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Abstract. This paper aims to develop new highly efficient PSC-algorithms (algorithms that contain a polynomial-time sub-algorithm with
sufficient conditions for the optimality of the solutions obtained) for several interrelated problems involving identical parallel machine scheduling.
These problems share common basic theoretical positions and common principles of their solving. Two main intractable scheduling problems are
considered: (“Minimization of the total tardiness of jobs on parallel machines with machine release times and a common due date” (TTPR) and
“Minimising the total tardiness of parallel machines completion times with respect to the common due date with machine release times” (TTCR))
and an auxiliary one (“Minimising the difference between the maximal and the minimal completion times of the machines” (MDMM)). The
latter is used to efficiently solve the first two ones. For the TTPR problem and its generalisation in the case when there are machines with release
times that extend past the common due date (TTPRE problem), new theoretical properties are given, which were obtained on the basis of the
previously published ones. Based on the new theoretical results and computational experiments the PSC-algorithm solving these two problems
is modified (sub-algorithms A1, A2). Then the auxiliary problem MDMM is considered and Algorithm A0 is proposed for its solving. Based
on the analysis of computational experiments, A0 is included in the PSC-algorithm for solving the problems TTPR, TTPRE as its polynomial
component for constructing a schedule with zero tardiness of jobs if such a schedule exists (a new third sufficient condition of optimality). Next,
the second intractable combinatorial optimization problem TTCR is considered, deducing its sufficient conditions of optimality, and it is shown
that Algorithm A0 is also an efficient polynomial component of the PSC-algorithm solving the TTCR problem. Next, the case of a schedule
structure is analysed (partially tardy), in which the functionals of the TTPR and TTCR problems become identical. This facilitates the use
of Algorithm A1 for the TTPR problem in this case of the TTCR problem. For Algorithm A1, in addition to the possibility of obtaining a
better solution, there exists a theoretically proven estimate of the deviation of the solution from the optimum. Thus, the second PSC-algorithm
solving the TTCR problem finds an exact solution or an approximate solution with a strict upper bound for its deviation from the optimum. The
practicability of solving the problems under consideration is substantiated.
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1. INTRODUCTION

Single-stage scheduling problems, which are generally NP-hard,
are widely used in the creation of efficient planning and con-
trol systems for modern productions with discrete technolog-
ical processes [1–6]. Many single-stage scheduling problems
are solved today with the help of a new theory and practice of
creating PSC-algorithms. These are the algorithms that neces-
sarily include sufficient conditions (signs) of optimality (SCOs)
for a feasible solution, which can be verified only at the stage
in which a feasible solution is built using a polynomial-time
algorithm(s). These form the first polynomial component of
the PSC-algorithm. The second polynomial component of the
PSC-algorithm is an approximation algorithm with polynomial
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complexity, which solves the problem in the case where the
first polynomial component cannot obtain a feasible solution
satisfying a sufficient sign of optimality. A PSC-algorithm for
binary or unary NP-hard combinatorial optimisation problems
may include an exact solution algorithm for the case where suf-
ficient conditions are found, and satisfying these conditions at
the execution stage turns it into a polynomial complexity algo-
rithm [7, 8].

The intractable single-stage scheduling problem is consid-
ered, involving the minimisation of the total tardiness of jobs
on parallel machines with machine release times and a common
due date (the TTPR problem).

TTPR problem statement [9, 10]. We have a set of 𝑛 jobs
𝐽 = {1, 2, . . . , 𝑛} and 𝑚 identical parallel machines, and we
know the processing time 𝑝 𝑗 for each job 𝑗 ∈ 𝐽. All jobs have a
common due date 𝑑. A machine 𝑖, 𝑖 = 1,𝑚, can start to process
any job from the set 𝐽 after its release time 𝑟𝑖 , 0 ≤ 𝑟𝑖 < 𝑑, where
the release times for jobs may be not the same. Machine idle

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 1, p. e148939, 2024 1

https://orcid.org/0000-0001-9202-9406
https://orcid.org/0000-0002-3086-0947
https://orcid.org/0000-0002-6524-6410
https://orcid.org/0000-0002-4210-0996
https://orcid.org/0000-0002-2651-2739
https://orcid.org/0000-0002-5485-7881
mailto:gnowakowski@pk.edu.pl


S. Telenyk, G. Nowakowski, O. Pavlov, O. Misura, O. Melnikov, and O. Khalus

times are forbidden. The aim is to build a schedule 𝜎 for the
jobs 𝑗 ∈ 𝐽 on 𝑚 machines that minimises the functional

𝐹 (𝜎) =
∑︁
𝑗∈𝐽

max
(
0, 𝑐 𝑗 (𝜎) − 𝑑

)
,

where 𝑐 𝑗 (𝜎) is the completion time of job 𝑗 on schedule 𝜎.
This problem has been noted as being NP-hard [11]. It can be

solved in a pseudo-polynomial time if 𝑚 = 2 [12].
It was shown in [9] that the TTPR problem can be solved with

a PSC-algorithm [7, 10] designed for the problem variant with
equal machine release times (the TTP problem, involving the
minimisation of the total tardiness of jobs on identical parallel
machines). The work in [10] describes PSC-algorithms for the
TTP and TTPR problems and explores their efficiency using a
statistical approach. Other papers [7, 13] propose a generalised
form of the TTPR problem for the case where the machine
release times may exceed the common due date (the TTPRE
problem).

The TTP problem is often considered in the development of
production planning systems, project management, construction
management, and other areas. Such problems are characterised
by severe penalties for due date violations [10]. Criteria based
on minimizing job tardiness are among the most important in
scheduling, and researchers pay close attention to them [14–17].
At the same time, taking into account the NP-hardness of the
considered problems, preference is often given to non-exact
heuristic methods [14, 16, 17]. PSC-algorithms serve as a more
accurate and efficient alternative.

Considering various release times of machines in the problem
formulation allows using this problem in multi-stage planning
taking into account partially completed schedules (that can have
arbitrary fixed machine release times). Thus, the practical sig-
nificance of this work results lies in the creation of methods
for solving such single-stage scheduling problems which will
significantly expand the scope of practical application of exist-
ing hierarchical scheduling and operative planning models in
discrete manufacturing systems, as well as offer new efficient
multi-level planning models for systems with a network rep-
resentation of technological processes. New mathematics and
control software for such systems can be included in univer-
sal integrated information technologies to support the efficient
functioning of discrete manufacturing systems.

In this article, new, highly efficient PSC-algorithms are de-
veloped for several interrelated problems involving identical
parallel machine scheduling. These problems share common
basic theoretical positions and common principles of their solv-
ing. New theoretical properties are obtained for the TTPR and
TTPRE problems to find efficient modifications to the known
PSC-algorithms for their solutions. These modifications include
the following:
• Introducing an additional SCO for a schedule, which is op-

timal if all jobs in it are not tardy (we call such a schedule
feasible).

• Embedding a polynomial-time approximation sub-algo-
rithm that efficiently finds a feasible schedule if it exists
for the given problem instance.

Based on the results obtained from this approach, a new, effi-
cient PSC-algorithm is developed to solve a previously uncon-
sidered intractable single-stage scheduling problem that involves
minimising the total workload of the parallel machines after the
common due date (the total tardiness of their completion times)
with machine release times (TTCR).

Outline of the paper. Section 2 provides a brief description of
the PSC-algorithm for solving the TTPR problem. This consists
of sub-algorithms A1 and A2 [7,10] which check two SCOs for
an arbitrary schedule. New theoretical properties for the TTPR
and TTPRE problems are presented and proved, and rigorous
proof of the SCOs is provided for schedules obtained using
previously published PSC-algorithms [7,10] for these two prob-
lems. A rigorous substantiation for the theoretical properties of
the modified algorithms A1 and A2 [7] is given for the TTPRE
problem. Furthermore, SCO #3 (where the total tardiness of
the schedule is zero) is introduced, and the necessity of an effi-
cient polynomial-time approximation sub-algorithm, which will
build a feasible schedule if it exists, is demonstrated. Such an
algorithm, referred to here as A0, is presented and substanti-
ated in Section 3. Examples are given in Section 4 to show the
efficiency of A0 in terms of satisfying SCO #3 for the TTPRE
problem, and the results of some computational studies are also
presented. Section 5 outlines the structure of the modified PSC-
algorithm for the TTPR and TTPRE problems, which follows
from the results presented in the previous sections. All the opti-
mal schedules are divided into four classes, and it is shown that:
• If a schedule belongs to the first or third class, then it is

always optimal.
• The introduced SCOs are not satisfied for the second class

of schedules.
• If the schedule belongs to the fourth class, then it may satisfy

the first and second SCOs.
Finally, Section 6 shows that the proposed polynomial-time

approximation sub-algorithm for building a feasible schedule is
simultaneously an efficient PSC-algorithm for the new TTCR
problem.

Remark 1. A problem is referred to as intractable if it is shown
to be NP-hard (unary or binary) or there are currently no exact
polynomial-time algorithms for its solution [7, 8].

2. THEORY AND METHODOLOGY FOR SOLVING
THE TTPR PROBLEM USING PSC-ALGORITHMS

2.1. Known and new theoretical properties of the TTPR
problem and the PSC-algorithm for its solution

This section will use content from [9, 10]. Proofs of theorems
and statements that are not given here can be found in [7,9,10].

Let𝐶𝑖 denote the completion time for machine 𝑖, i.e. the point
at which it is ready to process jobs.𝐶𝑖 is equal to the completion
time of the jobs assigned to machine 𝑖 (or to the release time 𝑟𝑖
before the assignment of jobs).

Algorithm 𝐴init for initial TTPR schedule building is given
in [9, 10] as follows:
1. Renumber the jobs of the set 𝐽 in non-decreasing order of

processing times.
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2. Renumber the machines in non-decreasing order of release
times 𝑟𝑖 .

3. Initialise the completion times of machines:𝐶𝑖 = 𝑟𝑖 ∀𝑖 = 1,𝑚.
4. Select an unassigned job 𝑗 with a minimal processing time
𝑝 𝑗 . Assign the job 𝑗 to a machine 𝑖 that has a minimal
completion time 𝐶𝑖 .

5. Calculate the new completion time for machine 𝑖: 𝐶𝑖 = 𝐶𝑖 +
𝑝 𝑗 .

6. If all jobs have been assigned, the algorithm terminates.
Otherwise, go to Step 4.

The initial schedule obtained in this way is denoted as
𝜎init. The jobs in set 𝐽 are renumbered in non-decreasing
order of 𝑝 𝑗 and split into (optional non-empty) subsets
𝐽1, 𝐽2, . . . , 𝐽𝑖 , . . . , 𝐽𝑚, where each pair of subsets does not con-
tain common elements. 𝐽𝑖 is the set of jobs processed by machine
𝑖, where 𝑖 = 1,𝑚 [10].

The search for an optimal schedule can be limited [10] to a
consideration of schedules in which each machine processes its
jobs in the increasing order of their numbers (Theorem 2.3 in
Chapter 3 of [18]).

We can split the set of jobs 𝐽𝑖 into subsets 𝑃𝑖 (𝜎), 𝑆𝑖 (𝜎),
𝑄𝑖 (𝜎) as follows [10]:
• 𝑃𝑖 (𝜎) is the set of non-tardy jobs on the schedule of ma-

chine 𝑖.
• 𝑆𝑖 (𝜎) is the set that includes the partially tardy job on the

schedule of machine 𝑖, i.e. job 𝑗 (if it exists) for which 𝑠 𝑗 < 𝑑,
𝑐 𝑗 > 𝑑, where 𝑠 𝑗 is the starting time of job 𝑗 , 𝑠 𝑗 = 𝑐 𝑗 − 𝑝 𝑗 . If
such a job 𝑗 is absent from the schedule of machine 𝑖, then
𝑆𝑖 (𝜎) = ∅.

