory can be found in [27, 28].

In this work, it is assumed that the transverse displacements
ux`(z, t) and uy`(z, t) and rotations ϕx`(z, t) and ϕy`(z, t) can be
written as

•` (z, t) = •̃+` (z)ejω t + •̃−` (z)e−jω t . (3)

This allows for the investigation of two cases. The steady-
state unbalance response, where ω = Ω, and the free vibration
response with ω the general complex eigenvalues of the sys-
tem. This assumption leads to decoupled complex conjugated
equations of the real solution [17].

Therefore, in further investigations only the differential equa-
tions with the positive part •+` (z) are considered for the solu-
tion. The equations of motion for the steady-state harmonic un-
balance response of a rotating Timoshenko beam are given by

d2ũ+x`(z)
dz2 +

(
ω̄

2
` Ē0`− d̄a`

)
ũ+x`(z)−

dϕ̃
+
y`(z)

dz

=− Ω̄2
` Ē0`

2
ε̃+(z), (4)

d2ũ+y`(z)

dz2 +
(
ω̄

2
` Ē0`− d̄a`

)
ũ+y`(z)+

dϕ̃
+
x`(z)
dz

=
jΩ̄2

` Ē0`

2
ε̃+(z), (5)

d2ϕ̃
+
y`(z)

dz2 +

(
ω̄

2
` −

1
Ē0` r2

`

)
ϕ̃
+
y`(z)− j

Ē1`

Ē0`

d2ϕ̃
+
x`(z)

dz2

+ j ḡ` ϕ̃
+
x`(z)+

1
Ē0` r2

`

dũ+x`(z)
dz

= 0, (6)

d2ϕ̃
+
x`(z)

dz2 +

(
ω̄

2
` −

1
Ē0` r2

`

)
ϕ̃
+
x`(z)+ j

Ē1`

Ē0`

d2ϕ̃
+
y`(z)

dz2

− j ḡ` ϕ̃
+
y`(z)−

1
Ē0` r2

`

dũ+y`(z)

dz
= 0, (7)

with

ω̄
2
` =

ω2 ρ`

E?
0`

, Ω̄
2
` =

Ω2 ρ`

E?
0`

, Ē0` =
E?

0`
G?
` kS`

,

Ē1` =
E?

1`
G?
` kS`

, d̄a` =
jω da`

G?
` kS` A`

, r2
` =

I`
A`

,

ḡ` =
2ω ρ` Ω

E?
0`

, G?
` =

aE
0`+aE

1` (jω)αE
`

2(1+ν)
,

E?
0` = aE

0 +
aE

1
2

((j(ω−Ω))αE
` +(j(ω +Ω))αE

` ),

E?
1` =

aE
1
2

((j(ω−Ω))αE
` − (j(ω +Ω))αE

` ),

(8)

and ρ` the material density, kS` the shear correction factor, da`
the direction-independent external viscous damping coefficient,
A` the cross-section area, I` the planar second moment of area
with respect to the x- and y-axis, ε̃+(z) = ε(z)e jβ (z) the complex
unbalance, and ν the Poisson’s ratio. The gyroscopic effect and
the material model lead to a coupling of the equations of the
rotating Timoshenko beam.

2.4. Boundary and interface conditions for steady-state
harmonic vibrations

To get a unique solution for the rotor problem defined by
the equations (4)–(7), boundary and interface conditions are
needed. For these conditions, the equilibrium of forces and mo-
ments have to be used at each station (i). Additionally, the con-
tinuity of displacement and rotation at the stations have to be
considered. A detailed description of the boundary and inter-
face conditions for a rotating Rayleigh beam with constant ax-
ial load can be found in [1]. The equilibrium of forces and mo-
ments and the continuity of displacement and rotation at each
station (i) are analogous for the rotating Timoshenko beam.

3. NUMERICAL ASSEMBLY TECHNIQUE
The analytical method NAT is applied to the given problem.
Thereby, the analytical solution of the governing equations (4)–
(7) is used to fulfill the boundary and interface conditions. The
resulting equation system has to be solved for the unknown con-
tribution factors. In this work, it is assumed that the unbalances

Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 6, p. e148610, 2023 3



G. Überwimmer, G. Quinz, M. Klanner, and K. Ellermann

are concentrated at the discs and do not appear within the beam
segments themselves. Therefore, only the homogeneous solu-
tions of the governing equations are required, since ε̃+(z) = 0.
The unbalance forces only arise in the interface conditions. If
unbalances occur within the beam segments, additional partic-
ular solutions are required to fulfill the inhomogeneous gov-
erning equations. More details on this kind of problems can be
found in Klanner et al. [1].

