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Abstract
In sequencing situations, it may affect parameters used to determine an optimal order in the
queue, and consequently the decision of whether (or not) to rearrange the queue by sharing
the realized cost savings. In this paper, we extend one machine sequencing situations and
their related cooperative games under fuzzy uncertainty. Here, the agents costs per unit of
time and processing time in the system are fuzzy intervals. In the sequel, we define sequencing
fuzzy interval games and show that these games are convex. Further, fuzzy equal gain splitting
rule is given. Finally, a numerical example is illustrated priority based scheduling algorithm.
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Introduction

Sequencing situations arise in several instances of
real life. Here, we refer to the classical one-machine
sequencing situations that arise when a set of ordered
jobs has to be processed sequentially on a machine.
The use of an optimal ordering may reduce the cost
connected with the time spent in the system and
is particularly interesting in sequencing situations,
where several agents are involved. In such situations,
the optimal order increases the efficiency of the sys-
tem for the agents as a whole, (because it increases the
efficiency of the system), but since the agents are ba-
sically interested in their individual benefit, an agree-
ment is equally important. The agreement includes
how to compensate those agents that are required to
spend more time in the system and how to share the
joint cost savings. In the classical approach to the
problem, the processing time of each job and the cost
per unit of time associated with it are supposed to
be known with certainty. It should be clear that the
optimality of an ordering may be affected when the
actual processing times and unitary costs are differ-
ent from the forecasted ones. In (Curiel et al., 1989),
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the class of sequencing games are introduced. An up-
dated survey on these games can be found in (Curiel
et al., 2022). We also refer to the survey on Opera-
tions Research Games (Branzei et al., 2010; Borm et
al., 2001).

This paper extends the analysis of cooperative se-
quencing games to a setting with fuzzy interval data.
We consider sequencing situations in which a certain
number of customers has to be served by one server
under fuzzy uncertainty. Each of them has a fuzzy
interval cost function which depends on his/her com-
pletion time, i.e., the time which he/she has to wait
plus the time it takes to serve him/her (Alparslan et
al., 2008; Calleja et al., 2006; Curiel et al., 1989).

In cooperative game theoretical models, fuzzy coali-
tions are used differently. In (Aubin, 1974; 1981; But-
nariu, 1978), authors extend the domain of the char-
acteristic function from subsets to fuzzy coalitions of
the set of players. That is, the characteristic func-
tion assigns to each fuzzy coalition again to a real
number. Recent developments show that new models
in cooperative games have been introduced when the
worth of the coalitions is fuzzy intervals. In contrast,
Mares (Mareš, 1999; 2001; Mareš & Vlach, 2004) is
concerned with the uncertainty in the values of char-
acteristic functions. In (Mallozzi et al., 2011), the au-
thors introduced a new core-like set for cooperative
games under fuzzy uncertainty. The Shapley value
of cooperative fuzzy games is introduced in (Yu &
Zhang, 2010).

The interval Shapley function for interval fuzzy
games based on the extended Hukuhara difference is
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studied by (Meng et al., 2016). In (Kong et al., 2018),
the concepts of the general prenucleolus and the least
square general prenucleolus over the pre-imputation
set for cooperative fuzzy games are proposed. In (Al-
parslan & Özcan, 2023; Özcan & Gök, 2021a; 2021b;
Özcan et al., 2022; 2023) some applications of fuzzy
interval cooperative games are given. Different game
theoretical models and uses of are presented in (Al-
parslan Gök et al., 2009a; 2011; 2009b; Hamidoğlu et
al., 2021; Hamidoğlu, 2021; Savku & Weber, 2020).

The paper is organized as follows. In Section 2, we
recall basic notions and results from one-machine se-
quencing situations and related games, fuzzy interval
calculus and the theory of fuzzy interval cooperative
games. In Section 3, we introduce sequencing fuzzy
interval situations and show that these games are con-
vex. Section 3 extends the classical sequencing games
to the fuzzy interval setting. Finally, we illustrate a
numerical example related to sequencing fuzzy inter-
val situations in Section 4. We close with a conclusion
in Section 5.