• 𝑄𝑖 (𝜎) is the set of fully tardy jobs on the schedule of ma-
chine 𝑖, i.e. jobs with 𝑠 𝑗 ≥ 𝑑, ∀ 𝑗 ∈ 𝑄𝑖 (𝜎).

We can also define [10]

𝑃 =
⋃

𝑖=1,𝑚
𝑃𝑖; 𝑆 =

⋃
𝑖=1,𝑚

𝑆𝑖; 𝑄 =
⋃

𝑖=1,𝑚
𝑄𝑖 ,

where
𝑅𝑖 (𝜎) = 𝑑 − 𝑟𝑖 −

∑︁
𝑗∈𝑃𝑖 (𝜎)

𝑝 𝑗 is the time reserve of machine 𝑖

for schedule 𝜎.

Δ𝑖 (𝜎) = max©­«0, 𝑟𝑖 +
∑︁

𝑗∈𝑃𝑖 (𝜎)∪𝑆𝑖 (𝜎)
𝑝 𝑗 − 𝑑ª®¬ is the tardiness of

the partially tardy job on machine 𝑖 regarding the due date (if
such a job exists; otherwise, Δ𝑖 (𝜎) = 0).

|𝑃 | is the cardinality of set 𝑃.
The following theorem was proved in [18] for the case with

equal machine release times.

Theorem 1. [10,18]. There is an optimal schedule that satisfies
the conditions:
1. 𝑃∪ 𝑆 = {1, 2, . . . , |𝑃∪ 𝑆 |}.
2. If 𝑃 ∪ 𝑆 < 𝑛, then

∑︁
𝑗∈𝑃𝑖 (𝜎)∪𝑆𝑖 (𝜎)

𝑝 𝑗 ≥ 𝑑, and 𝑄𝑖 contains

those and only those elements which differ from |𝑃∪ 𝑆 | + 𝑖
by a multiple of 𝑚, 𝑖 = 1,𝑚.

Corollary 1. [18]. A schedule in which each machine 𝐿 = 1,𝑚
processes jobs in the sequence 𝐿, 𝑚 + 𝐿, 2𝑚 + 𝐿, . . . , gives the
smallest total completion time for all jobs.

Corollary 2. [18]. Suppose that the processing of jobs on a
machine 𝐿, 𝐿 = 1,𝑚, cannot be started earlier than the time
𝑟𝐿 ≥ 0. A schedule in which each next job 𝑘 = 1, 2, . . . , 𝑛 is
assigned to the machine with the minimal completion time gives
the smallest total completion time for all jobs.

Let Ψ𝑃𝑆 denote a class of schedules that correspond to the
conditions of Theorem 1 [10].

We now demonstrate the truth of Theorem 1 for the case
where machines become available at unequal times.

Statement 1. [9]. The schedule 𝜎init for the TTPR problem
belongs to the class Ψ𝑃𝑆 .

Proof. Consider the schedule 𝜎init. In this case:
• The set of jobs 𝐽 is divided into 𝑚 non-overlapping subsets
𝐽𝑖 that do not have common elements.

• The jobs on each machine are ordered in non-decreasing
order of processing times 𝑝 𝑗 .

• The sets 𝑃, 𝑆, and𝑄 satisfy conditions 1 and 2 of Theorem 1
by construction.

Thus, the schedule 𝜎init belongs to the class Ψ𝑃𝑆 . □

From the class Ψ𝑃𝑆 , we can distinguish a class of schedules
Ψ𝑃 ⊆ Ψ𝑃𝑆 that satisfy the following additional conditions [10]:
1. 𝑃 = {1, 2, . . . , |𝑃 |} .
2. min

𝑗∈𝑆 (𝜎)
𝑝 𝑗 > max

𝑖=1,𝑚
𝑅𝑖 (𝜎).

3. If 𝑝 𝑗𝑘 ≤ 𝑝 𝑗𝑙 , then 𝑠 𝑗𝑘 ≤ 𝑠 𝑗𝑙 ∀ 𝑗𝑘 , 𝑗𝑙 ∈ 𝑆(𝜎).
Suppose |𝑃 | < 𝑛. Let 𝑃min denote the minimal number of jobs
in set 𝑃 for which Ψ𝑃 ≠ ∅, and let 𝑃max denote the maximal
number of jobs in set 𝑃 [10].

Statement 2. [9]: The schedule 𝜎init for the TTPR problem
belongs to the class Ψ𝑃 .

Proof. The schedule 𝜎init satisfies by construction all the above
conditions for the class Ψ𝑃:
• The jobs in set 𝑃 have numbers 1, 2, . . . , |𝑃 | (i.e. Condition 1

is true).
• Condition 2 is met; otherwise, the shortest job from the set
𝑆 would be included in the set 𝑃.

• Condition 3 is also true by construction of the schedule𝜎init.
Thus, the schedule 𝜎init belongs to the class Ψ𝑃 . □

Theorem 2. An optimal schedule for the TTP problem belongs
to the class Ψ𝑃 .

Proof. We show that Conditions 1–3 from the definition of class
Ψ𝑃 are also true for schedules of the class Ψ𝑃𝑆 . Consider the
properties of the schedules from class Ψ𝑃𝑆 [18]:
1. 𝑃∪ 𝑆 = {1, 2, . . . , |𝑃∪ 𝑆 |} . If we consider only the jobs in

set 𝑃, then this condition is equivalent to 𝑃 = {1, 2, . . . , |𝑃 |}.
2. The jobs on each machine are in non-decreasing order of 𝑝 𝑗

(Theorem 2.3 in Chapter 3 of [18]).
3. 𝑑 ≤

∑︁
𝑘∈𝑃𝑙 (𝜎)∪𝑆𝑙 (𝜎)

𝑝𝑘 ≤ . . . ≤
∑︁

𝑘∈𝑃𝑚 (𝜎)∪𝑆𝑚 (𝜎)
𝑝𝑘 .

Properties 2 and 3 are only true if each next job from the
sequence based on the non-decreasing order of processing times
is assigned to the machine with the minimal completion time (i.e.
with the maximal reserve). This corresponds to the fulfilment of
Conditions 2 and 3 from the definition of the class Ψ𝑃 . Hence,
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Ψ𝑃𝑆 ⊆ Ψ𝑃 , and since Ψ𝑃 ⊆ Ψ𝑃𝑆 , then we have Ψ𝑃𝑆 = Ψ𝑃 .
According to Theorem 1, an optimal solution belongs to the
class Ψ𝑃𝑆 , and thus to the class Ψ𝑃 . □

Theorem 3. An optimal schedule for the TTPR problem be-
longs to the class Ψ𝑃 .

Proof. The structure and all of the properties of the schedules
in the TTPR problem are completely analogous to those of the
TTP problem and do not depend on the machine release times
(this is obvious from Statements 1 and 2). Hence, an optimal
schedule for the TTPR problem also belongs to the class Ψ𝑃 ,
according to Theorem 2. □

It follows clearly from Theorem 3 that the following proper-
ties, which were proved in [7, 9, 10] for the TTP problem, are
also true for the TTPR problem.

Statement 3. [7, 9, 10]. The following statement is true for all
possible schedules 𝜎 ∈ Ψ𝑃 built on the set of jobs 𝐽:

𝑃max −𝑃min < 𝑚.

Statement 4. [7, 9, 10]. Moving jobs as a result of directed
permutations is only possible between the sets 𝑃 and 𝑆 when
building an optimal schedule.

Statement 5. [7,9,10]. If a job 𝑗 ∈ 𝑃 is moved from a machine
𝑖𝑘 with a greater number of tardy jobs to a machine 𝑖𝑙 with a
smaller number of tardy jobs, then Δ𝑖𝑘 is decreased by 𝑝 𝑗 .
Statement 6. [7,9,10]. The maximal difference in the number
of tardy jobs in schedules 𝜎 ∈ Ψ𝑃 does not exceed one.
Definition 1. [7, 9, 10]. A schedule with the same number of
tardy jobs on all machines is called an even schedule.
Theorem 4. SCO #1 [7, 9, 10]. An even schedule 𝜎 ∈ Ψ𝑃 is
optimal.

As a notation, let 𝐿max represent the maximal number of
tardy jobs on all machines and 𝐿min the minimal number of
tardy jobs on all machines. Let the numbers 𝑖 = 1, 𝑘 correspond
to the machines with the number of tardy jobs 𝐿max. We also

define ΔΣ (𝜎) =
𝑘∑︁
𝑖=1

Δ𝑖 (𝜎) and 𝑅Σ (𝜎) =
𝑚∑︁

𝑖=𝑘+1
𝑅𝑖 (𝜎); ΩΣ (𝜎) =

min (𝑅Σ (𝜎),ΔΣ (𝜎)) [10].

Theorem 5. [7,9,10]. If 𝐿max is the same for schedules 𝜎 ∈ Ψ𝑃
and 𝜎′ ∈ Ψ𝑃 built on the given set of jobs 𝐽, then it follows from
𝑅Σ (𝜎) ≠ 0 and 𝑅Σ (𝜎′) ≠ 0 that 𝑅Σ (𝜎) − 𝑅Σ (𝜎′) = ΔΣ (𝜎) −
ΔΣ (𝜎′).
Theorem 6. [7, 9, 10]. For any two schedules 𝜎 ∈ Ψ𝑃 and
𝜎′ ∈ Ψ𝑃 , the relation 𝐹 (𝜎) − 𝐹 (𝜎′) = ΩΣ (𝜎) −ΩΣ (𝜎′) holds
true.
Theorem 7. SCO #2 [7, 9, 10]. If ΩΣ (𝜎) = min

(
𝑅Σ (𝜎),

ΔΣ (𝜎)
)
= 0 for a schedule 𝜎 ∈ Ψ𝑃 , then the schedule 𝜎 is

optimal.

The main characteristic of a schedule 𝜎 ∈ Ψ𝑃 is the value of
ΩΣ (𝜎) = min (𝑅Σ (𝜎), ΔΣ (𝜎)), where ΔΣ (𝜎) shows how much
the functional value 𝐹 (𝜎) can be theoretically decreased to give

an optimal schedule. The total reserve 𝑅Σ (𝜎) represents the
reserves that exist for obtaining an optimal schedule [9, 10].

Let 𝜎∗ denote an optimal schedule for the set of jobs 𝐽.

Theorem 8. [7, 9, 10]. The following expression holds for any
schedule 𝜎 ∈ Ψ𝑃: 𝐹 (𝜎) −𝐹 (𝜎∗) ≤ ΩΣ (𝜎).

Let 𝐼𝑅 (𝜎) be the set of machine numbers with a smaller
number of tardy jobs for a schedule 𝜎, and let 𝐼Δ (𝜎) be the set
of machine numbers with a greater number of tardy jobs for the
schedule 𝜎 [7, 9, 10].