3.1. Homogeneous solutions
The general homogenous solution of the equations (4)–(7) is
established by setting the external unbalance ε̃+(z) to zero. The
assumed solutions for the segment ` in the local coordinate sys-
tem (O`,x`,y`,z`) have the form of

•̃+h`(z`) =C•` ejkz` , (9)

where • represents the different translations and rotations. The
resulting linear equation system is given by

A`


Cux`

Cuy`

Cϕy`

Cϕx`

=


0
0
0
0

 , (10)

with

A`=



−k2 + ω̄2
` Ē0`− d̄a` 0

0 −k2 + ω̄2
` Ē0`− d̄a`

jk
1

Ē0` r2
`

0

0 −jk
1

Ē0` r2
`

−jk 0
0 jk

−k2 + ω̄2
` −

1
Ē0` r2

`

j
(

k2 Ē1`

Ē0`
+ ḡ`

)
−j
(

k2 Ē1`

Ē0`
+ ḡ`

)
−k2 + ω̄2

` −
1

Ē0` r2
`


,

(11)

which only has a nontrivial solution if the determinant of A` is
set to zero. The determinant of A` can be written as a product
of two polynomial functions F(k) and G(k), which leads to

k1,2` =±
√

1
2
(
−d̄a`− ḡ+`+ ω̄2

+`+ Ē0` ω̄2
` −R+`

)
=±α1`, (12)

k3,4` =±
√

1
2
(
−d̄a`− ḡ+`+ ω̄2

+`+ Ē0` ω̄2
` +R+`

)
=±α2`, (13)

k5,6` =±
√

1
2
(
−d̄a`+ ḡ−`+ ω̄2

−`+ Ē0` ω̄2
` −R−`

)
=±α3`, (14)

k7,8` =±
√

1
2
(
−d̄a`+ ḡ−`+ ω̄2

−`+ Ē0` ω̄2
` +R−`

)
=±α4` , (15)

with

R±` =

√
− 4d̄a`

Ē±`r2
`

+
4ω̄2
±`

r2
`

+
(
d̄a`∓ ḡ±`+ ω̄2

±`− Ē0`ω̄
2
`

)2
,

(16)
and

ω̄
2
±` =

ω2 ρ`

E?
±`

, Ē±` =
E?
±`

G?
` kS`

, ḡ±` =
2ω ρ` Ω

E?
±`

,

E?
±` = aE

0`+aE
1` (j(ω∓Ω))αE

` .

(17)

The roots of F(k) are±α1,2`, where α1,2` are the complex roots
with a positive imaginary part (ℑ{k•`} > 0) and the roots of
G(k) are ±α3,4`, where α3,4` are the complex roots with a pos-
itive imaginary part (ℑ{k•`}> 0).

The constants Cux`,Cuy`,Cϕy` and Cϕx` are not independent.
The constants for the roots ±α1,2` are given by

Cuy` =−jCux`, Cϕx` = jCϕy`,

Cϕy` = j
α2
•`− ω̄2

` Ē0`+ d̄a`

α•`
Cux`,

(18)

and for the roots ±α3,4` are described by

Cuy` = jCux`, Cϕx` =−jCϕy`,

Cϕy` = j
α2
•`− ω̄2

` Ē0`+ d̄a`

α•`
Cux`.