Materials and methods

In this section, we give some basic notations and
results from one-machine sequencing problems and
fuzzy intervals. For further information see (Alparslan
Gök et al., 2008; Curiel et al., 1989; 2002; Dubois,
1980; Dubois & Prade, 1997; Dubois et al., 2000;
Lawler et al., 1993).

Sequencing situations and related games

One-machine sequencing situations occur when a
set of ordered jobs has to be processed sequentially
on one machine. Formally, a one-machine sequencing
situation is a 4-tuple (N, σ0, λ, p) where:
• N = {1, . . . , n} is the set of jobs;
• σ0 : : N → N is a permutation that defines the

initial order of the jobs;
• λ = (λi)i∈N ∈ Rn+ is a non-negative real vector,

where λi is the cost per unit of time of job i;
• p = (pi)i∈N ∈ Rn+ is a positive real vector, where
pi is the processing time of job i.

Given a sequencing situation and an ordering σ of the
jobs, for each i ∈ N we denote by P (σ, i) the set
of jobs preceding i, according to the order σ. The
time spent in the system by job i is the sum be-
tween the waiting time that jobs in P (σ, i) need to
be processed and the processing time of job i yield-
ing the related cost λi

(∑
j∈P (σ, i) pj + pi

)
. Then, the

(total) cost associated with σ, namely Cσ, is given by
Cσ =

∑
i∈N

(∑
j∈P (σ, i) pj + pi

)
.

The optimal order of the jobs σ∗ produces the min-
imum cost Cσ∗ =

∑
i∈N

(∑
j∈P (σ∗, i) pj + pi

)
or the

maximum cost saving Cσ0
− Cσ∗ . In (Smith, 1956),

they prove that an optimal order can be obtained by
reordering the jobs according to decreasing urgency
indices, where the urgency index of job i ∈ N is de-
fined by ui = λi/pi.

A sequencing game is a pair 〈N, v〉 where N is the
set of players, that coincides with the set of jobs, and
the characteristic function v assigns to each coalition
S the maximal cost savings which the members of S
can obtain by reordering only their jobs. We say that
a set of jobs T is connected according to an order σ if
for all i, j ∈ T and k ∈ N , σ(i) < σ(k) < σ(j) implies
k ∈ T (Curiel et al., 1989; 2002).

A switch of two connected jobs i and j, where i
precedes j, generates a change in cost equal to λjpi−
λipj . This amount is positive if and only if the urgency
indices verify ui < uj . Clearly, if λjpi−λipj is negative
it is not beneficial for i and j to switch their positions.
We denote the gain of the switch as

gij = (λjpi − λipj)+ = max {0, λjpi−λipj}

and, consequently, the gain of a connected coalition T
according to an order σ is defined by

v(T ) =
∑
j∈T

∑
i∈P (σ, j)∩T

gij .

If S is not a connected coalition, the order σ induces a
partition in connected components, denoted by S\σ.
In view of this, the characteristic function v of the
sequencing game can be defined as

v(S) =
∑

T∈S\σ

v(T )

for each S ⊂ N or equivalently as

v =
∑

i, j∈N : i<j

giju[i, j],

where u[i, j] is the unanimity game defined as:

u[i, j](S) =

{
1, if {i, i+ 1, . . . , j − 1, j} ⊂ S,
0, otherwise.

Note that sequencing games are convex (Curiel et
al., 1989).

Volume 14 • Number 4 • December 2023 11



İ. Özcan, S.Z. Alparslan Gök, G.-W. Weber: On Sequencing Fuzzy Interval Games

Equal Gain Splitting rule (EGS -rule) is defined by

EGSi =
1

2

∑
k∈P (σ, i)

gki +
1

2

∑
j : i∈P (σ, j)

gij ,

for each i ∈ N (Curiel et al., 1989).

Fuzzy intervals

A fuzzy set (Zadeh, 1965) F in R is a function
µF : R → [0, 1] where µF assigns to each point in
R a degree of membership. For any α ∈ [0, 1], α –
level set (α− cut) of F defined by as follows:

[µF]
α
= {x ∈ R : µF(x) ≥ α} =

[
µ−F , µ

+
F

]
.

