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 The article presents the simulation results of a single-pixel infrared camera image 
reconstruction obtained by using a convolutional neural network (CNN). Simulations were 
carried out for infrared images with a resolution of 80 × 80 pixels, generated by a low-cost, 
low-resolution thermal imaging camera. The study compares the reconstruction results using 
the CNN and the ℓ1 reconstruction algorithm. The results obtained using the neural network 
confirm a better quality of the reconstructed images with the same compression rate 
expressed by the peak signal-to-noise ratio (PSNR) and structural similarity index measure 
(SSIM). 
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1. Introduction 

Nowadays, infrared thermography (IRT) is becoming 
more and more popular thanks to its wide range of 
applications, among which are: mechanical engineering [1], 
energy saving [2], biology [3], cultural heritage [4], envi-
ronment [5], medicine [6], electronics [7], heat transfer [8], 
chemistry [9] physiology [10], materials evaluation [11], 
and 3D vision [12]. IR technique allows the registration of 
thermal radiation emitted by various objects. IRT uses 
mainly two ranges of electromagnetic radiation spectrum: 
long-wave infrared (LWIR) 7–14 µm and medium-wave 
infrared (MWIR) 3–5 µm. There are two main types of IR 
sensors used in thermal imaging cameras: uncooled 
microbolometers and cooled photon detectors. Both are 
manufactured as detector matrices called focal plane arrays 
(FPA). A typical microbolometer IR detector can be made 
of different materials, such as a-Si or VOx. In turn, cooled 
detectors often operating at a temperature of about 77 K are 
made of narrow-bandgap semiconductors, such as HgCdTe 
or InSb [13]. The FPAs suffer from the problem of non-
uniformity (NU). NU is caused by the dispersion of 
detector parameters and the presence of dead pixels in an 

array. The most commonly used method of reducing NU in 
the IR cameras is a two-point correction [14, 15]. 

The single-pixel camera (SPC) is a solution to replace 
the array with a single detector [16, 17]. The lack of non-
uniformity correction (NUC) is an important advantage of 
the SPC. It is worth emphasizing that very expensive 
hyperspectral IR systems can be replaced with single or 
multi-sensor devices operating on the SPC principle. The 
SPC concept is based on compressive sensing [18], which 
reconstructs the original data from a small number of 
samples below the Nyquist frequency limit [19]. This is 
generally possible due to the redundancy inherent in most 
signals and images. The first SPC implementation was 
made for optical image processing [20]. Today, this 
technique is spreading across a variety of applications, 
including IR and near IR imaging, acoustics, holography, 
and signal processing [21]. The problem of signal reconstru-
ction from a small number of samples concerns non-linear 
optimization. In many practical cases, it is worth using 
a transform coding approach, e.g., with wavelet or discrete 
cosine transform to obtain a sparse representation of a signal 
in another domain. As a result, it is possible to reduce the 
problem mathematically to the sparse solution of an underde-
termined linear system [22]. It leads directly to linear prog-
ramming, which is based on minimizing the ℓ1 norm [23]. 
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This is the well-known ℓ1-magic algorithm available online 
[24]. A solution based on deep learning is our proposal to 
reconstruct a sparse IR image [25]. Artificial intelligence 
algorithms are increasingly used for advanced thermal 
imaging, e.g., to improve the NUC of IR images, especially 
in bolometer uncooled cameras [26, 27], or to increase its 
resolution using so-called super-resolution techniques 
[28, 29]. The application of SPC in the terahertz wave-
length domain is a very promising low-cost solution [30].  

Most of the modern applications use different deep-
learning networks. Among many frequently used models, 
there are ResNet, AlexNet, VGGNet, GoogleNet, 
MobileNet, which are predefined and already pretrained, 
typically by visual or other-modality images. The 
manufacturers can adapt them to a specific problem by final 
up-learning using the IR images. A novel application of a 
convolutional neural network (CNN) for medical screening 
has been recently published using IRT for monitoring the 
thermal provocation test [31].  

Although the learning process is sometimes very time-
consuming on powerful servers using advanced graphics 
processing unit (GPU) modules, the classification or 
regression processes can be performed in real time. In the 
case of SPC, the reconstruction process involves the use of 
an appropriate algorithm that will guarantee the best 
reconstruction results. The authors’ goal is to use a spatial 
light modulator (SLM) and then reconstruct the image 
using a simple CNN [32]. Before building a real system, 
simulations should be performed to select the optimal 
solution for implementation. The main results presented in 
this article are a quantitative comparison of the 
performance of the CNN and ℓ1 – magic algorithms. The 
advantages and disadvantages of both solutions are 
highlighted in this work. 