(19)

The solution of the homogenous differential equation allows for
the computation of the shear force and the bending moment and
therefore, for the description of the whole state of the shaft.
The state variables and the arbitrary constants are gathered in
column vectors

x̃+h`(z`) =
[
ũ+hx`(z`), ũ

+
hy`(z`), ϕ̃

+
hy`(z`), ϕ̃

+
hx`(z`),

M̃+
hy`(z`),M̃

+
hx`(z`), Q̃

+
hx`(z`), Q̃

+
hy`(z`)

]T
, (20)

and

c` = [c1`, c2`, c3`, c4`, c5`, c6`, c7`, c8`]
T . (21)

The upper index •T marks the transpose of a vector or matrix.
Finally, this leads to a matrix equation, which represents the
general homogenous solution and is given by

x̃+h`(z`) = B`(z`)c`, (22)
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with the state variable matrix

B`(z`)=

E+
1 E−1 E+

2 E−2
−jE+

1 −jE−1 −jE+
2 −jE−2

kϕ1` E+
1 −kϕ1` E−1 kϕ2` E+

2 −kϕ2` E−2
jkϕ1` E+

1 −jkϕ1` E−1 jkϕ2` E+
2 −jkϕ2` E−2

−k+M1` E+
1 −k+M1` E−1 −k+M2` E+

2 −k+M2` E−2
−jk+M1` E+

1 −jk+M1` E−1 −jk+M2` E+
2 −jk+M2` E−2

−kQ1` E+
1 kQ1` E−1 −kQ2` E+

2 kQ2` E−2
jkQ1` E+

1 −jkQ1` E−1 jkQ2` E+
2 −jkQ2` E−2

E+
3 E−3 E+

4 E−4
jE+

3 jE−3 jE+
4 jE−4

kϕ3` E+
3 −kϕ3` E−3 kϕ4` E+

4 −kϕ4` E−4
−jkϕ3` E+

3 jkϕ3` E−3 −jkϕ4` E+
4 jkϕ4` E−4

−k−M3` E+
3 −k−M3` E−3 −k−M4` E+

4 −k−M4` E−4
jk−M3` E+

3 jk−M3` E−3 jk−M4` E+
4 jk−M4` E−4

−kQ3` E+
3 kQ3` E−3 −kQ4` E+

4 kQ4` E−4
−jkQ3` E+

3 jkQ3` E−3 −jkQ4` E+
4 jkQ4` E−4


(23)

with

E+
• = ejα•`z` , E−• = ejα•`(L`−z`),

kϕ•` = j
α2
•`− ω̄2

` Ē0`+ d̄a`

α•`
,

k±M•` = E?
±` I`

(
α

2
•`− ω̄

2
` Ē0`+ d̄a`

)
,

kQ•` = jG?
` kS` A`

(−ω̄2
` Ē0`+ d̄a`

α•`

)
.

(24)

3.2. Assembly and solution procedure for the unbalance
response

The solution x̃+h`(z`) of each rotor segment is placed into
the boundary and interface conditions. This leads to an
equation system Ac = b with the arbitrary constants c =
[c1, · · · ,c`, · · · ,cM]T of the homogenous solution. The rotor un-
balance influences only the right-hand side vector b. The so-
lution of the linear equations system Ac = b uniquely defines
the state variables of the whole rotor. For a detailed explanation
of the assembly procedure, the reader is referred to Klanner et
al. [17].

3.3. Campbell diagram
The eigenvalues of a damped system are complex values and
found by a recursive search algorithm presented in [19]. The
imaginary part of the eigenvalues represents the whirl fre-
quency, while the real part offers information about the sta-
bility of the system. The most common representation of the
correlation between the spin speed and the whirl frequency is
the Campbell diagram. In this diagram, the deviating lines from
the horizontal indicate the forward and backward whirls. If the
angular speed Ω of the rotor matches one of its natural frequen-
cies ω , a critical speed of the rotor for an unbalance excitation
is found.

4. NUMERICAL EXAMPLES
In this section, different examples of a general rotor-bearing
system are presented. The examples are on one side modeled by
a frequency-independent material model and on the other side
with a frequency-dependent viscoelastic material model. Due to
the variation of the different materials, which are used in the ex-
amples, the broad applicability of the fractional derivative ma-
terial model and the used analytical computational technique is
shown. All calculations are performed on an Intel® Core™ i7-
10700 processor (8× 2.90GHz) with 32GB RAM and a Win-
dows 10 operating system. For the implementation of NAT, the
software package MATLAB® R2021b has been used. The FEM
model is also built in MATLAB® R2021b, for which the code of
Friswell et al. [29] has been applied.

