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This paper presents a study on the dry turning of polyoxymethylene copolymer
POM-C. The effect of five factors (cutting speed, feed rate, depth of cut, nose radius,
and main cutting edge angle) on machinability is evaluated using four output parame-
ters: surface roughness, tangential force, cutting power, and material removal rate. To
do so, the study relies on three approaches: (i) Pareto statistical analysis, (ii) multi-
ple linear regression modeling, and (iii) optimization using the genetic algorithm. To
conduct the investigation, mathematical models are developed using response surface
methodology based on the Taguchi 𝐿16 orthogonal array. The results indicate that feed
rate, nose radius, and cutting edge angle significantly influence surface quality, while
depth of cut, feed, and speed have a notable impact on other machinability parameters.
The developed mathematical models have determination coefficients greater than or
very close to 95%, making them very useful for the industry as they allow predicting
response values based on the chosen cutting parameters. Finally, the optimization
using the genetic algorithm proves to be promising and effective in determining the
optimal cutting parameters to maximize productivity while improving surface quality.

B Tallal HAKMI, e-mail: talal.hakmi@univ-tissemsilt.dz
1Laboratory of Mechanical Engineering, Materials and Structures, Tissemsilt University, Algeria
2Applied Mechanics and Energy Systems Laboratory, Faculty of Applied Sciences, Kasdi Merbah

Ouargla University, Algeria
3Mechanics and Structures Research Laboratory (LMS), Guelma, Algeria
4Mechanics Research Centre, Constantine, Algeria

0

© 2024. The Author(s). This is an open-access article distributed under the terms of the Creative
Commons Attribution (CC-BY 4.0, https://creativecommons.org/licenses/by/4.0/), which permits
use, distribution, and reproduction in any medium, provided that the author and source are cited.

https://orcid.org/0009-0002-6128-3692
https://orcid.org/0000-0002-6047-2419
https://orcid.org/0000-0001-6205-6374
https://orcid.org/0000-0002-5723-3863
https://orcid.org/0000-0002-7277-1600
https://orcid.org/0000-0003-1686-7269
mailto:talal.hakmi@univ-tissemsilt.dz
https://creativecommons.org/licenses/by/4.0/


48 T. HAKMI, A. HAMDI, Y. TOUGGUI, A. LAOUISSI, S. BELHADI, M.A. YALLESE

1. Introduction

Nowadays, one of the main challenges for researchers and industries is to
find alternatives to metals by using other materials. In this context, industry 4.0
technology aims to significantly increase the demand for polymer materials, partic-
ularly in mechanical manufacturing [1]. This surge is attributed to their unique and
specific properties when compared to metals. Commonly observed properties in
polymers include improved stiffness and strength, as seen in polyacetal (POM-C),
high resistance to corrosion and oxidation, excellent electrical and thermal insula-
tion, high resistance to degradation from heat, UV radiation, chemicals, and other
environmental factors, low density, and ease of processing. Additionally, polymers
can be molded, extruded, laminated, cut, and formed into a variety of shapes and
sizes, ... etc. [1, 2]. Due to these properties, polymers are increasingly being used
in various engineering fields such as automotive [3], robotics [4], aerospace [5],
and machinery [6]. Mechanical parts used in these fields include gears, wheels,
bearings, and rolling elements [1, 7, 8].

At present, large-scale polymer manufacturing processes vary depending on
the type of polymer and its intended application. However, common methods
used to produce these technical materials include chain polymerization, addition
polymerization, condensation polymerization, and ring-opening polymerization.
Extrusion molding is used to produce polymers such as high-density polyethylene
(HDPE) [9]. Injection molding is also a common method to produce precision
plastic parts. There are also other methods, such as blow molding, compression
molding, transfer molding, and rotational molding, which are used to produce
plastic parts with different shapes and properties [10]. Producing small quantities
of high-quality micro-components with complex geometries and good surface
integrity poses a manufacturing challenge for mechanical parts [11]. However, the
demand for such products is on the rise due to a design focus on reducing on-board
masses. Conventional processes are often limited and cannot meet the specific
requirements of the design. Furthermore, these processes are often associated
with high costs and longer lead times [10, 12]. Therefore, the use of material
removal machining processes such as turning, milling, and drilling of plastics is
increasing. These processes enable the efficient, high-precision, rapid, and cost-
effective production of complex mechanical parts [11, 12].

For many years, there has been a continuing interest in the surface finish quality
of polymer parts, as improving surface texture by reducing roughness is essential for
achieving optimal performance in machined components. Various factors influence
the surface finish of machined part, but cutting speed (𝑉𝑐), feed rate ( 𝑓 ), and depth
of cut (𝑎𝑝) are the primary machining factors that have a significant influence on
surface roughness under given conditions [13]. Within this context, Hamlaoui et
al. [14] studied the machinability of high-density polyethylene (HDPE) used in the
production of pipes and mechanical test specimens. Classical turning parameters
(𝑉𝑐, 𝑓 , and 𝑎𝑝) were used as factors, with three surface roughness criteria (𝑅𝑎,
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𝑅𝑡, and 𝑅𝑧) and cutting temperature as responses. The results showed that the
feed rate ( 𝑓 ) is the main factor contributing to minimize the surface roughness of
HDPE material. On the other hand, the cutting temperature is mainly influenced by
cutting speed (𝑉𝑐), depth of cut (𝑎𝑝), and their interactions. According to two studies
conducted by Cabrera et al. [15, 16], feed rate ( 𝑓 ) and depth of cut (𝑎𝑝) are the
two independent variables with the greatest influence on surface roughness during
CNC turning of polyetheretherketone (PEEK CF30) polymer using a TiN-coated
tool. These authors emphasize the importance of selecting appropriate machining
parameters to achieve a high-quality surface finish using two optimization methods:
the Taguchi method and the gray relational analysis (Taguchi-GRA). Additionally,
fuzzy logic-based modeling appears as a highly effective method for predicting the
two dependent variables (𝑅𝑎 and 𝑅𝑡). Similar results were obtained by Akkuş and
Yaka [17] when turning titanium alloy (Ti 6Al-4 V, grade 5). They showed that the
feed rate was the key parameter to obtain a surface with minimal 𝑅𝑎 parameter,
while the cutting speed was the key parameter to control tool wear.