2. Methods 

2.1. Single-pixel camera (SPC) concept 

The SPC operates based on a simple principle. IR 
radiation emitted by an object passes through the SLM and 
then is focused on a single detector. In a typical application, 
no lens is needed. In visual systems, the SLM can be 
implemented using shutters with randomly distributed 
openings or electrically-controlled micromirrors [15], or 
LCD arrays [16]. As a result, for each set of openings, the 
average radiation intensity is acquired. The measurements 
are saved as a compressed vector with a much lower 
number of samples compared to the number of pixels in the 
corresponding IR image.  

The original images are then reconstructed using a 
compressive sensing algorithm as presented in Fig. 1. 

2.2. CNN-based compressive sensing reconstruction 

Compressive sensing is a useful technique that allows 
to simplify the hardware of a data acquisition system. On 
the other hand, this technique requires the application of an 
advanced signal processing. In the visual image processing, 
the ℓ1 magic algorithm is widely used [33]. A new approach 
presented in this research is based on deep-learning neural 
network image reconstruction. A simple CNN based on the 
decoder architecture was used as shown in Fig. 2. 

The proposed CNN architecture is a result of a certain 
number of trials and, at this stage of research, it meets the 
compromise between quality of reconstructed images, 
calculus complexity, and computational requirements  
for implementation. The important advantage of SPC is  
low-power and low-cost electronics for signal processing. 
One of the possible solutions is the application of a 
hardware-support processing system, e.g., using a field-
programmable gate array (FPGA) technology. The 
proposed model of CNN uses a concept of the residual 
network with long skip connections [34]. It can prevent the 
learning process of such a network from vanishing/ 
exploding gradients and, finally, from slowing and 
blocking learning [35]. The details of the CNN applied are 
presented in Table 1. 

Table 1.  
The CNN layers details. 

Hidden layers No. Type of layers No. of kernels 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Dense 
Reshape 
Conv2DTranspose 
Convolutional 
Convolutional 
Convolutional 
Convolutional 
Flatten layer 
Dense layer 

None 
None 
128 
128 
128 
128 
1 
None 
None 

2.3. Training and validation 

The size and quality of training and validation datasets 
are key issues for the proper development of a deep-learning 
neural network. Three different CNN learning datasets 
were tested during the study. The first test used the dataset 
of 1000 IR images (IRdataset) of 80 × 80 resolution [34]. 
The IRdataset was divided for training/validation subsets 
of 800/200. Transfer training was then tested using 7200 
visual images (VISdataset) cropped to 80 × 80 resolution. 

 
Fig. 1. Block diagram of the single-pixel IR camera. 

 
Fig. 2. CNN architecture based on decoder with residual 

connections. 
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This set was divided into 6000/1200 images for training 
and validation. Next, 80 × 80 synthetic images were 
generated in the form of geometrical sharp figures: 
rectangles, triangles, polygons, ellipses, arcs, polyline 
curves, and different figure slices with different sizes, 
colours, orientations (SYNTHdataset). The intention of 
using sharp figures for training was to reduce the blurring 
of edges of the reconstructed IR images. In this case, two 
datasets with 5000 and 1000 images were selected for 
training and validation.  

After several learning tests were performed, the final 
mixed dataset (MIX dataset) of images was chosen. It 
contained 10 000 images for training equally divided 
(5000/5000) into visual and synthetic parts. For validation, 
2000 images were selected in the equal proportion 
(1000/1000) of visual and synthetic images. In addition, 50 
IR images that were not used for training or validation were 
selected for final testing. The SPC simulation was 
implemented as follows. Each 80 × 80 image was 
transformed using shutters with randomly distributed 
openings in an 80 × 80 raster. The summed radiation signal 
for each shutter was then calculated. The simulation was 
carried out for different number of shutters with openings 
(different compression ratio): 500, 1000, 1500. It allowed 
to verify the algorithm performance for various 
compression ratios of 7.8, 15.6, and 23.4%. For training, 
each image was compressed to a 500-, 1000-, or 1500-
element vector. Generated vectors were added to the CNN 
training and testing datasets. The learning was carried out 
using the descent gradient optimizer from the Keras library 
and implemented in the TensorFlow – artificial intelligence 
environment [36]. In addition, the augmentation was 
applied during the training of CNN using 9 randomly 
selected image transforms: 
• albumentations.InvertImg (p  =  0.2), 
• albumentations.HorizontalFlip (p = 0.2), 
• albumentations.RandomBrightnessContrast (p = 0.2), 
• albumentations.Superpixels (p = 0.2), 
• albumentations.Posterize (p = 0.2), 
• albumentations.GaussNoise (p = 0.2), 
• albumentations.Sharpen (p = 0.2), alpha = (0.2, 0.4), 

lightness = (0.5, 0.6), 
• albumentations.MotionBlur (p = 0.2), 
• albumentations.ShiftScaleRotate (p = 0.2). 