If α = 0, then [µF]
0

= cl {x ∈ R : µF(x) > 0} .
Here, cl {x ∈ R : µF(x) > 0} is the closure of
{x ∈ R : µF(x) > 0} .

A fuzzy set F in R is said to be a fuzzy interval, if
the following conditions are satisfied (Dubois, 1980):
• [µF]

α is compact for any α ∈ [0, 1],
• [µF]

α is convex for any α ∈ [0, 1],
• [µF]

α is normal, i.e., there exist x ∈ R such that
µF(x) = 1.

We denote the set of all fuzzy intervals by F(R).
For any F ∈ F(R) there exist a, b, c, d ∈ R and
L : [a, b] → R non-decreasing and R : [c, d] → R
non-increasing such that the membership function µF
is given as below (Dubois, 1980):

µF(x) =


L(x), a ≤ x ≤ b,
1, b ≤ x ≤ c,
R(x), c ≤ x ≤ d,
0, otherwise.

If L and R are linear, then F is called trapeziodal
fuzzy interval and its membership function is given by
(Dubois, 1980):

µF(x) =



x− a
b− a

, a ≤ x ≤ b,

1, b ≤ x ≤ c,
x− d
c− d

, c ≤ x ≤ d,

0, otherwise.

This trapeziodal fuzzy interval is denoted by
(a, b, c, d). We denote the set of all trapeziodal fuzzy
intervals by FT (R). In this case if a = b and c = d,
then (a, b, c, d) is compact interval, if a = b = c = d,
then (a, b, c, d) is a real number.

For any α ∈ [0, 1], the α – level set of a trapeziodal
fuzzy interval of F with membership function [µF]

α is
given by (Dubois, 1980):

[µF]
α
= [a(1− α) + αb, (1− α) d+ αc]

=
[
µ−F , µ

+
F

]
.

Let F1, F2 ∈ F(R), then binary relation . is defined
on F(R) as follows (Dubois, 1980; Dubois & Prade,
1997; Dubois et al., 2000). For all α ∈ [0, 1]

F1 . F2 ⇔ [µF1 ]
α ≥ [µF2 ]

α ⇔ µ−F1
≥ µ−F2

and µ+
F1
≥ µ+

F2
.

Let F1 = (a1, a2, a3, a4) and F2 = (b1, b2, b3, b4) ∈
FT (R) be two trapeziodal fuzzy intervals and k ∈ R+,
then the following conditions holds:
• F1 + F2 = (a1 + b1, a2 + b2, a3 + b3, a4 + b4),
• k · F1 = (ka1, ka2, ka3, ka4) ,
• F1 . F2 ⇔ a1 ≥ b1, a2 ≥ b2, a3 ≥ b3, and a4 ≥ b4.

Fuzzy interval cooperative games

Fuzzy interval cooperative game is a pair 〈N, U〉,
where N = {1, 2, ..., n} is the set of players and
U : 2N → F(R) maps the coalitions S ∈ 2N into fuzzy
intervals U(S) ∈ F(R) with v(0) = 0. Here, 0 is a fuzzy
interval with membership function given by (Mallozzi
et al., 2011):

µ0(x) =

{
1, x = 0,

0, x 6= 0.

It is obvious that, the definition above is extension of
cooperative interval games in the sense of (Alparslan
Gök et al., 2011; 2008) and the classial games. We de-
note by F(R)N the set of all such fuzzy payoff vectors
and FGN the family of all fuzzy interval cooperative
games.

We call a game 〈N, U〉 is convex if U(S) + U(T ) /
U(S ∩ T ) + U(S ∪ T ) for all S, T ∈ 2N .