Determining cutting forces in material removal machining is a major chal-
lenge in manufacturing industry as well as in scientific research. To investigate
the generation of cutting forces and model them using artificial neural network
(ANN), Özden et al. [18] conducted a study on turning unreinforced and rein-
forced polyamide (PA) with 30% carbon fiber. Two cutting tools (K15 (DCMW
11T304H13A) and PCD (DCMW 11T3 04FPDC10)) were employed, along with
a full factorial design (FFD). The results from training and testing the artificial
neural network (ANN) model show a good correlation between predicted values
and experimental data. In this regard, the study by Gaitonde et al. [19] explored the
effect of cutting parameters on 30% glass fiber reinforced polyamide (PA66-GF30)
and unreinforced polyamide (PA6). The ANN models showed that it is essential to
set high values of the feed rate ( 𝑓 ) and cutting speed (𝑉𝑐) when machining PA66-
GF30 in order to reduce the specific cutting force (𝐾𝑐). In another investigation,
Baroiu et al. [20] evaluated the surface roughness of three polymers commonly
used in industry and scientific research: high-density polyethylene (HDPE 1000),
nylon 6 (PA 6), and polyoxymethylene (POM-C). They used two high-speed steel
HS18-0-1 helical drills of different diameters (Ø8 and Ø10 mm) for the drilling
operations, while keeping the same cutting conditions for all three materials. The
results showed that POM-C produced the best surface quality, followed by HDPE
1000 and PA6, respectively. Interestingly, Tabacaru et al. [21] conducted the pre-
vious machining process for the same materials in order to model the surface
roughness (𝑅𝑎) using the ANN method. The authors arrived at the same conclu-
sion as the previous study [20], namely that POM-C has the best machinability,
followed by HDPE 1000 and PA6.

The literature indicates that polymer machining is less studied than metal ma-
chining, including for polyoxymethylene copolymer POM-C, an industrial plastic
widely used, yet not sufficiently investigated in recent machining research. The
existing studies on polymer turning generally focus on conventional cutting param-
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eters such as cutting speed 𝑉𝑐, feed rate 𝑓 , and depth of cut 𝑎𝑝, but do not address
cutting tool parameters such as nose radius (𝑟𝜀) and principal cutting edge angle
(𝑋𝑟 ). In this context, the objective of this study is to present a machinability study of
POM-C using five input parameters:𝑉𝑐, 𝑓 , 𝑎𝑝, 𝑟𝜀 , and 𝑋𝑟 . This study evaluates the
impact of these factors on surface quality (𝑅𝑎), tangential force (𝐹𝑍 ), cutting power
(𝑃𝑐), and material removal rate (MRR) using three approaches: a Pareto statistical
analysis to identify the most significant factors on each machinability parameter, a
multiple linear regression modeling, and an optimization by the genetic algorithm
(GA) to obtain the optimal cutting parameters. The models are evaluated using the
coefficient of determination (𝑅2) and the mean absolute percentage error (MAPE).

2. Experimental procedure

2.1. Workpiece material

The material used for the turning tests is polyoxymethylene (POM-C), a poly-
mer commonly used in the mechanical industry. Specimens measuring 300 mm in
length and 80 mm in diameter were provided by the German company Ensinger.
POM-C, also known as acetal, is a copolymer produced through the copolymer-
ization of acetone and formaldehyde (CH2O)n. The noteworthy properties of this
plastic are outlined in Table 1.

Table 1. Technical properties of POM-C

1. Mechanical properties Value

Tensile strength (MPa) 67

Elongation at break (%) 32

Notch impact strength (KJ/m2) 8

Hardness (ball) (MPa) 165

Flexural strength (MPa) 91

Modulus of elasticity (MPa) 2800

2. Thermal properties Value

Thermal conductivity (W/(k·m)) 0.39

Specific heat (J/(g·K)) 1.4

Thermal expansion coefficient (𝛼) (K−1 · 10−5) 13

Glass transition temperature (𝑇𝑔) (◦C) −60

Melting temperature 𝑇𝑀 (◦C) 166

Service temperature (◦C) 140
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The POM-C exhibits high mechanical strength in tension, compression, and
bending, consistent dimensional stability under varying mechanical loads and tem-
perature changes, heat resistance, good chemical resistance, low moisture absorp-
tion, and excellent dimensional stability. Polyacetal is a high-performance thermo-
plastic that is commonly used in various industrial applications such as mechanical
parts, bearings, gears, sleeves, pump housings, wheels, and slides.

2.2. Machine-tool and cutting tool

Turning operations were performed on a conventional TOS TRENCIN machine
tool (model SN 40C) with a spindle power of 6.6 kW. The rotational speeds range
of this machine varies from 45 to 2000 rpm, while feed rates can range from 0.08
to 6.4 mm/rev.

For the turning operations of POM-C polymer samples, two single-sided pos-
itive turning inserts were used: SPMR 120304 (𝑟𝜀 = 0.4 mm) and SPMR 120308
(𝑟𝜀 = 0.8 mm) from the company Dormer Pramet. These inserts belong to grade
T9325 and are made from a functionally MT-CVD coated functionally graded WC-
Co carbide within ISO ranges P15-P35, with four cutting edges for each insert. The
main geometric feature is a clearance angle 𝛼0𝑖 of 11◦. In addition, the tool holders
used to hold and position the inserts are CSDPN 2525M12 (with a cutting edge
angle 𝑋𝑟 of 45◦, a rake angle 𝛾0ℎ of 6◦, and an inclination angle 𝜆𝑠 of 0◦), CSBPR
2525M12 (with a cutting edge angle 𝑋𝑟 of 75◦, a rake angle 𝛾0ℎ of 6◦, and an
inclination angle 𝜆𝑠 of 0◦).