3. Results 

Simulations were performed for 3 different compression 
ratios CR = 7.8125%, 15.6250%, and 23.4375%. This means 
that the original 80 × 80 IR images have been compressed 
into vectors of 500, 1000, and 1500 elements. Each element 
was calculated as the average value of randomly selected 
pixels from the 80 × 80 IR image. A test dataset of 50 IR 
images acquired by a self-developed low-cost camera [37] 
was used to average the results and validate quantitatively 
the image decompression. To present the difference in the 
operation of ℓ1 and CNN reconstruction algorithms, 3 IR 
images were selected for detailed analysis – Fig. 3. 

In order to compare the results of the image reconstru-
ction, the widely used parameters of peak signal-to-noise 
ratio (PSNR) in decibels and structural similarity index 
measure (SSIM) [38] were used. The SSIM parameter [39] 
seems to be more objective for image comparison. It 

considers 3 independent image features: luminance, contrast, 
and image structure [23]. The luminance is the average 
pixel value in each image, thus the luminance comparison 
can be represented by (1): 

l(x, y) = 
2µxµy + C1

µx
2 + µy

2 + C1
 , (1) 

where C1 is the small constant for numerical stability, µx . 
and  µy are the pixel sample means of 𝑥𝑥 and 𝑦𝑦 respectively. 
Similarly, the constants C2 and C3 are introduced in the 
following equations for contrast and structure measures. 
The values of all constant parameters are selected exper-
imentally. Contrast is calculated based on the standard 
deviation (σ), shown in (2): 

c(x, y)  =  
�2σxσy + C2�

(σx
2 + σy

2 + C2)
. (2) 

The structure index uses the covariance σxy normalized 
image variance, as shown in (3): 

s(x, y)  =   
σxy + C3

σxσy + C3
 . (3) 

Finally, the three components are connected by (4): 

SSIM(x, y)  =   [l(x, y)]α ∗ [c(x, y)]β ∗ [s(x, y)]γ , (4) 

where α, β, and γ parameters are experimentally selected. 

3.1. Examples of ℓ1 reconstruction 

This research is the first step for development of a real 
IR SPC for dedicated applications, e.g., gas leak detection. 
Cooled and uncooled IR systems have become more and 
more popular mainly in industrial environments [38].  
Such systems equipped with matrix sensors have been 
already applied for optical gas imaging (OGI) [40]. In  
order to achieve this goal, the comparative simulations 
using well-known ℓ1 and the proposed CNN-based 
decompression algorithms were carried out for different 

 
Fig. 3. IR images selected for a detailed reconstruction analysis. 

 

 
(a) (b) (c) 

Fig. 4. Example of ℓ1 IR image reconstruction for different 
compression ratios: CR = 7.8125%, PSNR = 18.62 dB (a), 
CR = 15.6250%, PSNR = 21.34 dB (b), CR = 23.4375%, 
PSNR = 23.71 dB (c). 
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compression rates (CR). The example results obtained by 
using the ℓ1 reconstruction algorithm for different CR are 
presented in Fig. 4. 

3.2. CNN-based reconstruction results 

As noted above, the quantitative results are shown for a 
50-item set of IR test images that are not used for training 
or validation. The first examples (Fig. 5) show a person 
wearing glasses, which is qualitatively better decompressed 
compared to the results of the ℓ1 reconstruction. The 
reconstructed images are sharper and contain more detail. 
It can be seen that the relatively higher performance of the 
CNN-based algorithm relates to the higher compression 
ratio. The result of the ℓ1 algorithm for CR = 7.8125% is 
rather poor, noisy, and blurry, as shown in Fig. 4(a). 

The next example shows the worst-case decompression 
performed by the proposed CNN. It is a thin, warm, curved 
tube shown in Fig. 6. Qualitatively, the results are 
satisfactory, but this is not confirmed by the value of the 
PSNR measure. This is due to the large, relatively 
homogeneous background, which is reconstructed with a 
significant offset as presented in Fig. 6. 

The last example shows a round black body that fills the 
main part of the observed scene – Fig. 7. Surprisingly, for 
all compression ratios, the similarity indexes are very close 
to each other. This is because the main part of the IR scene 
is covered with the higher temperature object. As a result, 
the spread of temperature values is relatively large, and the 
normalization applied by CNN during pre-processing does 
not significantly alter the original input image. 