Results

In this section, we introduce a one-machine se-
quencing fuzzy interval situation described by a 4-
tuple (N, σ0, λ, p), where N and σ0 are as in clas-
sical case whereas [µλi

]
α
=
[
µ−λi

, µ+
λi

]
i∈N ∈ F(R+)

N

and [µpi ]
α
=
[
µ−pi , µ

+
pi

]
i∈N ∈ F(R+)

N are vectors of
fuzzy intervals with µ−λi

, µ+
λi

representing the mini-
mal and maximal unitary cost of job i, respectively,
and µ−pi , µ

+
pi representing the minimal and maximal

processing time of job i, respectively.
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To handle sequencing situations in which all pa-
rameters are given by fuzzy intervals, we propose a
trapezoidal fuzzy interval urgency approach and a
trapezoidal fuzzy interval relaxation approach. The
trapezoidal fuzzy interval urgency index of job is de-
fined as

ui =
λi
pi

=

(
λ1i
p1i

,
λ2i
p2i

,
λ3i
p3i

,
λ4i
p4i

)
,

where λ, p ∈ FT (R) and i ∈ N . To extend Smith’s
result for finding the optimal order we need not only
to compare ui and uj to check whether ui /uj for any
two possible candidates i and j to a neighbor switches,
but also that these fuzzy interval numbers are disjoint.

The trapezoidal fuzzy interval relaxation index of
job is defined as

ri =
pi
λi

=

(
p1i
λ1i

,
p2i
λ2i

,
p3i
λ3i

,
p4i
λ4i

)
,

where λ, p ∈ FT (R) and i ∈ N .
Note that in the classical case the relaxation index

is the inverse of the urgency index, so we may re-
formulate the rule of Smith saying that to obtain an
optimal order, the jobs have to be ordered according
to increasing fuzzy interval relaxation indices.

Two jobs i, j ∈ N may be switched only if ri.rj and
the fuzzy interval numbers are disjoint. Our setting
corresponds to the maximal risk aversion of the agents
that agree on a switch of their jobs only if it is surely
profitable.

We notice that the domain of fuzzy interval se-
quencing situations under consideration is quite small,
containing only situations where all fuzzy interval ur-
gency indices exist and are pairwise disjoint and situ-
ations where all fuzzy interval relaxation indices exist
and are pair-wise disjoint.

The following examples are inspired by (Alparslan
Gök et al., 2008) and illustrate situations which can-
not be handled by our approaches, whereas the follow-
ing example allows application of our fuzzy interval
urgency approach.

Example. Consider the two-agent situation with
p1 = (1, 3, 5, 8), p2 = (1, 2, 3, 5), λ1 = (1, 2, 3, 4),
λ2 = (1, 2, 4, 9). Now, r1 is defined but r2 is unde-
fined; on the other hand u1 is undefined and u2 is
defined. Hence no comparison is possible and, conse-
quently, the reordering cannot take place.

Example. Consider the two-agent situation with
p1 = (1, 3, 5, 8), p2 = (1, 3, 7, 11), λ1 = (1, 2, 3, 4),
λ2 = (1, 2, 4, 5). Here, we can compute r1 =(
1,

3

2
,
5

3
, 2

)
and r2 =

(
1,

3

2
,
7

4
,
11

5

)
, but we cannot

reorder the jobs as the fuzzy intervals are not disjoint.

Example. Consider the four-agent situation with
N = {1, 2, 3, 4}, σ0 = {1, 2, 3, 4}, λ ∈(
(1, 4, 12, 20), (1, 4, 9, 20), (1, 3, 4, 5), (1, 2, 4, 5)

)
and p ∈

(
(1, 2, 3, 4), (1, 2, 3, 5), (1, 6, 16, 30),

(1, 4, 20, 40)
)
. We can compute u1 = (1, 2, 3, 5),

u2 = (1, 2, 3, 4), r3 = (1, 2, 4, 6) and
r4 = (1, 2, 5, 8), while the other indices are un-
defined. Jobs 1 and 2 may be switched and also jobs
3 and 4 may be switched, but we can say nothing
about jobs 1 and 4 that become adjacent after the
first two switches, as there is no common index.

Example. Consider the two-agent situation with
p1 = (1, 2, 3, 4), p2 = (2, 3, 4, 6), λ1 = (1, 4, 9, 16),
λ2 = (12, 21, 32, 54). We can compute u1 =
(1, 2, 3, 4) and u2 = (6, 7, 8, 9) and use them to re-
order the jobs as the fuzzy intervals are disjoint.

Now, we introduce the fuzzy interval equal gain
splitting rule by extending the equal gain splitting
rule sequencing situations.