Careful selection of geometry can improve productivity, surface quality and
tool life. Therefore, the characteristics of the inserts, tool holders and the levels of
variation in cutting conditions are selected in accordance with the recommendations
of the plastic manufacturer Ensinger and the tool manufacturer Dormer Pramet.

2.3. Design of experiments and cutting parameters

The study of material removal machining processes has become increasingly
complex due to the large number of input parameters that can influence one or
more responses. The experimental complexity lies in establishing the experimental
design, which determines the number of samples to be tested based on the influences
and interactions being studied. Additionally, it will be necessary to create the
samples and conduct the tests.

To address this challenge, it is necessary to adopt a rigorous approach in
conducting the tests, applying the design of experiments (DOE) method that pro-
vides an efficient approach to solve complex problems. Table 2 shows the selected
independent variables and the associated ranges of variation for each of them. Ac-
cording to this table, we have four levels for the three classic input parameters (𝑉𝑐,
𝑓 , and 𝑎𝑝 (43)), and two levels for the cutting tool geometry factors (𝑟𝜀 and 𝑋𝑟
(22)). Therefore, the total number of experiments to examine all the interactions
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between the five factors amounts to 256. Thus, the Taguchi experimental design
method (𝐿16 = 43 × 22) has been selected to establish an experimental plan that
requires the minimum number of tests possible based on the desired information.
This allows for a reduction in costs associated with testing, while ensuring that
POM-C samples are subjected to machining conditions that are representative of
the real-world industrial settings.

Table 2. Cutting conditions and their variation ranges

Parameters Level 1 Level 2 Level 3 Level 4
𝑉𝑐 [m/min] 240 300 360 420
𝑓 [mm/rev] 0.08 0.14 0.20 0.24
𝑎𝑝 [mm] 0.8 1.6 2.4 3.2
𝑟𝜀 [mm] 0.4 0.8 – –
𝑋𝑟 [◦] 45 75 – –

2.4. Measurement configuration

The average arithmetic roughness measurement (𝑅𝑎) was taken using a Mitu-
toyo Surftest-201 roughness tester equipped with a probe that had a 5 µm radius
diamond tip. The evaluation length 𝐿𝑛 = 2.4 mm and the cut-off wavelength
𝜆𝑐 = 0.8 mm were used. Each test was characterized by three measurements taken
at different locations separated by an angle of 120◦, and the average value was
taken to provide greater reliability to the results. The cutting forces was measured
using a Kistler piezoelectric dynamometer (model 9257B) connected through a
multi-channel load amplifier (type 5011B). Fig. 1 represents the details of the
experimental step.

Fig. 1. Details of the experimental step



Machinability investigation during turning of polyoxymethylene POM-C. . . 53

3. Results and discussion

The experimental results encompass various measurements, including arith-
metic mean roughness (𝑅𝑎), tangential force (𝐹𝑍 ), cutting power (𝑃𝑐), and material
removal rate (MRR). These results are based on five factors considered in this study
(𝑉𝑐, 𝑓 , 𝑎𝑝, 𝑟𝜀 , and 𝑋𝑟 ), and are represented in Table 3. Cutting power (𝑃𝑐) and
material removal rate (MRR), the third and last machinability parameters, are cal-
culated using Eqs. (1) and (2) respectively.

MRR = 𝑉𝑐 · 𝑓 · 𝑎𝑝 (cm3/min), (1)

𝑃𝑐 =
𝐹𝑧 𝑉𝑐

60
(W). (2)

Table 3. Experimental results of 𝑅𝑎, 𝐹𝑍 , MRR, and 𝑃𝑐 as a function of cutting parameters

No
Input factors Responses

𝑉𝑐
[m/min]

𝑓

[mm/rev]
𝑎𝑝

[mm]
𝑟𝜀

[mm]
𝑋𝑟
[◦]

𝑅𝑎

[μm]
𝐹𝑍
[N]

MRR
[cm3/min]

𝑃𝑐

[W]
1 240 0.08 0.8 0.4 45 2.47 13.56 15.36 54.24
2 240 0.14 1.6 0.4 45 3.10 45.65 53.76 182.60
3 240 0.20 2.4 0.8 75 2.15 80.71 115.20 322.84
4 240 0.24 3.2 0.8 75 2.92 113.04 184.32 452.16
5 300 0.08 1.6 0.8 75 1.01 24.20 38.40 121.00
6 300 0.14 0.8 0.8 75 1.30 25.30 33.60 126.50
7 300 0.20 3.2 0.4 45 4.00 105.56 192.00 527.80
8 300 0.24 2.4 0.4 45 5.05 88.67 172.80 443.35
9 360 0.08 2.4 0.4 75 1.35 38.22 69.12 229.32
10 360 0.14 3.2 0.4 75 2.35 75.30 161.28 451.80
11 360 0.20 0.8 0.8 45 2.52 24.90 57.60 149.40
12 360 0.24 1.6 0.8 45 2.99 65.30 138.24 391.80
13 420 0.08 3.2 0.8 45 0.60 59.71 107.52 417.97
14 420 0.14 2.4 0.8 45 1.32 60.12 141.12 420.84
15 420 0.20 1.6 0.4 75 3.27 49.14 134.40 343.98
16 420 0.24 0.8 0.4 75 3.98 35.25 80.64 246.75

3.1. Statistical Pareto analysis

A Pareto chart is a graphical tool used to visually represent the distribution
of causes within a dataset based on their relative importance. It is based on the
principle of Pareto’s law, also known as the 80/20 rule, which states that 80%
of effects are caused by 20% of the causes. The chart consists of a vertical axis
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representing the impact of each cause and a horizontal axis ranking the causes
in descending order of importance. The most significant causes are shown on
the left side, while less critical ones are on the right. Widely used in quality
management, decision-making, and problem-solving, the Pareto chart assists in
identifying the most crucial causes that should be addressed first, improving overall
system efficiency. Pareto analysis, as a statistical tool, is valuable for determining
the significant effect of each input parameter on output responses [22, 23].