We now introduce a new class Ψ (𝜎𝑃) ⊆ Ψ𝑃𝑆 that consists
of arbitrary schedules 𝜎 obtained as results of sequential di-
rected permutations performed in an arbitrary order that de-
crease ΔΣ (𝜎) and, consequently, 𝑅Σ (𝜎). These permutations
are applied sequentially to the current schedule 𝜎𝑘 , starting
with some schedule 𝜎 ∈ Ψ𝑃 , by moving non-tardy jobs between
machines 𝐼Δ (𝜎𝑘) and 𝐼𝑅 (𝜎𝑘). The order of processing of jobs
is not changed on machines other than those mentioned above.
A schedule 𝜎𝑘+1 is obtained. Each permutation may change
the number of tardy jobs only on one machine with a number
𝑖1 ∈ 𝐼Δ (𝜎𝑘) and on one machine with a number 𝑖2 ∈ 𝐼𝑅 (𝜎𝑘).
A permutation is forbidden if the number of jobs on the ma-
chine 𝑖2 is greater than the number of jobs on the machine 𝑖1 in
the schedule 𝜎𝑘+1 [7, 9, 10].

Theorem 9. [7,9,10]. The following estimate of the deviation of
the functional value from the optimum is valid for any schedule
𝜎 ∈ Ψ(𝜎𝑃): 𝐹 (𝜎) −𝐹 (𝜎∗) ≤ ΩΣ (𝜎).
Corollary 3. [7, 9, 10]. Theorems 7 and 8 hold for schedules
𝜎 ∈ Ψ(𝜎𝑃).

Hence, the change in the functional value is determined by
the values of ΔΣ (𝜎) and 𝑅Σ (𝜎) for the schedules 𝜎 ∈ Ψ(𝜎𝑃)
as well as for the schedules 𝜎 ∈ Ψ𝑃 [7, 9, 10].

Theorem 10. [7,10]. If ΩΣ (𝜎) = min (𝑅Σ (𝜎), ΔΣ (𝜎)) reaches
a minimum for a schedule 𝜎 ∈ Ψ(𝜎𝑃), then the schedule 𝜎 is
optimal.

Remark 2. Theorem 3 is a rigorous justification of the fact
that Ψ𝑃𝑆 = Ψ𝑃 . This fact was used implicitly in the proofs of
Theorems 4–10 (including SCOs #1 and #2) and Statements 3–6
in [7, 10].

The following statements formulate the properties of the jobs
𝑗 ∈ 𝑆∪𝑄 in schedules 𝜎 ∈ Ψ(𝜎𝑃).
Statement 7. [7,9,10]. Suppose 𝑆′

𝑘
(𝜎) ∪𝑄′

𝑘
(𝜎) and 𝑆′′

𝑙
(𝜎) ∪

𝑄′′
𝑙
(𝜎) are the sets of tardy jobs on machines 𝑘 and 𝑙, respec-

tively. We perform a permutation of the sets of tardy jobs be-
tween the machines; that is, we move the sets 𝑆′′

𝑙
(𝜎) and𝑄′′

𝑙
(𝜎)

to machine 𝑘 and the sets 𝑆′
𝑘
(𝜎) and 𝑄′

𝑘
(𝜎) to machine 𝑙. The

deviation of the functional value from the optimum in the result-
ing schedules is determined by ΩΣ (𝜎) = min (𝑅Σ (𝜎), ΔΣ (𝜎)).

Suppose that the jobs 𝑗 ∈ 𝑆 ∪𝑄 on machines 𝑘 , 𝑙, 𝑟 in
the schedule 𝜎 are numbered as follows: 𝑗𝑘 𝑗𝑘+𝑚 𝑗𝑘+2𝑚 . . . 𝑗𝑙 ,
𝑗𝑙+𝑚 𝑗𝑙+2𝑚 . . . 𝑗𝑟 𝑗𝑟+𝑚 𝑗𝑟+2𝑚 . . . [7, 9, 10].

Definition 2. [7,9,10]. The jobs 𝑗𝑘 𝑗𝑙 𝑗𝑟 , or 𝑗𝑘+𝑚 𝑗𝑙+𝑚 𝑗𝑟+𝑚, . . . ,
or 𝑗𝑘+2𝑚 𝑗𝑙+2𝑚 𝑗𝑟+2𝑚 . . . are called the tardy jobs of the same level.
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Statement 8. [7,9,10]. We can interchange the tardy jobs of the
same level on machines with the same number of tardy jobs. The
functional value does not change following these permutations.

Statement 9. [7, 9, 10]. We can always move from a schedule
𝜎 ∈ Ψ(𝜎𝑃) to a schedule 𝜎 ∈ Ψ𝑃𝑆 with the same functional
value permuting the tardy jobs of the same level.

Remark 3. Based on Theorems 3–10 and Statements 3–6, all
permutations used in the PSC-algorithm for solving the TTP
problem [7,10] are implemented in the PSC-algorithm for solv-
ing the TTPR problem.

2.2. Description of the PSC-algorithm for the TTPR
problem solving and obtaining its new theoretical
properties

The scheme used for problem solving is as follows [7, 10]:
Stage I. Build an initial schedule 𝜎init ∈ Ψ𝑃 . If ΩΣ (𝜎init) =

0, then the schedule is optimal, and the process terminates.
Otherwise:
• If 𝑅Σ (𝜎init) ≥ ΔΣ (𝜎init), go to Stage II.
• If 𝑅Σ (𝜎init) < ΔΣ (𝜎init), go to Stage III.
Stage II. Build an even schedule 𝜎 ∈ Ψ(𝜎𝑃) where the num-

ber of tardy jobs on each machine is equal to 𝐿 (𝜎) = 𝐿 (𝜎init)−1,
where 𝐿 (𝜎init) is the maximal number of tardy jobs on a ma-
chine in the schedule 𝜎init. If such a schedule is found, then it is
optimal, and the process terminates; otherwise, go to Stage IV.

Stage III. Build an even schedule𝜎 ∈Ψ(𝜎𝑃) where the num-
ber of tardy jobs on each machine is equal to 𝐿 (𝜎) = 𝐿 (𝜎init).

Stage IV. Build a schedule 𝜎 ∈ Ψ(𝜎𝑃) for which ΩΣ (𝜎) <
ΩΣ (𝜎init). If ΩΣ (𝜎) = 0, then the schedule is optimal, and the
process terminates; otherwise, go to Stage V.

Stage V. Build a schedule 𝜎 ∈ Ψ𝑃𝑆 for which ΩΣ (𝜎) <
ΩΣ (𝜎init). The algorithm terminates.

Let 𝑊 (𝜎) denote an estimate of the deviation from the opti-
mum for schedule 𝜎.

To implement the stages described above within the PSC-
algorithm, we use the following types of permutations [10]:

Permutation 1P-0P-𝚫. We move a job 𝑗 from a machine
ℎ ∈ 𝐼Δ (𝜎) to a machine 𝑟 ∈ 𝐼𝑅 (𝜎). The job 𝑗 is such that 𝑝 𝑗 ≥
Δℎ (𝜎), 𝑝 𝑗 ≤ 𝑅𝑟 (𝜎).

Permutation 1P-1P-𝚫. We interchange a job 𝑗 ′ from machine
ℎ ∈ 𝐼Δ (𝜎) with a job 𝑗 ′′ from machine 𝑟 ∈ 𝐼𝑅 (𝜎). The jobs 𝑗 ′,
𝑗 ′′ are such that 𝑝 𝑗′ − 𝑝 𝑗′′ ≥ Δℎ (𝜎), 𝑝 𝑗′ − 𝑝 𝑗′′ ≤ 𝑅𝑟 (𝜎).

We use the permutations given above during the building
of an even schedule 𝜎 ∈ Ψ(𝜎𝑃) in Stage II. After each of the
permutations, we obtain the schedule 𝜎′, for which 𝐼Δ (𝜎′) =
𝐼Δ (𝜎)\{ℎ}; |𝑃(𝜎′) | = |𝑃(𝜎) | + 1; ΔΣ (𝜎′) = ΔΣ (𝜎) −Δℎ (𝜎);
𝐹 (𝜎′) = 𝐹 (𝜎) −Δℎ (𝜎).

We apply the following two permutations in Stage III.
Permutation 1P-0P-R𝚫. We move a job 𝑗 from machine ℎ ∈

𝐼Δ (𝜎) to machine 𝑟 ∈ 𝐼𝑅 (𝜎). The job 𝑗 is such that 𝑝 𝑗 < Δℎ (𝜎),
𝑝 𝑗 > 𝑅𝑟 (𝜎).

Permutation 1P-1P-R𝚫. We interchange a job 𝑗 ′ from ma-
chine ℎ ∈ 𝐼Δ (𝜎) with a job 𝑗 ′′ from machine 𝑟 ∈ 𝐼𝑅 (𝜎). The
jobs 𝑗 ′, 𝑗 ′′ are such that 𝑝 𝑗′ − 𝑝 𝑗′′ < Δℎ (𝜎), 𝑝 𝑗′ − 𝑝 𝑗′′ > 𝑅𝑟 (𝜎).

After each of these permutations, we obtain the schedule 𝜎′

for which 𝐼Δ (𝜎′) = 𝐼Δ (𝜎) ∪{𝑟}; |𝑃(𝜎′) | = |𝑃(𝜎) | −1;ΔΣ (𝜎′) =
ΔΣ (𝜎) −𝑅𝑟 (𝜎); 𝐹 (𝜎′) = 𝐹 (𝜎) −𝑅𝑟 (𝜎).

We apply the following two permutations in Stage IV.
Permutation 1P-0P-R. We move a job 𝑗 from machine ℎ ∈

𝐼Δ (𝜎) to machine 𝑟 ∈ 𝐼𝑅 (𝜎). The job 𝑗 is such that 𝑝 𝑗 ≤ Δℎ (𝜎),
𝑝 𝑗 ≤ 𝑅𝑟 (𝜎). After this permutation, we obtain the schedule 𝜎′

for which 𝐼Δ (𝜎′) = 𝐼Δ (𝜎)\{ℎ} if 𝑝 𝑗 = Δℎ (𝜎) or 𝐼Δ (𝜎′) = 𝐼Δ (𝜎)
if 𝑝 𝑗 < Δℎ (𝜎); 𝑅Σ (𝜎′) = 𝑅Σ (𝜎) − 𝑝 𝑗 ; 𝐹 (𝜎′) = 𝐹 (𝜎) − 𝑝 𝑗 .

Permutation 1P-1P-R. We interchange a job 𝑗 ′ from machine
ℎ ∈ 𝐼Δ (𝜎) with a job 𝑗 ′′ from machine 𝑟 ∈ 𝐼𝑅 (𝜎). The jobs 𝑗 ′,
𝑗 ′′ are such that 𝑝 𝑗′ − 𝑝 𝑗′′ ≤ Δℎ (𝜎), 𝑝 𝑗′ − 𝑝 𝑗′′ ≤ 𝑅𝑟 (𝜎). After
this permutation, we obtain a schedule 𝜎′ for which 𝐼Δ (𝜎′) =
𝐼Δ (𝜎)\{ℎ} if 𝑝 𝑗′ − 𝑝 𝑗′′ = Δℎ (𝜎) or 𝐼Δ (𝜎′) = 𝐼Δ (𝜎) if 𝑝 𝑗′ −
𝑝 𝑗′′ < Δℎ (𝜎); 𝑅Σ (𝜎′) = 𝑅Σ (𝜎) − (𝑝 𝑗′ − 𝑝 𝑗′′ ); 𝐹 (𝜎′) = 𝐹 (𝜎) −(
𝑝 𝑗′ − 𝑝 𝑗′′

)
.

We apply the following three permutations at Stage V to
obtain the schedule 𝜎 ∈ Ψ𝑃𝑆 . Jobs in the two sets 𝑃 and 𝑆 are
considered in these permutations, which are applied to decrease
the value of𝑊 (𝜎).