Let (N, σ0, λ, p) and (N, τ0, λ, p) be sequencing
fuzzy interval situations where either all fuzzy interval
urgency indices exist and are pair-wise disjoint or all
fuzzy interval relaxation indices exist and are pair-
wise disjoint.

Let i, j ∈ N . We define the fuzzy interval gain of
the switch of jobs i and j by

Gij =

{
λjpi − λipj , if jobs i and j switch,
0, otherwise.

The fuzzy interval equal gain splitting rule is de-
fined by

FEGSi(N, σ0, λ, p) =
1

2

∑
j∈N : j>i

Gij

+
1

2

∑
j∈N : j<i

Gij ∈ F(R)

for each i ∈ N .

Example. Consider the sequencing trapezoidal fuzzy
interval situation with N = {1, 2, 3}, σ0 = {1, 2, 3},
p =

(
(1, 2, 3, 4), (2, 3, 4, 5), (1, 2, 3, 5)

)
and λ =(

(1, 4, 9, 16), (10, 18, 32, 50), (11, 24, 42, 75)
)
. The

fuzzy interval urgency indices are u1 = (1, 2, 3, 4),
u2 = (5, 6, 8, 10) and u3 = (11, 12, 14, 15), so all
jobs may be switched. The fuzzy interval gains are
obtained by:

G1
12 = max

{
0, λ12p

1
1 − λ11p12

}
= max {0, 10 · 1− 1 · 2} = 8,

G2
12 = max

{
0, λ22p

2
1 − λ21p22

}
= max {0, 18 · 2− 4 · 3} = 24,
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G3
12 = max

{
0, λ32p

3
1 − λ31p32

}
= max {0, 32 · 3− 9 · 4} = 60,

G4
12 = max

{
0, λ42p

4
1 − λ41p42

}
= max {0, 50 · 4− 16 · 5} = 120.

Hence, G12 = (8, 24, 60, 120). The other fuzzy
interval gains are calculated similarly as follows:
G21 = (0, 0, 0, 0), G13 = (10, 40, 99, 220),
G31 = (0, 0, 0, 0), G23 = (12, 36, 72, 125), G32 =
(0, 0, 0, 0). Then, the fuzzy interval equal gain split-
ting (FEGS) rule is

FEGS1 =
1

2

(
G1

12 +G1
13, G

2
12 +G2

13, G
3
12 +G3

13,

G4
12 +G4

13

)
=

1

2
(8 + 10, 24 + 40, 60 + 99, 120 + 220)

= (9, 32, 79.5, 170) ,

FEGS2 =
1

2

(
G1

12 +G1
23, G

2
12 +G2

23, G
3
12 +G3

23,

G4
12 +G4

23

)
=

1

2
(8 + 12, 24 + 36, 60 + 72, 120 + 125)

= (10, 30, 66, 122.5) ,

FEGS3 =
1

2

(
G1

13 +G1
23, G

2
13 +G2

23, G
3
13 +G3

23,

G4
13 +G4

23

)
=

1

2
(10 + 12, 40 + 36, 99 + 72, 220 + 125)

= (11, 38, 85.5, 172.5) .

Consequently, the fuzzy interval equal gain splitting
(FEGS) rule is obtained by

FEGSi(N, σ0, λ, p) =
(
(9, 32, 79.5, 170) ,

(10, 30, 66, 122.5) , (11, 38, 85.5, 172.5)
)
.

Now, we introduce the class of cooperative sequencing
fuzzy interval games, and prove that the correspond-
ing FEGS allocation belongs to the fuzzy interval core
of the related sequencing fuzzy interval game.

The sequencing fuzzy interval game associated to a
one-machine sequencing situation (N, σ0, λ, p), with
λ, p ∈ F(R+), is defined by:

U =
∑

i, j∈N : i<j

Giju[i, j]

provided that Gij ∈F(R) for all switching jobs i, j∈N .
Here, u[i, j] is the unanimity game defined as:

u[i, j] =

{
1, if {i, i+ 1, ..., j − 1, j} ⊂ S,
0, otherwise.