In Fig. 2 a rotating multi-stepped rotor-bearing system
with homogenous circular cross-sections having the diameters
0.05m in segment 1, 0.06m in segments 2 and 7, 0.09m in seg-
ments 3 and 6, 0.11m in segment 4, and 0.14m in segment 5,
is presented. The total length L = 1m of the rotor is divided by
N = 8 stations into M = 7 segments with the ratio of the rotor
length to the maximum diameter is 7.1 and therefore the Timo-
shenko beam theory is applicable. Furthermore, the material of
the rotor is steel with a density of 7800kg/m3. The total mass of
the rotor is 55.85kg. The external viscous damping coefficient
in the x- and y-direction considering air as the ambient medium
is given by da` = 45Ns/m2.

In Case 1, the material parameters are given by the constant
Young’s modulus Ec

` = 1.8 · 1011 N/m2, and a shear modulus
Gc
` = 6.9 · 1010 N/m2. The shear correction factor kS` for the

Timoshenko beam theory is assumed as 0.88.

Fig. 2. Configuration of the example rotor
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In Case 2, the material is described by a Kelvin-Voigt damp-
ing model with EKV

` = 1.8 · 1011 N/m2 · (1+η jω) and the pa-
rameter η = 0.0203.

In Case 3, the material is described by a fractional deriva-
tive damping. The parameters for the complex Young’s mod-
ulus E?

±` are given by aE
0` = 1.8 · 1011 N/m2, aE

1` = 3.6589 ·
109 NsαE

` /m2, and αE
` = 0.63, which have been given by

Caputo and Mainardi [30]. The material in this example is
isotropic with a Poisson’s ratio ν` = 0.3.

In Case 4, all material parameters are the same as those in
Case 3, except for the variable αE

` , which takes on values of
[0.2,0.4,0.6,0.8].

In stations (2) and (7), the bearings of the rotor are mod-
eled as a combination of linear springs and dampers. Additional
rigid circular discs with negligible thickness are mounted in sta-
tions (4), (6), and (8). In Table 1 the parameters of the concen-
trated elements at the stations are specified.

The shaft is free of any unbalance and the occurring unbal-
ance is concentrated at the rigid discs, according to Table 2.

To present the accuracy of NAT, the simulation is compared
with a FEM model built with the Friswell code using small ele-
ments of 0.01 m for Case 1 and Case 2.

In Fig. 3a and Fig. 3b, the Campbell diagram of the different
cases is presented.

A very good agreement between NAT and FEM for Case 1
and Case 2 is observed. The results using the fractional deriva-
tive damping models show a difference in the critical speeds
and modes of the rotor. Due to the fractional exponent αE

` the
rotor-bearing system reaches the modes at a smaller frequency
compared to Case 2. The stability limit of Case 3 can be seen
in Fig. 3b, where it is marked by a red cross. Due to the given
external damping of the system, the stability limit of the fourth
mode is reached only at high spin speeds. All other modes are
stable for the investigated spin speed range.

(a) Case 1 and Case 2
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Fig. 3. Campbell diagram
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Table 1
Parameters of the bearings and discs at the stations

(i) Zi m(i) Θ
(i)
t Θ

(i)
p k(i)txx k(i)tyy k(i)txy=k(i)tyx d(i)

txx=d(i)
tyy

(m) (kg) (kgm2) (kgm2) (N/m) (N/m) (N/m) (Ns/m)

1 0.00 – – – – – – –

2 0.14 – – – 8 ·106 5 ·106 5 ·105 100

3 0.29 – – – – – – –

4 0.37 2.0 0.06 0.12 – – – –

5 0.52 – – – – – – –

6 0.73 2.5 0.20 0.40 – – – –

7 0.88 – – – 6 ·106 4 ·106 5 ·105 100

8 1.00 1.5 0.15 0.30 – – – –

As shown in Table 3 and Fig. 3a the differences between the
calculations with NAT and FEM of the same material model
are negligible. The fractional derivative material model leads to
critical speeds of [56.04, 70.13, 97.40, 140.60]Hz.

Table 2
Unbalance of the rotor

(i) Zi U β

(m) (kg m) (rad)

4 0.37 4.0 ·10−3 0

6 0.73 1.0 ·10−3 1.5

8 1.00 3.6 ·10−3 2.5

A comparison of the unbalance response with different ma-
terial models is shown in Fig. 4a for Case 1 and Case 2 and in
Fig. 4b for Case 2 and Case 3. The parameter a denotes the ma-
jor axis of the elliptical whirling orbit at an arbitrary position
z = 0.37m. The evaluation by NAT fits perfectly with the result
of FEM in Case 1 and Case 2 as shown in Fig. 4a.