Permutation 1P-1S-W1. We interchange a job 𝑗 ′ ∈ 𝑃𝑟 (𝜎), 𝑟 ∈
𝐼𝑅 (𝜎) with a job 𝑗 ′′ ∈ 𝑆ℎ (𝜎), ℎ ∈ 𝐼Δ (𝜎). The jobs 𝑗 ′, 𝑗 ′′ are such
that 𝑝 𝑗′′ ≤ 𝑝 𝑗′ +𝑅𝑟 (𝜎) and 𝑝 𝑗′ < 𝑅ℎ (𝜎). After this permutation,
we obtain a schedule𝜎′ for which 𝐼Δ (𝜎′) = 𝐼Δ (𝜎)\{ℎ}; 𝐹 (𝜎′) =
𝐹 (𝜎) −

(
𝑝 𝑗′′ −𝑅ℎ (𝜎)

)
;𝑊 (𝜎′) =𝑊 (𝜎) −

(
𝑝 𝑗′′ −𝑅ℎ (𝜎)

)
.

Permutation 1P-1S-W2. We interchange a job 𝑗 ′ ∈ 𝑃𝑟 (𝜎),
𝑟 ∈ 𝐼𝑅 (𝜎) with a job 𝑗 ′′ ∈ 𝑆ℎ (𝜎), ℎ ∈ 𝐼Δ (𝜎). The jobs 𝑗 ′, 𝑗 ′′
are such that 𝑝 𝑗′′ ≤ 𝑝 𝑗′ + 𝑅𝑟 (𝜎) and 𝑝 𝑗′ > 𝑅ℎ (𝜎). After this
permutation, we obtain a schedule𝜎′ for which 𝐼Δ (𝜎′) = 𝐼Δ (𝜎);
𝐹 (𝜎′) = 𝐹 (𝜎) −

(
𝑝 𝑗′′ − 𝑝 𝑗′

)
;𝑊 (𝜎′) =𝑊 (𝜎) −

(
𝑝 𝑗′′ − 𝑝 𝑗′

)
.

Permutation 1P-1S-W3. We interchange a job 𝑗 ′ ∈ 𝑃𝑟 (𝜎),
𝑟 ∈ 𝐼𝑅 (𝜎) with a job 𝑗 ′′ ∈ 𝑆ℎ (𝜎), ℎ ∈ 𝐼Δ (𝜎). The jobs 𝑗 ′, 𝑗 ′′ are
such that 𝑝 𝑗′′ > 𝑝 𝑗′ + 𝑅𝑟 (𝜎) and 𝑝 𝑗′ < 𝑅ℎ (𝜎). After this per-
mutation, we obtain a schedule 𝜎′ for which 𝐼Δ (𝜎′) = 𝐼Δ (𝜎);
𝐹 (𝜎′) = 𝐹 (𝜎) −

(
𝑝 𝑗′ +𝑅𝑟 (𝜎) −𝑅ℎ (𝜎)

)
; 𝑊 (𝜎′) = 𝑊 (𝜎) −(

𝑝 𝑗′ +𝑅𝑟 (𝜎) −𝑅ℎ (𝜎)
)
.

The time complexity of the process of checking for the pos-
sibility of applying permutations is determined by the formulae
𝑂 (𝑛 log𝑛) for permutations 1P-0P-Δ,1P-0P-RΔ, 1P-0P-R and
𝑂 (𝑛2) for permutations 1P-1P-Δ, 1P-1P-RΔ, 1P-1P-R, 1P-1S-
W1, 1P-1S-W2, 1P-1S-W3.

Each of the PSC-algorithms (A1 and A2) for the solution to
the TTP problem includes the first polynomial component and
the approximation algorithm and is built solely on directed per-
mutations. The first polynomial component of the algorithm is
a deterministic procedure consisting of the sequential execution
of directed permutations. The total number of permutations is
limited by a polynomial of the number of jobs and the number of
machines. When the problem has been solved, we obtain either
a strictly optimal solution from the first polynomial component
of the algorithm (if any of the SCOs were satisfied during the
computation) or an approximate one with an upper bound on
the deviation from the optimum [7,10].

Statement 10. Suppose that a schedule𝜎 for the TTPR problem
obtained using Algorithm A1 (A2) has the following properties:
it is not feasible, and the completion time of at least one machine
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in the schedule is strictly less than the due date. Then, each
machine cannot have more than one tardy job, and this job is
necessarily partially tardy.

Proof. According to the implementation logic of Algorithm A1
(A2) [7,10], we assign each next unassigned job to the machine
with a minimum completion time. Hence, if any machine has a
reserve, then the job will be assigned by Algorithm A1 (A2) to
the machine with a reserve and not as the next tardy job to any
other machine. □

2.3. Modification to algorithms A1 and A2 for the case
where the release times of some machines exceed
the due date (the TTPRE problem)

The modification of algorithms A1 and A2 for the TTPRE prob-
lem is described below.

Build an initial schedule 𝜎init ∈ Ψ𝑃 with the algorithm 𝐴init

described above. Conditionally split 𝜎init into 𝜎1 and 𝜎2, where
𝜎1 is the schedule of jobs on machines with 𝑟𝑖 < 𝑑 and 𝜎2 is the
schedule of jobs on machines with 𝑟𝑖 ≥ 𝑑 [7, 13].

Statement 11. [7, 13]. The maximal difference in the number
of tardy jobs on the machines in the schedule 𝜎1 does not
exceed one.

Statement 12. [7,13]. The number of tardy jobs on each of the
machines with 𝑟𝑖 < 𝑑 is greater than or equal to the number of
tardy jobs on each of the machines with 𝑟𝑖 ≥ 𝑑.

The truth of Statements 11 and 12 is based on the algo-
rithm 𝐴init.

Theorem 11. [7, 13]. Any permutation of jobs on the sched-
ule 𝜎init between machines 𝑖 ∈ 𝜎1 and 𝑖 ∈ 𝜎2 cannot lead to a
decrease in the functional value.

Corollary 4. [7]. It is necessary to perform the optimisation
only for the schedule 𝜎1. The schedule 𝜎2 is optimal by con-
struction, as shown in Corollary 2 to Theorem 1.

Corollary 5. [7]. The SCOs are checked for the schedule 𝜎1,
and the estimate of the deviation of the functional value from the
optimum, ΩΣ (𝜎) = min (𝑅Σ (𝜎),ΔΣ (𝜎)), is determined for the
schedule 𝜎1, since the schedule 𝜎2 is optimal by construction.

Theorem 12. The optimal solution for the TTPRE problem
belongs to the class of schedules Ψ𝑃 .

Proof. The schedule 𝜎2 is optimal by construction. The sched-
ule 𝜎1 corresponds to the formulation of the TTPR problem, so
all the properties of the class Ψ𝑃 are true for𝜎1 (Theorems 3–10
and Statements 3–6), including SCOs #1 and #2 (Theorems 4
and 7). Permutations between the schedules 𝜎1 and 𝜎2 are not
performed (Theorem 11). □

Corollary 6. The SCOs #1 and #2 of the TTPR problem (The-
orems 4 and 7) remain true for the TTPRE problem.

The following theorem is also true for the TTPRE problem,
and its proof is obvious.

Theorem 13. [7, 13]. The functional value for the TTPRE
problem is equal to the sum of the functional values for the
schedules 𝜎1 and 𝜎2.

Remark 4. Corollary 6 and Theorem 13 are used in the PSC-
algorithm for solving the TTPRE problem [7].

Scheme used to solve the TTPRE problem [7,13]. Build an
initial schedule 𝜎init ∈ Ψ𝑃 using the algorithm 𝐴init described
above. Conditionally split 𝜎init into 𝜎1 and 𝜎2, where 𝜎1 is
the schedule of jobs on machines with 𝑟𝑖 < 𝑑, and 𝜎2 is the
schedule of jobs on machines with 𝑟𝑖 ≥ 𝑑. Execute one of the
PSC-algorithms to solve the TTPR problem (Algorithm A1 or
A2) for machines with 𝑟𝑖 < 𝑑. Combine the resulting schedule
𝜎1 with the schedule 𝜎2 for machines where 𝑟𝑖 ≥ 𝑑.

Remark 5. We have described the previously published the-
oretical provisions and the schemes of the algorithms for the
TTPR and TTPRE problems in detail because this allows us to
rigorously substantiate (theoretically prove and effectively use
in the modified algorithms below) the following new results:
• Rigorous proof of Statements 1 and 2 previously published

in [9] (there was no rigorous proof of these statements in
previous publications).

• Formulated for the first time Theorems 2, 3, and 12, which
contain new theoretical properties of the TTPR and TTPRE
problems. From these theorems in particular, a rigorous jus-
tification follows for the SCOs #1 and #2 previously pub-
lished in [7, 9, 10].

• Formulated for the first time Statement 10 (Subsection 2.2)
and its corollaries (Statements 15–17 given in Section 5).

2.4. The efficiency of PSC-algorithms A1 and A2
for non-feasible schedules

PSC-algorithms A1 and A2 for solving these problems [7, 10]
were built in accordance with the computational scheme given
above. Algorithm A1 is more time-consuming than Algo-
rithm A2 and consists of the sequential execution of Stages I–V
described above with the use of all types of permutations. Its
complexity is limited by the polynomial 𝑂 (𝑛2𝑚). Algorithm A2
includes the permutations most frequently performed during the
execution of the first polynomial component of Algorithm A1,
namely 1P-0P-Δ, 1P-0P-RΔ, 1P-0P-R. This second algorithm
involves the sequential execution of Stages I–III considering
only these three types of permutations (permutations 1P-0P-Δ
and 1P-0P-R are performed at Stage II, 1P-0P-RΔ at Stage III,
Stages IV–V are not executed). It also contains the given above
algorithm 𝐴init, which is simpler than that of algorithm A1, for
building an initial schedule. The complexity of Algorithm A2
is therefore significantly lower than that of Algorithm A1 and is
determined by the polynomial 𝑂 (𝑚𝑛 log𝑛) [7, 10].

A schedule that does not have any tardy jobs is referred to
here as feasible.

It was statistically shown in [7, 10] that the PSC-algorithms
A1 and A2 for the TTP problem are efficient for building an
optimal schedule in the case where SCOs #1 and/or #2 are
satisfied by the obtained solution.

Statistical studies of algorithms A1 and A2 were conducted
in [7, 10] for a due date factor 𝐷𝐹 = 0.7. This article presents
statistical studies for𝐷𝐹 = 0.3 . . .0.99. Hence, only non-feasible
schedules are considered.
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To study the efficiency of the algorithms, a modelling sys-
tem written in C# was used in a Microsoft Visual Studio 2010
environment. Job sets were randomly generated with a uniform
distribution of parameters. The processing times for the jobs
were chosen from the interval 1,200 [7, 10]. The due date was
calculated as 𝐷𝐹 × 𝐿/𝑚, where 𝐿 is the total processing time
for all jobs. 1000 tests were conducted for each number of jobs 𝑛
with a fixed number of machines𝑚 = 10. The study was done on
an Intel Core i5-3210M processor with a clock speed of 2.5 GHz
and 8 GB of RAM.

The results for the average frequency of obtaining an optimal
solution (depending on the dimension and the due date factor)
and the average solution times are given in Table 1 for Algorithm
A1 and Table 2 for Algorithm A2.

As we can see from an analysis of Table 1 and Table 2,
Algorithm A2 is qualitatively superior to Algorithm A1, both in
terms of the frequency of obtaining an optimal solution and in
the average solution time.