3.1.1. Surface roughness (𝑅𝑎)

Surface roughness is a key parameter in machining, exerting a significant
impact on the quality and performance of machined parts. Its influence extends to
factors such as friction, adhesion, wear, fatigue resistance, corrosion, lubrication,
and overall functionality of the machined part. In Fig. 2, a Pareto analysis of the
arithmetic mean roughness (𝑅𝑎) is applied to find the main factors in order to
ensure better precision on machined POM-C parts. According to this plot, the
most important factors are located on the left-hand side of the graph, namely the
feed rate ( 𝑓 ) and the nose radius (𝑟𝜀), with contributions of 58.05% and 32.25%,
respectively. The principal direction angle (𝑋𝑟 ) is located in the middle of the graph
with a small contribution of 3.86%. On the other hand, the cutting speed (𝑉𝑐) and
the depth of cut (𝑎𝑝) are located on the right-hand side, indicating that these two
independent variables are the least important. In fact, the value of 𝐹 for 𝑎𝑝 (0.49%)
is below the limited confidence level line (2.23%), indicating that this factor has
no significant impact on the 𝑅𝑎 response. According to Chabbi et al. [7, 8], the
second factor that affects surface roughness during turning of the same polymer
is the depth of cut, with a contribution of 19.70% after the feed rate, which is
the main factor with a contribution of 66.41% obtained by the analysis of variance

Fig. 2. Pareto chart of 𝑅𝑎
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(ANOVA). The cutting speed is also significant, but its contribution is low (5.28%).
In a previous study, it was observed that when turning PA66 polyamide, the feed
rate was the most important factor affecting the 𝑅𝑎 parameter [24].

3.1.2. Tangential force (𝐹𝑍 )

Cutting forces are of paramount importance in the process of removing material
from polymer workpieces, and machining these materials can be challenging due
to unique properties such as their elasticity and sensitivity to heat. Fig. 3 shows
the Pareto chart for the cutting force 𝐹𝑍 to investigate systematically the effect of
five independent variables on this second machinability parameter. To improve the
cutting force, the two most important input parameters to address first are the depth
of cut (𝑎𝑝) and the feed rate ( 𝑓 ), contributing 66.48% and 28.69%, respectively,
according to this analysis. Cutting speed (𝑉𝑐) has a lower contribution at 4%, while
the two cutting tool factors (𝑋𝑟 and 𝑟𝜀) on the right side of the graph show not
significant on the dependent variable 𝐹𝑍 . These results are consistent with the
conclusions of Chabbi et al. [7, 8]. According to Gaitonde et al. [19], the cutting
force (𝐹𝑍 ) strongly depends on the feed rate ( 𝑓 ), rather than the cutting speed (𝑉𝑐),
during the turning of polyamide PA 6.

Fig. 3. Pareto chart of 𝐹𝑍

3.1.3. Cutting power (𝑃𝑐)

Cutting power is a vital factor in polymer machining, but due to the distinct
properties of polymers compared to metals, it is necessary to select cutting con-
ditions that are tailored to these materials. As shown by Fig. 4, the depth of cut
(𝑎𝑝), the feed rate ( 𝑓 ), and the cutting speed (𝑉𝑐) are the most significant factors



56 T. HAKMI, A. HAMDI, Y. TOUGGUI, A. LAOUISSI, S. BELHADI, M.A. YALLESE

for cutting power. Increasing 𝑎𝑝 and 𝑓 systematically increases 𝑃𝑐. The depth of
cut has the greatest influence on 𝑃𝑐 (67.81%), followed by the feed rate (20.57%)
and the cutting speed (6.09%). The effect of the principal cutting edge angle (𝑋𝑟 )
and the nose radius (𝑟𝜀) is negligible, despite the larger variation in 𝑋𝑟 compared
to 𝑟𝜀 . The results from the Pareto analysis of 𝑃𝑐 perfectly match the conclusions
found by Chabbi et al. [7, 8]. Additionally, the results of the ANOVA analysis of
𝑃𝑐 conducted by Paulo Davim in 2010 [25] during the turning of PEEK, PEEK
CF30, and PEEK GF30 materials are in agreement with our results.

Fig. 4. Pareto chart of 𝑃𝐶

3.1.4. Material removal rate (MRR)

Material removal rate (MRR) is a crucial metric measuring the amount of
material removed during machining per unit of time. For polymers, it is essential
to maintain an appropriate MRR in order to avoid thermal deformation of the
workpiece and excessive heat generation during the operation. In this case study,
Fig. 5 presents the Pareto analysis of MRR during the turning POM-C.

The primary parameters influencing POM-C productivity are the depth of cut
(𝑎𝑝) and the feed rate ( 𝑓 ), contributing 57.58% and 33.88%, respectively. Cutting
speed (𝑉𝑐) is less important and contributes only 1.91%. On the other hand, the
main cutting edge angle (𝑋𝑟 ) and nose radius (𝑟𝜀) are the least important as their
contribution is below the limited confidentiality level (2.2%). Therefore, these two
factors have no significant impact on productivity. The Pareto analysis results for
𝑀𝑅𝑅 are consistent with the ANOVA results performed by Chabbi et al. [7, 8]
when turning the same plastic.

In summary, the cutting tool parameters 𝑋𝑟 and 𝑟𝜀 significantly impact only the
first surface quality parameter, 𝑅𝑎. The feed rate is the most important independent
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Fig. 5. Pareto chart of MRR

variable that affects surface roughness, while the other factors (𝑉𝑐 and 𝑎𝑝) have an
insignificant impact. On the contrary, the classic cutting parameters (𝑉𝑐, 𝑓 , and 𝑎𝑝)
have a significant effect on all three responses (𝐹𝑧 , 𝑃𝑐, and 𝑀𝑅𝑅). In this case, the
depth of cut is the most important factor, followed by the feed rate and the cutting
speed, each with a different contribution.