In Proposition, we show that each sequencing fuzzy
interval game is convex.

Proposition. Let 〈N, U〉 be a sequencing fuzzy interval
game. Then, 〈N, U〉 is convex.
Proof. By definition Gij . 0 for all (i, j). It is well
known that classical unanimity games are convex.
Then, |U| =

∑
i, j∈N : i<j

|Gij | u[i, j] is a convex game

in the classical sense. So, 〈N, U〉 is convex.

Discussion

In this section, we inspired by the example given in
(Ergün et al., 2020).

Consider that we have three departments as Net-
work and Systems Management (D1), Database Man-
agement (D2), and Energy Management (D3) in the
factory. All departments are connected to Manage-
ment Unit of Information Technology.

In each department, three basic jobs (i.e. processes)
as Network I/O (J1), Disk IO (J2), and CPU (J3) are
being run. Jobs are nonpreemptiable, which means
that their execution on a processor cannot be sus-
pended until completion. The properties of each jobs
of departments are different and can be seen from Ta-
bles 1, 2, and 3. Consider the following set of jobs,
assumed to have arrived at arrival time, in the order
of J1, J2, J3 with the length of the execution time
and service time in miliseconds. The running times
of the processes may be uncertain depending on the
variables like work intensity, capacity etc. These un-
certainties are determined by fuzzy intervals.

Table 1
The properties of each jobs of D1

Job Arrival
time

Execute
time

Priority Service
time

J1 (1, 2, 3, 5) 1 1 (96, 102, 108, 120)

J2 (1, 2, 3, 4) 3 2 (181, 187, 193, 199)

J3 (2, 3, 4, 6) 5 3 (282, 288, 294, 301)

Table 2
The properties of each jobs of D2

Job Arrival
time

Execute
time

Priority Service
time

J1 (2, 3, 4, 7) (1, 2, 3, 5) 2 (152, 158, 169, 177)

J2 (1, 3, 5, 6) (3, 4, 6, 7) 1 (126, 133, 140, 156)

J3 (3, 4, 6, 8) (1, 3, 4, 5) 3 (188, 194, 201, 218)
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Table 3
The properties of each jobs of D3

Job Arrival
time

Execute
time

Priority Service
time

J1 (3, 4, 6, 8) (2, 2, 2, 2) 2 (123, 129, 136, 148)

J2 (1, 2, 3, 4) (3, 3, 3, 3) 3 (151, 157, 163, 169)

J3 (2, 3, 4, 7) (4, 4, 4, 4) 1 (105, 108, 114, 127)

Waiting time (service time-arrival time) t of each
job of D1, D2, and D3 is stated in Table 4.

Table 4
The waiting time t of each jobs of D1, D2 and D3

Job (Process) Wait time

J1 of D1 t11 = (95, 100, 105, 115)

J2 of D1 t12 = (180, 185, 190, 195)

J3 of D1 t13 = (280, 285, 290, 295)

J1 of D2 t21 = (150, 155, 165, 170)

J2 of D2 t22 = (125, 130, 135, 150)

J3 of D2 t23 = (185, 190, 195, 210)

J1 of D3 t31 = (120, 125, 130, 140)

J2 of D3 t32 = (150, 155, 160, 165)

J3 of D3 t33 = (103, 105, 110, 120)

Let ci, j = (C, D, N) be the cost vector of running
job i on department j, with C, D, N representing the
cost of CPU, Disk I/O, and Network I/O, seperately.

Let ci, j = c ·C+ d ·D+n ·N , where c, d, n are the
weights of C, D, N , respectively. These weights vary
because of the type of the jobs. If the job is compute-
intensive, then c be 3, d be 2, and n be 1. If it is a
data parsing job, then d be 3, c be 2, and n be 1. If
it is about network, then n be 3, d be 2, and c be 1.
Hereby, we can say for D1, the priotry is n > d > c.
This situation is different for D2 and D3. It can be
seen in Table 5.

Let us take

C = (200, 205, 215, 230) (MHz),
D = (100, 110, 115, 130) (TB), and
N = (50, 55, 65, 80) (Mbit).