In the case where ΔΣ (𝜎) > 0 and 𝑅Σ (𝜎) > 0 for the ob-
tained solution, A1 and A2, as polynomial-time approximation
algorithms, give solutions close to the optimum in terms of the
functional value, based on an estimate of the deviation of the
obtained solution from the optimum. Algorithms A1 and A2
are not statistically efficient for building an optimal schedule in
the case where a feasible solution exists for a given problem
instance. The reason for this is that to obtain a feasible solu-
tion, the algorithm (A1 or A2) must solve the problem instance
exactly, and we know that the TTPR problem is NP-hard. We
therefore explicitly introduce the following:
• An obvious SCO #3 for the TTPR and TTPRE problems: a

feasible schedule (one that has no tardy jobs) is optimal.
• An efficient polynomial sub-algorithm (A0) for building

a feasible schedule (its efficiency in obtaining a feasible
schedule follows from the meaning of the functional in the
MDMM problem given below and, consequently, of State-
ment 13).

Table 1
Average frequency (%) of obtaining an optimal solution (depending on the number of jobs 𝑛 and the due date factor 𝐷𝐹) and average solution

time 𝑡𝑎𝑣 (ms) for Algorithm A1

Number of jobs,
𝑛

Due date factor, 𝐷𝐹 Average solution time,
𝑡𝑎𝑣

(𝐷𝐹 = 0.7)0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

15 31.4 17.4 94.0 100.0 29.6 54.9 0.0 0.0 0.019
20 0.0 5.7 56.2 100.0 100.0 80.6 26.0 0.0 0.014
25 33.0 0.0 78.7 100.0 98.9 85.6 51.2 0.0 0.017
30 96.4 33.4 22.4 87.2 100.0 100.0 89.6 0.0 0.014
35 100.0 84.8 37.3 76.7 100.0 100.0 85.3 0.0 0.011
40 41.6 100.0 78.1 35.6 100.0 100.0 77.8 0.0 0.012
45 39.2 89.5 100.0 22.4 87.4 100.0 96.3 0.0 0.015
50 86.2 71.2 100.0 32.1 66.3 100.0 100.0 0.0 0.019
55 97.8 26.2 100.0 90.1 42.2 100.0 100.0 0.0 0.029
60 78.2 72.7 75.1 100.0 22.3 100.0 100.0 0.0 0.027
65 50.1 100.0 40.0 100.0 24.6 100.0 100.0 4.6 0.019
70 67.0 95.6 56.7 97.3 59.1 100.0 100.0 5.7 0.025
75 97.2 74.8 82.8 97.2 90.6 100.0 100.0 10.7 0.025
100 98.0 80.4 58.6 89.4 97.8 43.9 100.0 15.8 0.015
125 90.6 91.0 96.4 88.4 43.7 98.6 100.0 29.9 0.044
150 89.8 97.2 97.4 100.0 100.0 100.0 100.0 48.5 0.030
200 80.8 99.1 63.8 99.2 95.9 67.7 21.4 69.9 0.041
300 89.2 87.4 90.9 92.6 69.0 83.2 100.0 93.1 0.099
400 84.1 88.0 91.2 84.2 100.0 93.7 45.5 96.5 0.075
500 91.4 91.7 90.0 91.4 91.8 98.0 100.0 99.6 0.126
1000 91.7 91.3 90.4 93.7 93.8 98.7 85.5 100.0 0.254
5000 84.0 85.8 83.8 82.8 84.5 82.1 86.6 100.0 9.293

10 000 82.1 83.3 82.6 82.5 81.9 83.2 90.8 20.3 32.365
50 000 83.2 85.9 84.3 84.1 84.3 83.2 84.4 75.7 672.589
𝑡𝑎𝑣 333.08 401.83 548.13 598.32 715.18 871.91 951.87 1796.53
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Table 2
Average frequency (%) of obtaining an optimal solution (depending on the number of jobs 𝑛 and the due date factor 𝐷𝐹) and average solution

time 𝑡𝑎𝑣 (ms) for Algorithm A2

Number of jobs,
𝑛

Due date factor, 𝐷𝐹 Average solution time,
𝑡𝑎𝑣

(𝐷𝐹 = 0.7)0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

15 73.8 67.7 95.1 100.0 100.0 100.0 100.0 100.0 0.007
20 4.2 33.9 79.2 100.0 100.0 100.0 100.0 100.0 0.010
25 30.0 14.1 64.7 97.5 100.0 100.0 100.0 100.0 0.016
30 100.0 20.0 36.1 89.2 100.0 100.0 100.0 100.0 0.016
35 100.0 93.9 3.8 27.0 100.0 100.0 100.0 100.0 0.011
40 51.1 97.4 73.9 4.0 100.0 100.0 100.0 100.0 0.011
45 29.6 86.7 100.0 10.2 95.7 100.0 100.0 100.0 0.015
50 88.7 71.2 100.0 61.1 82.4 100.0 100.0 100.0 0.017
55 100.0 42.9 94.2 97.1 37.6 100.0 100.0 100.0 0.020
60 83.7 81.1 76.9 100.0 15.2 100.0 100.0 100.0 0.026
65 43.7 100.0 46.4 100.0 43.4 100.0 100.0 100.0 0.025
70 87.9 96.6 38.7 100.0 81.4 100.0 100.0 100.0 0.032
75 100.0 76.6 87.1 92.1 93.5 98.4 100.0 100.0 0.023
100 96.1 88.8 58.6 98.8 100.0 59.2 100.0 100.0 0.029
125 95.6 94.9 96.7 73.5 68.3 100.0 100.0 100.0 0.040
150 89.9 96.8 98.2 96.9 100.0 100.0 100.0 100.0 0.040
200 85.9 94.2 90.1 97.2 98.7 84.5 57.4 100.0 0.066
300 90.5 90.1 94.8 96.1 89.6 95.1 100.0 100.0 0.068
400 98.5 92.3 97.1 93.4 100.0 98.4 87.6 100.0 0.080
500 95.4 94.4 99.1 98.5 98.2 98.7 100.0 100.0 0.107
1000 97.8 99.1 98.5 99.3 99.6 99.4 100.0 100.0 0.210
5000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.955

10 000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2.101
50 000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 12.065
𝑡𝑎𝑣 16.193 15.677 15.739 15.949 15.990 15.974 15.810 15.627

3. ALGORITHM A0 FOR BUILDING A SCHEDULE THAT
MINIMISES THE DIFFERENCE BETWEEN THE MAXIMAL
AND THE MINIMAL COMPLETION TIMES
OF THE MACHINES

The statement of the auxiliary problem of minimising the dif-
ference between the maximal and the minimal completion times
of the machines (MDMM). Given a set of jobs 𝐽 = {1, 2, . . . , 𝑛}
and a set of identical parallel machines 𝐼 = {1, 2, . . . , 𝑚}, we
know the processing time 𝑝 𝑗 for each job 𝑗 ∈ 𝐽. A machine 𝑖,
𝑖 ∈ 𝐼, can start to process any job after its release time 𝑟𝑖 ≥ 0.
Machine release times may be not the same, and machine idling
is forbidden. We need to build such a schedule 𝜎 of the jobs
𝑗 ∈ 𝐽 on 𝑚 machines that minimises the functional

𝐹 (𝜎) = 𝐶max (𝜎) −𝐶min (𝜎) → min, (1)

where 𝐶𝑖 (𝜎) is the completion time for all jobs on machine
𝑖 in the schedule 𝜎; 𝐶max (𝜎) = max

𝑖∈𝐼
𝐶𝑖 (𝜎); and 𝐶min (𝜎) =

min
𝑖∈𝐼

𝐶𝑖 (𝜎).

Remark 6. SCO #3 must be satisfied in the TTPRE problem,
so the MDMM problem is formulated only for machines with
𝑟𝑖 < 𝑑.

After a careful search, we believe that the MDMM problem
is formulated and solved by a PSC-algorithm for the first time in
this study. The criterion of workload balancing (1) for identical
parallel machines has been considered only in the case of equal
release times (e.g. [19]). This criterion, if used as a separate
problem, is important in the context of delivering finished prod-
ucts to customers, in particular, when the recipient expects their
joint delivery (just-in-time delivery planning). The smaller the
difference between product delivery times, the more efficiently
supply chain planning can be done and warehousing costs, as
well as penalties associated with a loss of orders and friendliness
of customers, can be minimized.

A justification of Algorithm A0 as an efficient polynomial-
time algorithm for building a feasible schedule (SCO #3) if it
exists is presented below.
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A schedule 𝜎 is referred to as aligned if𝐶𝑖 (𝜎) = const ∀𝑖 ∈ 𝐼.
The justification for Algorithm A0 follows from the following
statement.

Statement 13. If there is a feasible solution for a given instance
of the TTPR problem (an optimal schedule, since the completion
times of all jobs in it do not exceed the common due date), then
the aligned schedule, if it exists, is feasible and hence optimal
for this TTPR problem.

Proof. Consider an arbitrary feasible schedule 𝜎 with
𝐶max (𝜎) ≠ 𝐶min (𝜎), 𝐶max (𝜎) ≤ 𝑑. A schedule 𝜎′ for which
𝐶𝑖 (𝜎′) = const ∀𝑖 ∈ 𝐼 therefore satisfies the following: 𝐶𝑖 (𝜎) <
𝐶max (𝜎) ≤ 𝑑. □

Statement 14. Suppose that all the parameters of the MDMM
problem are positive digital numbers, and the following state-
ment is true for an arbitrary schedule 𝜎: 𝐶max (𝜎) −𝐶min (𝜎) is
equal to one, or (in the case of equal machine release times)
to the greatest common divisor of the total processing time of
all jobs (GCDTPT). Then, the schedule 𝜎 is optimal based on
criterion (1), the value of𝐶max (𝜎) is the minimum possible, and
the resulting schedule is therefore feasible (if a feasible schedule
exists).

Proof. Proof of the first part of Statement 14 follows from the
fact that an aligned schedule 𝜎′ (𝐶𝑖 (𝜎′) = const ∀𝑖 ∈ 𝐼) does not
exist, as otherwise, the inequality𝐶min (𝜎) ≤ 𝐶𝑖 (𝜎′) ≤ 𝐶max (𝜎)
would hold, which is impossible because𝐶𝑖 (𝜎′) is a positive in-
teger number. The minimal possible value of𝐶max (𝜎)−𝐶min (𝜎)
is therefore equal to one or the GCDTPT (in the case of equal
machine release times).

The second part of Statement 14 is obvious. □

Suppose that no schedule satisfies Statement 13 or 14. The
following two facts are true:
• There is a strong relationship between the functional in (1)

and min𝜎𝐶max (𝜎) concerning the value of 𝐶max (𝜎) (one
of the main strategies for obtaining a schedule regarding the
functional in (1) is increasing the current minimal comple-
tion time of the machines by reducing the current maximal
completion time of the machines).

• If there is a feasible schedule for the TTPR problem, then
the schedule that minimises 𝐶max (𝜎) is also feasible (which
is obvious).

We will therefore use Algorithm A0, which minimises the
functional in (1), as a polynomial-time algorithm that checks
SCO #3. In this case, an additional effect is achieved: the result-
ing schedule is aligned as far as possible, which increases the
efficiency of further exploitation of the machines.

It follows from Statements 13 and 14 that there are two SCOs
for the solution obtained for the MDMM problem.