3.2. RSM-based Modeling

Response surface methodology (RSM) is a simple statistical method that allows
generating a mathematical equation describing the relationship between a response
variable 𝑌 (dependent variable) and several independent variables 𝑋𝑖 (𝑋1, 𝑋2,
. . . , 𝑋𝑛) [26–30]. In this study, multiple linear regression was used to create
four output models (𝑅𝑎, 𝐹𝑧 , 𝑃𝑐, and 𝑀𝑅𝑅) based on input factors (𝑉𝑐, 𝑓 , 𝑎𝑝,
𝑟𝜀 , and 𝑋𝑟 ). According to Mia et al. [31], the linear regression is often used to
model machining when multiple attributes are simultaneously dominant. In such
cases, a first-order linear model is generally sufficient. This method (RSM) is of
great importance and widely used in design of experiments (DOE) to develop an
empirical statistical model relating factors to a response [32–34]. The modeling
using RSM is widely employed by numerous researchers in various fields, such
as turning [35], drilling [36], milling [37], friction stir processing (FSP) [38], and
many others.

The arithmetic surface roughness model (𝑅𝑎) is obtained from the multiple
linear regression methodand can be described by Eq. (3).

𝑅𝑎 = 4.024 − 0.00273𝑉𝑐 + 14.88 𝑓 − 0.0531𝑎𝑝 − 3.363𝑟𝜀 − 0.01550𝑋𝑟 ,
(𝑅2

𝑅𝑎
= 0.9672 = 96.72%).

(3)



58 T. HAKMI, A. HAMDI, Y. TOUGGUI, A. LAOUISSI, S. BELHADI, M.A. YALLESE

The determination coefficient (𝑅2
𝑅𝑎

) of this model is very close to +1 (𝑅2
𝑅𝑎

=

0.9672), indicating that Eq. (3) is considered significant. Thus, this correlation
explains 96.72% of the variations in the level of 𝑅𝑎 roughness, with the remaining
3.28% unexplained. The value of the adjusted determination coefficient for 𝑅𝑎
roughness is 𝑅2

adj = 0.9508, while the probability value is less than 0.05 (𝑃 < 0.05).
These results demonstrate a very good correlation between the experimental data
and the model results. Figure 2 also shows that the Fisher test value is 58.99, which
means that the portion of the variance of the surface roughness 𝑅𝑎 explained
by Eq. (3) is 58.99 times greater than the portion of the variance that remains
unexplained.

The first-order model of the cutting force 𝐹𝑍 can be obtained using the same
regression technique, as described by Eq. (4).

𝐹𝑍 = −7.93 − 0.0776𝑉𝑐 + 256.6 𝑓 + 26.48𝑎𝑝 + 0.60𝑟𝜀 − 0.0930𝑋𝑟 ,
(𝑅2

𝐹𝑍
= 0.9861 = 98.61%).

(4)

The values of the determination coefficient 𝑅2 and the adjusted determination
coefficient 𝑅2

adj for the principal cutting force 𝐹𝑍 have been calculated and are
respectively equal to 0.9861 and 0.9792. Furthermore, the probability value 𝑃 is
strictly less than 0.05, indicating that the linear model is statistically significant.
These results demonstrate a strong correlation between the experimental data and
the results obtained by this model.

The first-order model of the cutting power 𝑃𝑐 was obtained using the linear
regression method, with the formula given by Eq. (5). The values of the coefficient
𝑅2
𝑃𝑐

and the adjusted coefficient 𝑅2
adj have been calculated and are respectively

0.9624 and 0.9436. Furthermore, the Fisher test (𝐹) for the model yields a value of
𝐹 = 51.21 and the probability (𝑃) associated with this test is less than 0.05. These
results indicate that the mathematical model of the cutting power is well-correlated
with the experimental data.

𝑃𝑐 = −217.7 + 0.524𝑉𝑐 + 1065 𝑓 + 131.11𝑎𝑝 − 24.2𝑟𝜀 − 1.224𝑋𝑟 ,
(𝑅2

𝑃𝑐
= 0.9624 = 96.24%).

(5)

Linear regression has provided the mathematical equation linking the material
removal rate (MRR) to the five input variables, as given by Eq. (6).

MRR = −86.7 + 0.1144𝑉𝑐 + 533.1 𝑓 + 47.10𝑎𝑝 − 19.8𝑟𝜀 − 0.256𝑋𝑟 ,
(𝑅2

MRR = 0.9436 = 94.36%).
(6)

In Fig. 6, a comparison is presented between the experimental data of the
responses (𝑅𝑎, 𝐹𝑍 , and 𝑃𝑐) and the results predicted by the three multiple regression
mathematical models. This comparison confirms the strong correlation between
the experimental data and the values generated by the regression models, as all
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Fig. 6. Comparison between experimental data and predicted results of the three responses
(𝑅𝑎, 𝐹𝑍 , and 𝑃𝑐)
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the points are very close to each other. Additionally, the red points represent the
experimental values, while the blue lines represent the values predicted by the
models. Indeed, one can observe that the points and the lines almost perfectly
overlap, indicating a strong correlation between the experimental data and the
values predicted. Therefore, the three mathematical models can be used to predict
the values of the three output parameters (𝑅𝑎, 𝐹𝑍 , and 𝑃𝑐) within the specified
range of turning parameters (Table 2).