Finally, for a quantitative assessment of the proposed 
approach for a compressive sensing image reconstruction 

performed in the form of CNN, the average values of the 
similarity indexes for 50 IR test images are calculated. The 
results are presented in Table 2. 

Table 2. 
Average values of PSNR and SSIM for the set of 50 80 × 80 IR 

test images reconstructed by ℓ1 and CNN-based algorithms. 

Length of 
compressed 

vectors 
500 1000 1500 

ℓ1, PSNR (dB)/ 
SSIM 

19.5473 dB 
0.5073 

22.8906 dB 
/0.6651 

25.0547 dB 
/0.7483 

CNN, PSNR (dB)/ 
SSIM 

21.45 dB 
/0.6959 

22.07 dB  
/0.6415 

21.71 dB 
/0.6829 

4. Discussion 

Analysing the results presented in the previous chapter, 
it can be concluded that deep learning is a promising option 
for image reconstruction in a single-pixel thermal imaging 
based on compression sensing. In most simulations, the 
results are competitive with those obtained using the ℓ1 
algorithm. The greater advantage of using the deep-
learning approach is noticeable with a higher compression 
ratio as shown in Fig. 8. 

In general, the deep-learning image reconstruction is 
not invariant concerning mean value and contrast due to the 
normalization used while the input dataset for learning is 
created. This means that the proposed solution is rather 
recommended for observation cameras that are used to 
detect and identify objects. In most cases, the reconstructed 
image is over-contrasted, which results in an underesti-
mation of the PSNR value. To enlarge the PSNR factor, the 
contrast has to be reduced and the mean value of the image 

 
(a) (b) (c) 

Fig. 7. IR image set no. 3 (round black body) reconstructed using 
CNN-based algorithm, 500-element compression, PSNR: 
21.6247 dB, SSIM = 0.6657 (a), 1000-element compression, 
PSNR: 21.1074 dB, SSIM = 0.7357 (b), 1500-element 
compression, PSNR: 21.6327 dB, SSIM = 0.7106 (c). 

 

 
(a) (b) 

Fig. 8. Comparison of CNN-based and ℓ1-algorithm IR image 
reconstruction for CR = 7.8125%, deep-learning 
reconstruction, PSNR = 20.1052 dB, SSIM = 0.7786 (a), 
ℓ1 reconstruction, PSNR = 17.2282 dB, SSIM = 0.2805 (b).  

 

 

 
(a) (b) (c) 

Fig. 5. IR image set no. 1 reconstructed using CNN-based 
algorithm, 500-element compression, PSNR: 21.0042 dB, 
SSIM = 0.7334 (a), 1000-element compression, PSNR: 
24.0187 dB, SSIM = 0.7542 (b), 1500-element compression, 
PSNR: 22.1462 dB, SSIM = 0.7483 (c). 

 

 
(a) (b) (c) 

Fig. 6. IR image set no. 2 (the worst case) reconstructed using CNN-
based algorithm, 500-element compression, PSNR: 8.5296 dB, 
SSIM = 0.3790 (a), 1000-element compression, PSNR: 
9.3030 dB, SSIM = 0.4003 (b), 1500-element compression, 
PSNR: 7.9023 dB, SSIM = 0.4040 (c). 
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needs to be properly adjusted. It enlarges PSNR value 
significantly. The result of such an operation is presented 
in Fig. 9. 

5. Conclusions 

The single-pixel IR camera is an optical system 
consisting of an SLM and a single IR photodetector that 
measures the average radiation intensity of the scene 
corresponding to the SLM pattern. It enables the 
construction of low-cost, energy-saving, small and high-
quality imaging devices applicable in a wide range of 
applications, such as remote and hyperspectral imaging, as 
well as object and gas detection. A simple CNN for image 
reconstruction for SPC was simulated. The presented 
results show superior operation of a deep-learning 
approach compared to the well-known and widely used ℓ1-
magic reconstruction, especially for high-compression 
ratios. On the other hand, the image transformation made 
by CNN is not invariant concerning the mean value of the 
image and its contrast. It is due to the normalization used 
by CNN for faster and better learning. Basically, in 
practice, a CNN-based SPC provides sharper reconstructed 
images with clearly visible fine details and higher contrast. 
Consequently, the proposed solution is more suitable for IR 
surveillance systems for a better more reliable detection 
and identification of objects. Thermal imaging cameras are 
relatively expensive today, which limits their usefulness. 
The development of a single-detector thermal imaging 
camera would make thermal imaging more popular and 
useful. The exchange of the single-pixel sensor easily 
allows to adjust the wavelength characteristics for different 
gases. 
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