SCO #1 for the MDMM problem: if ∈ 𝐶𝑖 (𝜎) = const ∀𝑖 ∈ 𝐼
(the schedule 𝜎 is aligned), then 𝜎 is optimal.

SCO #2 for the MDMM problem (in the case where the
parameters of the problem are positive digital numbers): if
𝐶max (𝜎) −𝐶min (𝜎) is equal to one or the GCDTPT (in the case
of equal machine release times), then the schedule 𝜎 is optimal
based on criterion (1).

This allows us to classify Algorithm A0 as a PSC-algorithm
of the second class for solving the MDMM problem.

We also introduce the following notation to describe Algo-
rithm A0:

𝐶av =

𝑛∑︁
𝑗=1
𝑝 𝑗 +

𝑚∑︁
𝑖=1
𝑟𝑖

𝑚
,

Δ𝑖 (𝜎) =max {0, 𝐶𝑖 (𝜎) −𝐶av} is the tardiness of a machine 𝑖 ∈ 𝐼,
𝑅𝑖 (𝜎) = max {0, 𝐶av −𝐶𝑖 (𝜎)} is the reserve of a machine 𝑖 ∈ 𝐼,
𝐼Δ (𝜎) is the set of machine numbers 𝑖 : Δ𝑖 (𝜎) > 0 in a sched-
ule 𝜎,
𝐼𝑅 (𝜎) is the set of machine numbers 𝑖 : 𝑅𝑖 (𝜎) > 0 in a sched-
ule 𝜎.

Algorithm A0 consists of two stages:
1. An algorithm for building the initial schedule.
2. An approximation algorithm for building a schedule that

minimises the specified criterion.
The algorithm for building the initial schedule 𝜎0 is as

follows:
1. Renumber the jobs of the set 𝐽 in non-increasing order of

processing times 𝑝 𝑗 .
2. Renumber the machines in non-decreasing order of release

times 𝑟𝑖 .
3. Initialise the completion times of machines:𝐶𝑖 = 𝑟𝑖 ∀𝑖 = 1,𝑚.
4. Select an unassigned job 𝑗 with the maximal processing

time 𝑝 𝑗 . Assign the job 𝑗 to a machine 𝑖 that has a minimal
completion time 𝐶𝑖 .

5. Calculate the new completion time of the machine 𝑖: 𝐶𝑖 =
𝐶𝑖 + 𝑝 𝑗 .

6. If all jobs have been assigned, the algorithm terminates;
otherwise, go to Step 4.

We denote the resulting schedule as 𝜎0.
If any of the SCOs for the MDMM problem is satisfied for

the schedule 𝜎0, then the obtained schedule is optimal based on
the MDMM criterion, and the algorithm terminates. Otherwise,
we perform optimisation (the second stage of Algorithm A0).

The second stage consists of the successive execution of a
series of permutations that improve the schedule and minimise
the functional value.

To improve the schedule, we need to focus on reducing the
maximal tardiness max

𝑖∈𝐼Δ (𝜎)
Δ𝑖 (𝜎). To do this, we use permuta-

tions of jobs between machine ℎ with the maximal value of
max
𝑖∈𝐼Δ (𝜎)

Δ𝑖 (𝜎) and the next machine 𝑠 from the set 𝐼𝑅 (𝜎), start-

ing from the machine with the maximal value of max
𝑖∈𝐼𝑅 (𝜎)

𝑅𝑖 (𝜎).
A subset of jobs from machine ℎ (denoted as 𝐾ℎ (𝜎), 𝐾ℎ (𝜎) ⊆
𝐽ℎ (𝜎) by definition) is swapped with a subset of jobs from ma-
chine 𝑠 (this subset is denoted as 𝐿𝑠 (𝜎), 𝐿𝑠 (𝜎) ⊆ 𝐽𝑠 (𝜎)) [7,20].
Let 𝜃 =

∑︁
𝑗∈𝐾ℎ (𝜎)

𝑝 𝑗 −
∑︁

𝑗∈𝐿𝑠 (𝜎)
𝑝 𝑗 represent the difference between

the total processing times for jobs taking part in the permuta-
tion [7, 20].

We use the following types of permutations: permutations of
type A (Table 3) and type B (Table 4).
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Table 3
Properties of permutations of type A [7, 20]

Permutation
type

Machines and jobs taking part
in the permutation

Difference between the total
processing times, 𝜃

(𝜃 > 0)

Condition applied
to perform

permutation

Characteristics
of the resulting

schedule 𝜎1From (ℎ) To (𝑠)

1-1A ℎ ∈ 𝐼Δ (𝜎), 𝑗1 ∈ 𝐽ℎ 𝑠 ∈ 𝐼𝑅 (𝜎), 𝑗2 ∈ 𝐽𝑠 𝑝 𝑗1 − 𝑝 𝑗2

𝜃 ≤ Δℎ (𝜎),
𝜃 ≤ 𝑅𝑠 (𝜎)

Δℎ (𝜎1) = Δℎ (𝜎) − 𝜃,
𝑅𝑠 (𝜎1) = 𝑅𝑠 (𝜎) − 𝜃

1-2A ℎ ∈ 𝐼Δ (𝜎), 𝑗1 ∈ 𝐽ℎ 𝑠 ∈ 𝐼𝑅 (𝜎), 𝑗2, 𝑗3 ∈ 𝐽𝑠 𝑝 𝑗1 − (𝑝 𝑗2 + 𝑝 𝑗3 )
2-1A ℎ ∈ 𝐼Δ (𝜎), 𝑗1, 𝑗2 ∈ 𝐽ℎ 𝑠 ∈ 𝐼𝑅 (𝜎), 𝑗3 ∈ 𝐽𝑠 (𝑝 𝑗1 + 𝑝 𝑗2 ) − 𝑝 𝑗3
2-2A ℎ ∈ 𝐼Δ (𝜎), 𝑗1, 𝑗2 ∈ 𝐽ℎ 𝑠 ∈ 𝐼𝑅 (𝜎), 𝑗3, 𝑗4 ∈ 𝐽𝑠 (𝑝 𝑗1 + 𝑝 𝑗2 ) − (𝑝 𝑗3 + 𝑝 𝑗4 )

Table 4
Properties of permutations of type B [7, 20]

Permutation
type

Machines and jobs taking part
in the permutation

Difference between the total
processing times, 𝜃

(𝜃 > 0)

Condition applied
to perform

permutation

Characteristics
of the resulting

schedule 𝜎1From (ℎ) To (𝑠)

1-1B ℎ ∈ 𝐼Δ (𝜎), 𝑗1 ∈ 𝐽ℎ 𝑠 ∈ 𝐼𝑅 (𝜎), 𝑗2 ∈ 𝐽𝑠 𝑝 𝑗1 − 𝑝 𝑗2

𝜃 ≤ Δℎ (𝜎),
𝜃 > 𝑅𝑠 (𝜎)

Δℎ (𝜎1) = Δℎ (𝜎) − 𝜃,
𝑅𝑠 (𝜎1) = 𝜃 −𝑅𝑠 (𝜎)

1-2B ℎ ∈ 𝐼Δ (𝜎), 𝑗1 ∈ 𝐽ℎ 𝑠 ∈ 𝐼𝑅 (𝜎), 𝑗2, 𝑗3 ∈ 𝐽𝑠 𝑝 𝑗1 − (𝑝 𝑗2 + 𝑝 𝑗3 )
2-1B ℎ ∈ 𝐼Δ (𝜎), 𝑗1, 𝑗2 ∈ 𝐽ℎ 𝑠 ∈ 𝐼𝑅 (𝜎), 𝑗3 ∈ 𝐽𝑠 (𝑝 𝑗1 + 𝑝 𝑗2 ) − 𝑝 𝑗3
2-2B ℎ ∈ 𝐼Δ (𝜎), 𝑗1, 𝑗2 ∈ 𝐽ℎ 𝑠 ∈ 𝐼𝑅 (𝜎), 𝑗3, 𝑗4 ∈ 𝐽𝑠 (𝑝 𝑗1 + 𝑝 𝑗2 ) − (𝑝 𝑗3 + 𝑝 𝑗4 )

The algorithm used in the second stage is a simplification
of the PSC-algorithm from [7, 20] in which only permutations
of type A or type B are used. It can be summarised as follows:
1. Build the initial schedule 𝜎0, 𝜎 = 𝜎0.
2. Determine the sets 𝐼Δ (𝜎) and 𝐼𝑅 (𝜎).
3. Check SCOs #1 and #2 for the MDMM problem. If at least

one is satisfied, then go to Step 6 (𝜎 is the optimal schedule);
otherwise, go to Step 4.

4. Determine the machine ℎ that corresponds to the maximal
value of the tardiness: Δℎ (𝜎) = max

𝑖∈𝐼Δ (𝜎)
Δ𝑖 (𝜎) (if there are

several machines with the same maximum value of Δ𝑖 (𝜎),
then consider each of them).

5. For machine ℎ, looking over machines 𝑠 ∈ 𝐼𝑅 (𝜎), perform
a permutation of type A or type B. If there are no such
permutations, then go to Step 6; otherwise, go to Step 2.

6. The algorithm terminates: we have obtained schedule 𝜎.

4. EXAMPLES OF THE MDMM PROBLEM AND
COMPUTATIONAL STUDIES OF ALGORITHM A0

Example 1. Given: 𝑚 = 3, 𝑛 = 4, the values of 𝑟𝑖 and 𝑝 𝑗 are
given in Table 5.

Table 5
Initial data for Example 1

𝑗 1 2 3 4 𝑖 1 2 3

𝑝 𝑗 9 8 7 3 𝑟𝑖 0 2 4

The initial schedule 𝜎0 is shown in Fig. 1a. We have
𝐶max (𝜎0) = 12, 𝐼Δ (𝜎0) = {1}, 𝐶min (𝜎0) = 10, 𝐼𝑅 (𝜎0) = {2}.

Fig. 1. Illustration of the solution to Example 1

SCOs #1 and #2 for the MDMM problem are not satisfied,
and we therefore execute the second stage of Algorithm A0.
There is a permutation of type 1-1A in this example, namely
a permutation of jobs 1 and 2 (𝜃 = Δℎ (𝜎0) = 𝑅𝑠 (𝜎0) = 1). By
swapping jobs 1 and 2, we obtain the aligned schedule 𝜎 shown
in Fig. 1b. SCO #1 for the MDMM problem is satisfied, and the
schedule 𝜎 is optimal.

Example 2. Given: 𝑚 = 3, 𝑛 = 9, the values of 𝑟𝑖 and 𝑝 𝑗 are
given in Table 6.

Table 6
Initial data for Example 2

𝑗 1 2 3 4 5 6 7 8 9 𝑖 1 2 3

𝑝 𝑗 11 8 8 6 6 5 5 5 3 𝑟𝑖 0 1 2

The initial schedule 𝜎0 is shown in Fig. 2a. We have
𝐶max (𝜎0) = 21,𝐶min (𝜎0) = 19, 𝐼Δ (𝜎0) = {1}, and 𝐼𝑅 (𝜎0) = {3}.
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Fig. 2. Illustration of the solution to Example 2

SCOs #1 and #2 for the MDMM problem are not satisfied, and
we therefore execute the second stage of Algorithm A0. There is
a permutation of type 2-2A in this example, namely a permuta-
tion of the group of jobs 5 and 9 from machine 3 and the group
of jobs 6 and 8 from machine 1 (𝜃 = Δℎ (𝜎0) = 𝑅𝑠 (𝜎0) = 1).
After this permutation, we obtain the aligned schedule 𝜎 shown
in Fig. 2b. SCO #1 for the MDMM problem is satisfied, and the
schedule 𝜎 is optimal.
Example 3. Given: 𝑚 = 4, 𝑛 = 20, the values of 𝑟𝑖 and 𝑝 𝑗 are
given in Table 7.