3.3. 3D response surfaces analysis

To enhance the clarity of response surface representation in this paper with-
out altering relevant information, three-dimensional (3D) plots were created for
these surfaces. These plots were based on the most influential factors, with other
operational variables held constant at the central level within the factor’s variation
domain. Design Expert 11 software was used to obtain the 3D response surfaces.
Figs 7 to 9 illustrate the 3D response surface plots of the three models (3, 4, and
5) as a function of the interaction of the most significant control parameters. The
interactions can be interpreted as follows:

• Fig. 7a shows the effect of the two most significant factors, namely feed rate
( 𝑓 ) and nose radius (𝑟𝜀), on the dependent variable 𝑅𝑎 (see also Fig. 2).
We observe that increasing 𝑓 leads to an increase in 𝑅𝑎 roughness, while
increasing the nose radius (𝑟𝜀) results in a decrease in 𝑅𝑎. Therefore, to
obtain a better surface quality of POM-C, it is recommended to choose a
low feed rate ( 𝑓 ) and a large tool nose radius (𝑟𝜀).

• Fig. 7b presents the effect of the interaction between the feed rate and the
primary cutting edge angle (𝑋𝑟 ) on the 𝑅𝑎 response. We can observe that
increasing 𝑋𝑟 leads to improved surface quality (decrease in 𝑅𝑎) when
the feed rate 𝑓 is low, while at high values of 𝑓 , the effect of 𝑋𝑟 is less
significant. In other words, to obtain a better surface quality of POM-C, it is
recommended to work with a low feed rate and a high principal cutting edge
angle.

• Fig. 7c shows how the interaction of 𝑓 ×𝑉𝑐 affects the response variable 𝑅𝑎.
It can be observed that the feed rate has a greater influence than the cutting
speed. However, to obtain a good surface quality, it is recommended to use
a high cutting speed.

• Fig. 8a illustrates how the interaction 𝑎𝑝 × 𝑓 affects the cutting force 𝐹𝑍 .
One can observe that increasing the depth of cut leads to increased cutting
force, with the effect being accelerated at higher feed rates.

• Fig. 8b illustrates how the interaction between the depth of cut (𝑎𝑝) and the
cutting speed (𝑉𝑐) affects the cutting force. It can be seen that, in order to
obtain a low cutting force, it is recommended to use a low depth of cut and
a high cutting speed.
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(a) (b)

(c)

Fig. 7. 3D response surfaces of 𝑅𝑎 roughness as a function of the most significant factors

(a) (b)

Fig. 8. 3D response surfaces of cutting force (𝐹𝑍 ) as a function of the most significant factors
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• Figs 9a and 9b, the effects of the interactions 𝑎𝑝 × 𝑓 and 𝑎𝑝 × 𝑉𝑐 on the
cutting power 𝑃𝑐, are illustrated, respectively. The graphs exhibit a marked
similarity between the variation in cutting force and cutting power. This
similarity can be explained by calculation of the cutting power from the
cutting force and a fixed cutting speed of 60 m/min.

• For the chosen range of values for turning POM-C polymer, it is consistently
observed that the feed rate exerts a positive influence on all three studied
responses (𝑅𝑎, 𝐹𝑍 , and 𝑃𝑐).

(a) (b)

Fig. 9. 3D response surfaces of the 𝑃𝑐 as a function of the most significant factors

3.4. Validation tests

To verify the quality, accuracy, and performance of the RSM-developed mod-
els, four additional experimental validation tests were carried out. The cutting
conditions were chosen within the ranges outlined in Table 2. The results, which
are presented in Table 4, indicate that the absolute prediction error (APE) values
range from 2.61% to 14.39% for 𝑅𝑎, 4.66% to 19.13% for 𝐹𝑍 , 4.95% to 21.18%
for 𝑃𝑐, and 7.21% to 22.82% for MRR. These results confirm the ability of the
models to predict new outcomes during the turning of POM-C.

3.5. Optimization of cutting parameters

Optimizing cutting parameters is crucial in material removal machining, as it
plays a key role in enhancing part quality, increases productivity, and reduces pro-
duction costs. To achieve these objectives, different optimization methods are avail-
able. For instance, metaheuristic algorithms have emerged as effective optimization
techniques for machining conditions. Some of the commonly used algorithms are
the genetic algorithm (GA), the simulated annealing (SA), and the particle swarm
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Table 4. Results of confirmatory testing

No. 𝑉𝑐
[m/min]

𝑓

[mm/rev]
𝑎𝑝

[mm]
𝑟𝜀

[mm]
𝑋𝑟
[◦]

Experimental
results

Predicted
results

APE
[%]

(a) Surface roughness 𝑅𝑎 [μm]
1 320 0.16 1 0.4 75 2.59 2 .97 12.79
2 380 0.18 2 0.8 75 1.73 1.70 1.76
3 280 0.18 1.2 0.4 45 3.72 3.83 2.87
4 400 0.22 0.8 0.8 45 2.2 2.57 14.39

(b) Cutting force 𝐹𝑍 [N]
1 320 0.16 1 0.4 75 30.55 28.04 8.95
2 380 0.18 2 0.8 75 63.65 55.24 15.22
3 280 0.18 1.2 0.4 45 35.88 44.37 19.13
4 400 0 .22 0.8 0.8 45 36.59 34.96 4.66

(c) Cutting power 𝑃𝑐 [W]
1 320 0.16 1 0.4 75 162.93 150.01 8.61
2 380 0.18 2 0.8 75 380.11 324.18 17.25
3 280 0.18 1.2 0.4 45 168.1 213.29 21.18
4 400 0 .22 0.8 0.8 45 243.93 256.64 4.95

(d) Material removal rate MRR [cm3/min]
1 320 0.16 1 0.4 75 51.2 55.184 7.21
2 380 0.18 2 0.8 75 136.8 111.89 22.26
3 280 0.18 1.2 0.4 45 60.48 78.37 22.82
4 400 0 .22 0.8 0.8 45 70.4 86.662 18.76

optimization (PSO). The genetic algorithm is a highly effective search technique
that emulates natural evolution [39].