Case 2 and Case 3 depict a general reduction of mode 5 as
shown in Fig. 4b. In Case 3, where the fractional derivative ma-
terial model is applied, a reduction of all occurring mode am-
plitudes is observed.

For Case 4, the influence of different values of αE
` on the ro-

tor response is shown in Table 4. Therefore, the critical speeds
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Fig. 4. Comparison of the unbalance response
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Table 3
Critical speeds of the rotor

FEM NAT Relative Error FEMKV NATKV Relative Error

(Hz) (Hz) NAT-FEM (Hz) (Hz) NATKV – FEMKV

55.87 55.87 0.0035% 56.39 56.48 0.1011%

69.83 69.83 0.0003% 70.63 70.96 0.4545%

94.81 94.80 0.0045% 98.56 98.57 0.0132%

139.33 139.33 0.0013% 141.96 142.51 0.3867%

224.15 224.15 0.0002%

and displacements of the semi-major axis of the first five critical
speeds are compared, as presented in Table 4. This comparison
involves determining the displacement of the semi-major axis
of the elliptical whirling orbit at every point of the rotor with
an increment of 0.01m at the critical speeds. Subsequently, the

Table 4
Critical speeds and average displacements semi-major axis

with different αE
`

αE
` Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

0.2
ω (Hz) 55.85 69.80 94.85 139.28 225.62

a (m) 0.0058 0.0071 0.0063 0.0199 0.0015

0.4
ω (Hz) 55.83 69.73 95.03 139.17 233.83

a (m) 0.0064 0.0094 0.0054 0.0238 0.0005

0.6
ω (Hz) 55.80 69.60 95.62 138.88 260.53

a (m) 0.0129 0.0183 0.0044 0.1390 0.0004

0.8
ω (Hz) 55.82 69.38 96.32 138.13 292.70

a (m) 0.0046 0.0017 0.0057 0.0044 0.0004

1.0
ω (Hz) 56.80 68.85 96.72 136.77 315.62

a (m) 0.0012 0.0007 0.0145 0.0011 0.0003

computed values are averaged and analysed. For the first four
critical speeds the rotor itself is hardly deformed and the ro-
tor displacement depends on the stiffness and damping prop-
erties of the bearings. For the fifth critical speed the material
model becomes significant, since rotor deformation appears. In

Fig. 5a the value of |E
?|

aE
0`

= 1 +
aE

1`
aE

0`

∣∣(jω)αE
`
∣∣, which describes

the increase of the rotor stiffness due to higher values of αE
` ,

are shown over the observed frequency range. The points of
the critical speeds are denoted by crosses. It is apparent that the
stiffness increases with higher values of αE

` , which is consistent
with the rising critical speeds shown in Table 4. The resulting
loss factor of the Kelvin-Voigt material model within the con-
sidered spin speeds is illustrated in Fig. 5b. As expected the
loss factor increases with rising frequency, which is less pro-
nounced for lower αE

` . Therefore, the deformation at the fifth
critical speed is lower for increasing αE

` . The selection of αE
`

determines the slope of the stiffness increase and loss factor,
and allows for an accurate modelling of the material behaviour
in a limited frequency range.

5. CONCLUSIONS

In this paper, an extension of NAT has been made. Therefore,
the rotating Timoshenko beam with a fractional derivative ma-
terial damping model has been solved analytically. With the ef-
ficient way of NAT, the rotor-bearing systems are investigated
and the accuracy of NAT has been shown in numerical exam-
ples. Furthermore, the effects of a fractional derivative material
damping model have been presented and the influence on higher
spin speeds has been discussed. As long as the rotor is driven
with low spin speeds, the material model has nearly no influ-
ence on the modes. If a high spin speed rotor is considered, the
material model is gaining more importance for a better under-
standing of the rotor-bearing systems real behaviour. Therefore,
a classical model may not be sufficient and could be replaced
by a fractional derivative material model.

(a) Stiffness increase for different αE
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