Table 7
Initial data for Example 3

𝑗 1 2 3 4 5 6 7 8 9 10 𝑖 1 2 3 4

𝑝 𝑗 300 270 230 220 200 150 120 90 70 50 𝑟𝑖 0 2 3 5

𝑗 11 12 13 14 15 16 17 18 19 20

𝑝 𝑗 41 40 35 30 28 24 17 12 7 3

In the initial schedule 𝜎0 (Table 8a), we have 𝐶max (𝜎0) =
489, 𝐶min (𝜎0) = 485, 𝐶av (𝜎0) = 486.75, 𝐼Δ (𝜎0) = {3, 4}, and
𝐼𝑅 (𝜎0) = {1, 2}. SCOs #1 and #2 for the MDMM problem are
not satisfied, and we execute the second stage of Algorithm A0.
There is a permutation of type 2-2B in this example, namely a
permutation of the group of jobs 10 and 18 from machine 1 and
the group of jobs 12 and 16 from machine 4 (𝜃 = 2 < Δℎ (𝜎0) =
2.25, 𝜃 > 𝑅𝑠 (𝜎0) = 1.75). After the permutation, we obtain the
schedule 𝜎 shown in Table 8b. We have 𝐶max (𝜎) = 487 and
𝐶min (𝜎) = 486. A schedule that is close to aligned is built with
a value of the functional equal to one. SCO #2 for the MDMM
problem is satisfied, and the schedule 𝜎 is optimal.

As described above, we performed computational studies of
the efficiency of Algorithm A0 on a series of test instances
satisfying SCO #1 or #2 for the MDMM problem. These studies
showed that the percentage of schedules obtained by Algorithm
A0 that satisfied SCO #1 or #2 for the MDMM problem was in
the range of 85–95% of instances for various dimensions and
depended on the tightness of the job processing times: the greater
the difference between the maximal and the minimal processing
times, the lower the percentage of obtaining an optimal schedule
using Algorithm A0 according to criterion (1).

Table 8
Solution to Example 3

(a) Initial schedule 𝜎0
(b) Schedule obtained

by Algorithm A0
𝑖 𝑟𝑖 𝑗 𝑝 𝑗 𝑐 𝑗 𝑖 𝑟𝑖 𝑗 𝑝 𝑗 𝑐 𝑗

1 0 1 300 300 1 0 1 300 300
8 90 390 8 90 390
10 50 440 12 40 430
14 30 470 14 30 460
18 12 482 16 24 484
20 3 485 20 3 487

2 2 2 270 272 2 2 2 270 272
7 121 393 7 121 393
11 41 434 11 41 434
13 35 469 13 35 469
17 17 486 17 17 486

3 3 3 230 233 3 3 3 230 233
6 150 383 6 150 383
9 69 452 9 69 452
15 28 480 15 28 480
19 7 487 19 7 487

4 5 4 220 225 4 5 4 220 225
5 200 425 5 200 425
12 40 465 10 50 475
16 24 489 18 12 487

5. MODIFIED PSC-ALGORITHMS FOR SOLVING THE TTPR
AND TTPRE PROBLEMS

The structure of the modified PSC-algorithms for the TTPR
and TTPRE problems is based on the results presented in the
previous sections and the following new statements.

Statement 15. SCOs #1–3 cannot be satisfied by a schedule
obtained with an algorithm (A1 or A2) for the TTRP (or TTPRE)
problem if at least one machine in this schedule has 𝐶𝑖 < 𝑑 and
at least one machine has𝐶𝑖 > 𝑑 (this machine has only one tardy
job, according to Statement 10).
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Proof. In this case, Algorithm A1 (A2) yields a non-feasible
schedule (SCO #3 cannot be satisfied). The solution also cannot
satisfy SCO #1, since at least one machine in the obtained sched-
ule has 𝐶𝑖 < 𝑑 and no more than one job is tardy on machines
with𝐶𝑖 > 𝑑. This condition contradicts the definition of an even
schedule (where we have the same number of tardy jobs on all
machines). SCO #2 cannot also be satisfied by this schedule,
since 𝑅Σ (𝜎) > 0 in this case, as by its general definition 𝑅Σ (𝜎)
is equal to the total reserve of the machines with 𝐶𝑖 < 𝑑, and
the analysed schedule 𝜎 has at least one machine with a non-
zero reserve. In addition, we have ΔΣ (𝜎) > 0 for the analysed
schedule, for the following reasons:
• By definition, ΔΣ (𝜎) is equal to the total tardiness of par-

tially tardy jobs on machines with the maximal number of
tardy jobs.

• The analysed schedule has at least one machine with𝐶𝑖 > 𝑑.
• No machine has a tardy job starting at 𝑑 because such a

job would be moved by Algorithm A1 (A2) to a machine
with reserve, meaning that the total tardiness would decrease
(Statement 10).

Thus, ΔΣ (𝜎) for a considered schedule 𝜎 is equal to the total
tardiness of all partially tardy jobs and is greater than zero. In
our case, we determine an estimate of the maximal possible
deviation of the solution from the optimum, which is equal to
min (𝑅Σ (𝜎),ΔΣ (𝜎)) (see Theorem 9). □

Statement 16. If 𝐶𝑖 ≥ 𝑑 ∀𝑖 = 1,𝑚 on a schedule 𝜎 obtained by
Algorithm A1 (A2), and at least one machine has 𝐶𝑖 = 𝑑, then
𝑅Σ (𝜎) = 0 on this schedule, and it is optimal.

Proof. Proof of this statement follows from the general defini-
tion of 𝑅Σ (𝜎) (the value of 𝑅Σ (𝜎) is calculated on machines
with a smaller number of tardy jobs – in this case, machines
without tardy jobs). □

Statement 17. If 𝐶𝑖 > 𝑑 ∀𝑖 = 1,𝑚 for a schedule 𝜎 obtained
by Algorithm A1 (A2), then SCOs #1 and #2 can be satisfied

by such a schedule (which may be even or satisfy the condition
𝑅Σ (𝜎) = 0 and/or ΔΣ (𝜎) = 0).

Proof. Proof of this statement follows from Theorem 1, or the
examples given below. □

Figure 3 shows examples of schedules obtained by Algo-
rithm A1 that correspond to the conditions of Statement 17. The
schedule in Fig. 3a is even, as SCO #1 is satisfied (each ma-
chine has two tardy jobs). The condition 𝑅Σ (𝜎) = 0 is satisfied
by the schedule in Fig. 3b because 𝑅𝑖 (𝜎) = 𝑑 −

∑︁
𝑗∈𝑃𝑖 (𝜎)

𝑝 𝑗 = 0,

𝑖 ∈ {2, 3, 4} (𝑅𝑖 (𝜎) is calculated for machines 2, 3, and 4, which
have fewer tardy jobs and no reserve). The condition ΔΣ (𝜎) = 0
is satisfied by the schedule in Fig. 3c, as 𝑆𝑖 (𝜎) = ∅ ∀𝑖 = 1, 4
(ΔΣ (𝜎) is calculated for all machines in this case, and no ma-
chine has a partially tardy job).

The condition 𝑅Σ (𝜎) = 0 is also satisfied in the example
shown in Fig. 3c. Thus, it follows from this example that both
conditions ΔΣ (𝜎) = 0 and 𝑅Σ (𝜎) = 0 which make up SCO #2
may be satisfied for the same problem instance.

Remark 7. We determine 𝑅Σ (𝜎) andΔΣ (𝜎) and check SCO #2
only for a non-even schedule since an even schedule is optimal.
Accordingly, we should first check using Algorithm A1 (A2)
whether SCO #1 holds, and only if it is false do we check SCO #2.
The estimate of the maximal possible deviation of the total tardi-
ness from the optimum, which is equal to min (𝑅Σ (𝜎), ΔΣ (𝜎))
(Theorem 9), also makes sense only for a non-even schedule.

The modified PSC-algorithms are implemented as follows.
Suppose that the following inequality holds for the problem
instance to be solved:

𝑛∑︁
𝑗=1
𝑝 𝑗 ≤

𝑚∑︁
𝑖=1

(𝑑 − 𝑟𝑖) . (2)

Fig. 3. Illustration of Statement 17
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In this case, only SCO #3 can be satisfied. This follows from
inequality (2) and Statements 10 and 15. Indeed, a feasible
schedule (SCO #3) satisfies inequality (2). If a schedule that
satisfies inequality (2) is not feasible, then there must exist a
machine with a non-zero reserve, and no more than one job
can be tardy on machines with 𝐶𝑖 > 𝑑 (Statement 10). So, from
Statement 15 we know that SCOs #1 and #2 cannot be satisfied
for the problem instance under consideration.

Statistical studies of Algorithms A1 and A2 showed that if
the optimal schedule belongs to the classes of schedules corre-
sponding to Statements 16 and 17, then Algorithm A2 obtains
it statistically significantly more often than Algorithm A1. If
the schedule obtained by Algorithm A2 is partially tardy with
a non-zero reserve (Statement 15), then Algorithm A1 obtains
an approximate solution that is statistically significantly better
than the schedule obtained by Algorithm A2.

Thus, if Algorithm A0 (for the case ∀𝑟𝑖 < 𝑑 or only for ma-
chines with 𝑟𝑖 < 𝑑) does not obtain a feasible schedule, then
we recommend first solving the problem using Algorithm A2.
Then, in the case of obtaining a partially tardy schedule with
non-zero reserve, solve the problem again by Algorithm A1 (if
time buffer and computing capacity allow it) and on the best of
the two schedules (obtained by Algorithms A1 and A2) find the
estimate of the deviation of the functional from the optimum
(Theorem 9).

Suppose that inequality (2) is false. We then solve the problem
using Algorithm A1. If the resulting schedule satisfies the condi-
tions of Statement 16, then it is optimal. If the resulting schedule
𝜎 has 𝐶𝑖 > 𝑑 ∀𝑖 = 1,𝑚, then we check whether SCO #1 or the
condition 𝑅Σ (𝜎) = 0, or the condition ΔΣ (𝜎) = 0 is satisfied.
If any of these three conditions are met, the resulting schedule
is optimal; otherwise, we have obtained an approximate solu-
tion, and by virtue of Theorem 9, the estimate of the maximal
possible deviation of the total tardiness from the optimum does
not exceed the value of min (𝑅Σ (𝜎), ΔΣ (𝜎)) calculated for the
schedule 𝜎 obtained using Algorithm A1.

Remark 8. The modified PSC-algorithms for the TTPR and
TTPRE problems can be used instead of previous versions of
these algorithms in the Four-Level Model of Planning and De-
cision Making [21] for discrete manufacturing systems with a
network representation of technological processes.

6. THE INTRACTABLE PROBLEM OF MINIMISING
THE TOTAL TARDINESS OF PARALLEL MACHINE
COMPLETION TIMES REGARDING THE COMMON DUE
DATE WITH MACHINE RELEASE TIMES

In this section, we show that Algorithm A0 is an efficient PSC-
algorithm for solving the problem of minimising the total tardi-
ness of parallel machine completion times regarding the com-
mon due date with machine release times (TTCR).