The genetic algorithm is increasingly used in many engineering fields because
it is easy to implement and effective in solving complex problems involving multiple
input parameters [40–42]. The GA follows a basic cycle that can be adapted and
improved to meet the specific requirements of optimization problems. The main
steps of this cycle are as follows:

1. Generation of an initial population of possible individuals, represented by
strings of genes.

2. Evaluating the fitness of each individual based on a defined performance
measure for the problem.

3. Selection of the most successful individuals for reproduction.
4. Crossing the gene chains of selected individuals to create new individuals.
5. Introduction of random mutations to create diversity in the population.
6. Repetition of the selection, crossing, and mutation process over multiple

generations until a satisfactory solution is found.
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Genetic algorithm (GA) can be used to solve multi-objective optimization
problems by simultaneously optimizing multiple performance criteria, known as
“objectives”. In this case, the GA must be adapted to find a “Pareto frontier”, which
represents all solutions that cannot be improved without degrading at least one of
the objectives. According to Ganesan et al. [43].

To improve the machinability of POM-C turning, we divided our optimization
into several sets of independent variables, namely (𝑅𝑎, 𝑀𝑅𝑅), (𝐹𝑍 , MRR), (𝑅𝑎,
𝑃𝑐), and (MRR, 𝑃𝑐). We also performed a combinatorial optimization of three
objectives: 𝑅𝑎, 𝐹𝑍 , and MRR. The goal of these combinations is to maximize
productivity (𝑀𝑅𝑅) while reducing the other response parameters. Equations (3)
to (6) are used as objective functions. The multi-objective optimization problem
can be formulated as follows: Determine the values of 𝑉𝑐, 𝑓 , 𝑎𝑝, 𝑟𝜀 , and 𝑋𝑟 to
minimize 𝑅𝑎, 𝐹𝑍 , 𝑃𝑐 while maximizing MRR, subject to the following constraints:
240 ⩽ 𝑉𝑐 (m/min) ⩽ 420; 0.08 ⩽ 𝑓 (mm/rev) ⩽ 0.24; 0.8 ⩽ 𝑎𝑝 (mm) ⩽ 3.2;
𝑟𝜀 (mm) = 0.4 or 0.8, and 𝑋𝑟 (◦) = 45 or 75.

3.5.1. Optimization of 𝑅𝑎 and MRR

The Pareto front serves as a multi-objective analysis method, facilitating the
identification of optimal solutions that simultaneously satisfy multiple criteria by
establishing a compromise among them. In our study, we identified 70 optimal
solutions, represented by violet stars, within the considered range. From these,
we selected the three best solutions among them. Fig. 10 and Table 5 present the
results of the Pareto front for the 𝑅𝑎 and MRR pair. This Pareto front illustrates
a proportional relationship between surface roughness and material removal rate
for different combinations of cutting parameters. In other words, as the 𝑀𝑅𝑅

increases, the surface roughness also increases. This suggests that the faster you
remove material, the rougher the surface of the machined part will be. However,
it is important to note that this proportional relationship is not always linear and

Fig. 10. Optimization of 𝑅𝑎 and MRR pair by GA
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may vary depending on the cutting parameters used. In this case, the optimal
cutting parameters to achieve a surface roughness of 0.62 μm and an MRR of
133.15 cm3/min are 𝑉𝑐 = 410 m/min, 𝑓 = 0.11 mm/rev, 𝑎𝑝 = 3.17 mm, 𝑟𝜀 =

0.8 mm, and 𝑋𝑟 = 75◦.

Table 5. Results of GA optimization for 𝑅𝑎 and MRR

No. 𝑉𝑐
[m/min]

𝑓

[mm/rev]
𝑎𝑝

[mm]
𝑟𝜀

[mm]
𝑋𝑟
[◦]

𝑅𝑎

[μm]
MRR

[cm3/min]
1 409.76 0.11 3.17 0.80 75.00 0.62 133.15
2 410.23 0.11 3.19 0.80 75.00 0.64 134.62
3 410.18 0.11 3.19 0.80 75.00 0.65 135.46

3.5.2. Optimization of 𝐹𝑍 and MRR

The cutting force plays a crucial role in the machining process. To minimize
expenses, the manufacturing sector is dedicating efforts to the exploration of min-
imal cutting forces [44]. Table 6 and Fig. 11 show the results of the independent

Table 6. Optimization results of 𝐹𝑍 and MRR using GA

No. 𝑉𝑐
[m/min]

𝑓

[mm/rev]
𝑎𝑝

[mm]
𝑟𝜀

[mm]
𝑋𝑟
[◦]

𝐹𝑍
[N]

MRR
[cm3/min]

1 410.66 0.12 1.10 0.40 45.00 14.37 50.77
2 412.30 0.14 0.94 0.40 45.00 15.07 54.19
3 414.80 0.13 1.06 0.40 45.00 16.68 57.45

Fig. 11. Optimization of 𝐹𝑍 and MRR couple by the GA
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variable optimization for tangential force (𝐹𝑍 ) and material removal rate (MRR)
when machining POM-C. In this study, tangential force and MRR are positively
correlated, meaning that when tangential force increases, so does MRR. However,
it is important to note that this relationship is not always linear. The optimal cutting
parameters to achieve a cutting force of 14.37 N and an MRR of 50.77 cm3/min are
as follows: 𝑉𝑐 = 410 m/min, 𝑓 = 0.12 mm/rev, 𝑎𝑝 = 1.1 mm, 𝑟𝜀 = 0.4 mm, and
𝑋𝑟 = 45◦.

3.5.3. Optimization of 𝑅𝑎 and 𝑃𝑐

Table 7 and Fig. 12 show the torque optimization results of roughness (𝑅𝑎)
and cutting power (𝑃𝑐). In our case, as cutting power increases, surface roughness
decreases because there is less contact between the tool and the workpiece. This
allows the material to be removed more efficiently, resulting in a smoother surface.
The optimal cutting parameters to achieve a roughness of 0.6 µm and a cutting
power of 121.22 W are as follows: a cutting speed (𝑉𝑐) of 320 m/min, a feed rate
( 𝑓 ) of 0.08 mm/rev, a depth of cut (𝑎𝑝) of 0.8 mm, a nose radius (𝑟𝜀) of 0.8 mm,
and a main cutting edge angle (𝑋𝑟 ) of 75◦.

Table 7. Results of Pareto-optimal solutions for 𝑅𝑎 and 𝑃𝑐

No. 𝑉𝑐
[m/min]

𝑓

[mm/rev]
𝑎𝑝

[mm]
𝑟𝜀

[mm]
𝑋𝑟
[◦]

𝑅𝑎

[μm]
𝑃𝑐

[W]
1 320.07 0.08 0.81 0.80 75.00 0.60 121.22

2 305.93 0.08 0.87 0.80 75.00 0.63 119.96

3 310.75 0.08 0.81 0.80 75.00 0.64 115.99

Fig. 12. Graph of the Pareto-optimal solutions of 𝑅𝑎 and 𝑃𝑐
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3.5.4. Optimization of 3 objectives

Table 8 displays the optimization results for the three response criteria (𝑅𝑎,
𝐹𝑍 , and 𝑀𝑅𝑅) concerning the five factors (𝑉𝑐, 𝑓 , 𝑎𝑝, 𝑟𝜀 , and 𝑋𝑟 ) using the
genetic algorithm. It is evident that as surface roughness (𝑅𝑎) increases, cutting
force (𝐹𝑍 ) also increases, while 𝑀𝑅𝑅 decreases. Therefore, there exists an inverse
proportional relationship between 𝑅𝑎, 𝐹𝑍 , and MRR. To obtain optimal cutting
parameters, it is recommended to use 𝑉𝑐 = 370 m/min, 𝑓 = 0.09 mm/rev, 𝑎𝑝 =

2.38 mm, 𝑟𝜀 = 0.8 mm, and 𝑋𝑟 = 75◦, which yield the following values for the
dependent variables: 𝑅𝑎 = 0.66 μm, 𝐹𝑍 = 42.1 N, and MRR = 80.9 cm3/min.

Table 8. Results of optimization of three criteria (𝑅𝑎, 𝐹𝑍 , and MRR) using the GA

No. 𝑉𝑐
[m/min]

𝑓

[mm/rev]
𝑎𝑝

[mm]
𝑟𝜀

[mm]
𝑋𝑟
[◦]

𝑅𝑎

[μm]
𝐹𝑍
[N]

MRR
[cm3/min]

1 370.80 0.09 2.38 0.80 75.00 0.66 42.10 80.90
2 376.07 0.09 1.33 0.80 75.00 0.84 16.19 36.86
3 372.44 0.10 2.28 0.80 75.00 0.93 42.43 83.44
4 360.66 0.10 1.92 0.80 75.00 0.99 34.28 65.94
5 362.07 0.10 1.53 0.80 75.00 1.02 23.34 46.97
6 354.54 0.09 1.28 0.80 75.00 1.07 16.03 32.23
7 357.15 0.10 1.67 0.80 75.00 1.09 27.90 54.22
8 357.46 0.11 1.18 0.80 75.00 1.16 18.19 37.10
9 364.60 0.11 1.21 0.80 75.00 1.20 19.33 41.26
10 364.55 0.11 1.78 0.80 75.00 1.27 33.88 67.81

4. Conclusions

In conclusion, this study utilized Pareto analysis, linear regression, and genetic
algorithm to assess the impact of five input parameters (𝑉𝑐, 𝑓 , 𝑎𝑝, 𝑟𝜀 , and 𝑋𝑟 )
on four output parameters (𝑅𝑎, 𝐹𝑍 , 𝑃𝑐, and MRR) during the turning of POM-C
thermoplastic material. The findings have led to the following key insights:

• Pareto analysis indicated that the feed rate had the most significant influence,
contributing 58.05% to the 𝑅𝑎 parameter. Additionally, the nose radius of
the cutting tool and the main cutting edge angle also had notable impacts,
contributing 32.25% and 3.86%, respectively. To enhance the surface quality
of POM-C, it is recommended to opt for a lower feed rate and a larger nose
radius.

• Traditional factors like 𝑉𝑐, 𝑓 , and 𝑎𝑝 significantly affected the three depen-
dent variables (𝐹𝑍 , 𝑃𝑐, and MRR). The depth of cut emerged as the most
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influential factor, followed by 𝑓 and 𝑉𝑐. However, their contributions varied
depending on the specific response under consideration.

• The linear regression models developed for 𝑅𝑎, 𝐹𝑍 , 𝑃𝑐, and MRR demon-
strated robust fits with the experimental data, with coefficients of determi-
nation (𝑅2) reaching 96.72%, 98.61%, 96.24%, and 94.36%, respectively.
These models offer practical utility in predicting output parameter values
based on chosen cutting parameters.

• The optimal cutting parameters, identified to minimize 𝑅𝑎 and 𝐹𝑍 while
maximizing MRR, are as follows: 𝑉𝑐 = 250 m/min, 𝑓 = 0.1 mm/rev, 𝑎𝑝 =

0.9 mm, 𝑟𝜀 = 0.4 mm, and 𝑋𝑟 = 75◦. These settings yielded results of
0.66 μm for 𝑅𝑎, 42.1 N for 𝐹𝑍 , and 80.9 cm3/min for MRR. The optimiza-
tion approach employing GA has proven to be promising and effective in
determining optimal cutting parameters for enhanced productivity and im-
proved surface quality.

• The findings of this study provide valuable insights and pave the way for
future research, enabling further examination of interactions between factors
and responses. Potential extensions include exploring the impact of coated
cutting tools, minimum quantity lubrication (MQL), or lubricant type on
parameters such as cutting time, cutting energy, and specific cutting en-
ergy. Additionally, the study can encompass diverse materials or machining
techniques for performance comparisons and optimization.
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