Formal problem statement. Given a set of jobs 𝐽 =

{1, 2, . . . , 𝑛}, and a set of identical parallel machines 𝐼 =
{1, 2, . . . , 𝑚}, we know the processing time 𝑝 𝑗 for each job
𝑗 ∈ 𝐽. A machine 𝑖, 𝑖 ∈ 𝐼, can start to process any job after its
release time 𝑟𝑖 ≥ 0. Machine idle times are forbidden. We need

to build a schedule 𝜎 for the jobs 𝑗 ∈ 𝐽 on 𝑚 machines that
minimises the total tardiness of all machine completion times
regarding the common due date 𝑑:

𝐹 (𝜎) =
𝑚∑︁
𝑖=1

max [0, 𝐶𝑖 (𝜎) − 𝑑] → min,

where𝐶𝑖 (𝜎) is the completion time for all jobs on the machine 𝑖
in schedule 𝜎.

This problem has been considered in the literature only for a
single machine or for parallel machines with the same release
times, as shown by the latest review [22]. It was stated in [23] that
this problem is NP-hard for the case of equal machine release
times.

The TTCR problem is of practical importance for minimising
the tardiness of jobs or product deliveries. Tardiness minimi-
sation is considered the most important criterion in production
planning because it facilitates the reduction of deadline viola-
tions, tightening of the production plan, reduction of unneces-
sary production costs, and an increase in customer satisfaction.

The following two SCOs apply to the problem formulated
above:

SCO #1 for the TTCR problem. A feasible schedule is
optimal.

Proof of the SCO #1 is obvious (the total tardiness is zero).
SCO #2 for the TTCR problem. An arbitrary schedule in

which there are no reserves on all machines (release times are
greater than or equal to the common due date) is optimal.

Proof. All machines can have no reserves only if the following
inequality is true:

𝑛∑︁
𝑗=1
𝑝 𝑗 ≥

𝑚∑︁
𝑖=1

(𝑑 − 𝑟𝑖) .

The minimal functional value in this case is
𝑛∑︁
𝑗=1
𝑝 𝑗 −

𝑚∑︁
𝑖=1

(𝑑−𝑟𝑖),

and this is exactly equal to the value of the functional for any
schedule in which there are no reserves for all machines. □

SCO #3 for the TTCR problem. If a schedule obtained by
Algorithm A0 satisfies SCO #1 or #2 (when the parameters
are positive integers) for the MDMM problem, then it is also
optimal for the TTCR problem.

Proof. 1. If a schedule obtained using Algorithm A0 satisfies
SCO #1 for the MDMM problem, then it necessarily satisfies
SCO #1 or #2 for the TTCR problem.

2. Suppose that the SCO #2 of the MDMM problem is satis-
fied: for a schedule 𝜎 obtained using Algorithm A0, the value
of the functional in (1) is equal to one or the GCDTPT (if the
machine release times are the same). This schedule may not
satisfy SCO #1 or #2 for the TTCR problem but is the optimal
solution. The proof clearly follows from the following:
• Consider an arbitrary fixed schedule 𝜎opt that is optimal

according to criterion (1). Then the number of machines
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with 𝐶𝑖 (𝜎) = 𝐶min
(
𝜎opt) + GCDTPT (or one) is the same

for any schedule 𝜎 that is optimal based on criterion (1).

Remark 9. If the machine release times are not the same, then
one is added; if they are not, then GCDTPT is added (see State-
ment 14).
• 𝐶min (𝜎opt) = const for any schedule 𝜎opt is optimal based on

criterion (1) and is the maximum possible for an arbitrary
schedule 𝜎.

• 𝐶min (𝜎opt)+ GCDTPT (or 1) ≤ 𝐶max (𝜎); see Remark 9.
• An aligned schedule does not exist.

□

The following statement is true.

Statement 18. Algorithm A0 is a PSC-algorithm that is both an
efficient approximation algorithm for solving the TTCR problem
and an efficient polynomial component for building a schedule
that satisfies any of the SCOs #1–3 for the TTCR problem.

Proof. Proof of this statement obviously follows from the fact
that the optimality criterion of the MDMM problem minimises
the difference 𝐶max (𝜎) −𝐶min (𝜎) by virtue of the maximal in-
crease in 𝐶min (𝜎) due to the maximal decrease in 𝐶max (𝜎). It
follows from this that an optimal solution based on criterion (1)
may be:
• A feasible schedule if it exists.
• A schedule without reserves on all machines if it exists.
• A schedule that satisfies SCO #1 or #2 for the MDMM

problem if it exists, because these SCOs are satisfied only
when the value of criterion (1) is the minimal possible.

If SCOs #1–3 for the TTCR problem are not satisfied, then the
minimisation of criterion (1) has a strong interrelation with the
TTCR criterion. As shown by the above computational studies,
Algorithm A0 efficiently solves the problem based on crite-
rion (1). □

Remark 10. Suppose that the solution of the TTCR problem
from Algorithm A0 turns out to be non-optimal (i.e. the so-
lution is not feasible, at least one machine has a completion
time less than the due date, and there cannot be more than one
tardy job on each machine (Statement 10)). We then recommend
solving this problem again with Algorithm A1, and in the case
where a feasible schedule is not obtained, a schedule should
be chosen from those obtained by Algorithms A0 and A1 that
has lower total tardiness for the machines as an approximate
solution. By virtue of Theorem 9, the functional value of the
solution obtained by Algorithm A1 differs from the optimum
by no more than min (𝑅Σ (𝜎), ΔΣ (𝜎)). If the functional value
on the schedule obtained by Algorithm A0 is less than that
of the schedule obtained by Algorithm A1, then the estimate
min (𝑅Σ (𝜎), ΔΣ (𝜎)) decreases in an obvious way.

The TTCR problem can be illustrated by the examples given in
Section 4 for the MDMM problem if a specific due date is set for
each example. If we set the due date 𝑑 = 11 in Example 1, then the
functional value for the initial schedule is equal to one, and that
of the schedule𝜎 is zero, meaning that the schedule𝜎 is optimal
according to SCO #1 for the TTCR problem. A similar result is
obtained for Example 2 with a due date 𝑑 = 20. In Example 3,

for 𝑑 = 487, we have 𝐹 (𝜎0) = 2, 𝐹 (𝜎) = 0, and the schedule
𝜎 is optimal according to SCO #1 for the TTCR problem. If
𝑑 = 485, we have 𝐹 (𝜎0) = 𝐹 (𝜎) = 7, and the schedule 𝜎 is
optimal according to SCO #2 for the TTCR problem. If 𝑑 = 486,
we have 𝐹 (𝜎0) = 4, 𝐹 (𝜎) = 3, and the schedule 𝜎 is optimal
according to SCOs #2 and #3 for the TTCR problem.

7. CONCLUSIONS

In this article, the solution to three problems was considered. To
solve the TTPR problem by finding new theoretical properties
and modifying the PSC-algorithm for its solution, two original
PSC-algorithms were developed for two new problems, MDMM
and TTCR. All three of these problems are interconnected, with
common theoretical properties and some common parts of the
algorithms.

All the previously published sources were cited and fragments
from them were presented to enable the reader to understand the
rest of the article. Some of the previously published materials
were improved, and rigorous proofs of some statements, which
were previously absent, were given. Some of the previously
published materials were not previously available in English.

The main results of this article are as follows:
1. New properties of the TTPR and TTPRE problems were

proved (Theorems 2, 3, 12), which made it possible to rigorously
substantiate SCOs #1 and #2 for the previously published PSC-
algorithms A1 and A2 for solving these problems.

2. The PSC-algorithms for solving the TTPR and TTPRE
problems were modified by introducing a new SCO for these
problems (a schedule without tardy jobs) and an efficient
polynomial-time algorithm A0 that can satisfy this SCO by
finding a schedule that minimises the difference between the
maximal and the minimal machine completion times (MDMM).
Two SCOs for the solutions of the MDMM problem obtained
by Algorithm A0 were found, as well.

Examples of the solution to the MDMM problem were given
using Algorithm A0 and computational studies of the TTPR
problem. The results showed that Algorithm A0 builds a feasible
solution (if it exists) in 85–95% of cases. This is more often
than is achieved by Algorithms A1 and A2 (depending on the
dimension). Thus, it was shown that Algorithm A0 is efficient.

3. All the schedules obtained using Algorithms A0 or A1
(A2) for the TTPR and TTPRE problems were divided into four
classes, as follows:
(1) A feasible schedule (it is optimal).
(2) A partially tardy schedule in which at least one machine has

a completion time less than the due date (we show that none
of the introduced SCOs is satisfied for this schedule, but it
has a rigorously substantiated efficient upper bound for the
deviation from the optimum (Theorem 9)).

(3) A schedule in which all machines have no reserves and at
least one machine has a completion time equal to the due
date (we show that this schedule is optimal).

(4) A schedule in which the completion times of all machines
are greater than the due date (we show that it may satisfy
both the first and the second SCO).

14 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 1, p. e148939, 2024



Highly efficient scheduling algorithms for identical parallel machines with sufficient conditions for optimality of the solutions

4. Statistical studies of Algorithms A1 and A2 showed that
if the optimal schedule belongs to the class (3) or (4), then Al-
gorithm A2 obtains it statistically significantly more often than
Algorithm A1. If the schedule obtained by Algorithm A2 be-
longs to the class (2), then Algorithm A1 obtains an approximate
solution that is statistically significantly better than the schedule
obtained by Algorithm A2. Thus, if Algorithm A0 (for the case
∀𝑟𝑖 < 𝑑 or only for machines with 𝑟𝑖 < 𝑑) does not obtain a
feasible schedule, then it is recommended that the problem be
first solved using Algorithm A2. Then, in the case of obtain-
ing a partially tardy schedule with non-zero reserve, solve the
problem again by Algorithm A1 (if time buffer and computing
capacity allow it) and on the best of the two schedules (obtained
by Algorithms A1 and A2) find the estimate of the deviation of
the functional from the optimum (Theorem 9).

5. It was shown that Algorithm A0 is also an efficient PSC-
algorithm for solving the single-stage scheduling problem that
involves minimising the total tardiness of parallel machine com-
pletion times regarding the common due date with machine
release times (TTCR). Three SCOs for Algorithm A0 for this
problem were proved.

In the case where a partially tardy schedule with non-zero
reserve is obtained using Algorithm A0, in accordance with
Remark 10, to get the upper bound on the deviation from the
optimal functional value, it is necessary to solve the problem
again with Algorithm A1. If a feasible schedule is not obtained,
the best of the obtained schedules is chosen as an approximate
solution. By virtue of Theorem 9, the functional value for the
solution obtained by Algorithm A1 differs from the optimum
by no more than min (𝑅Σ (𝜎), ΔΣ (𝜎)). If the functional value
on the schedule obtained by Algorithm A0 is less than that
of the schedule obtained by Algorithm A1, then the estimate
min (𝑅Σ (𝜎), ΔΣ (𝜎)) decreases in an obvious way. Thus, a new
PSC-algorithm for solving the TTCR problem, based on the use
of Algorithms A0 and A1, is proposed.

6. The obtained results allow us to formulate their application
areas and future scientific research directions:
• Considered single-stage scheduling problems and proposed

PSC-algorithms for their solution extend the application area
of the Four-Level Model of Planning and Decision Mak-
ing [21] and increase its efficiency for operative planning.

• The creation of new multi-stage models of discrete manufac-
turing systems, for which, based on the solutions obtained
in this paper, it is possible to implement efficient scheduling
and operative planning algorithms.

• Based on the created hierarchical and multi-stage models of
scheduling and operative planning for discrete manufactur-
ing systems, we can create universal software to be used in
real manufacturing problem solving.
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