Then, the costs of D1 can be calculated as follows:

c11 = (550, 590, 640, 730) ,

c12 = (750, 795, 840, 930) ,

c13 = (850, 890, 940, 1030) .

Table 5
The weights of c, d, n of J1 for D1, D2, D3

Property
of job

Compute
intensity

Data
parsing

Network

cost c d n

J1D1 3 2 1

J2D1 2 3 1

J3D1 1 2 3

J1D2 3 2 1

J2D2 1 3 2

J3D2 1 2 3

J1D3 3 1 2

J2D3 2 3 1

J3D3 1 1 1

The urgency index a job can be obtained by dividing
the cost by the waiting time:

uij =
cij
tij

.

Now, we can calculate and examine the priotries of
each jobs of D1:

u11 =
c11
t11

= (5.789, 5.900, 6.095, 6.347) ,

u12 =
c12
t12

= (4.116, 4.297, 4.421, 4.769) ,

u13 =
c13
t13

= (3.035, 3.122, 3.241, 3.491) .

For D1, we see that u11 . u12 . u13. We can calculate
the costs of D2:

c21 = (550, 590, 640, 730) ,

c22 = (600, 645, 690, 780) ,

c23 = (850, 890, 940, 1030) .

Now, we can calculate and examine the priotries of
each jobs of D2:

u21 =
c21
t21

= (4.333, 4.419, 4.484, 4.882) ,

u22 =
c22
t22

= (4.800, 4.961, 5.111, 5.200) ,

u23 =
c23
t23

= (4.594, 4.684, 4.820, 4.904) .

For D2, we see that u22 . u23 . u21.
We can calculate the costs of D3:

c31 = (650, 685, 740, 830) ,

c32 = (750, 795, 840, 930) ,

c33 = (800, 835, 890, 980) .
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Now, we can calculate and examine the priotries of
each jobs of D3:

u31 =
c31
t31

= (5.416, 5.480, 5.692, 5.928) ,

u32 =
c32
t32

= (5.000, 5.129, 5.250, 5.636) ,

u33 =
c33
t33

= (7.767, 7.952, 8.090, 8.166) .

For D3, we see that u33 . u31 . u32.
In this way, it is possible to determine which job

is priority for each department. Let us construct the
game now. We choose J1 job for D1, J2 for D2 and J3
for D3. Firstly, we need to calculate the fuzzy interval
gains. Then,

c11 = λ =
(
λ11, λ

2
1, λ

3
1, λ

4
1

)
= (550, 590, 640, 730) ,

t11 = p1 =
(
p11, p

2
1, p

3
1, p

4
1

)
= (95, 100, 105, 115) ,

u11 = u1 =
(
u11, u

2
1, u

3
1, u

4
1

)
= (5.789, 5.900, 6.095, 6.347) ,

c22 = λ =
(
λ12, λ

2
2, λ

3
2, λ

4
2

)
= (600, 645, 690, 780) ,

t22 = p2 =
(
p12, p

2
2, p

3
2, p

4
2

)
= (125, 130, 135, 150) ,

u22 = u2 =
(
u12, u

2
2, u

3
2, u

4
2

)
= (4.800, 4.961, 5.111, 5.200) ,

c33 = λ =
(
λ13, λ

2
3, λ

3
3, λ

4
3

)
= (800, 835, 890, 980) ,

t33 = p3 =
(
p13, p

2
3, p

3
3, p

4
3

)
= (103, 105, 110, 120) ,

u33 = u3 =
(
u13, u

2
3, u

3
3, u

4
3

)
= (7.767, 7.952, 8.090, 8.166) .

The fuzzy interval gains are calculated as follows:

G1
12 = max

{
0, λ12p

1
1 − λ11p12

}
= max {0, 600 · 95− 550 · 125} = 0,

G2
12 = max

{
0, λ22p

2
1 − λ21p22

}
= max {0, 645 · 100− 590 · 130} = 0,

G3
12 = max

{
0, λ32p

3
1 − λ31p32

}
= max {0, 690 · 105− 640 · 135} = 0,

G4
12 = max

{
0, λ42p

4
1 − λ41p42

}
= max {0, 780 · 110− 730 · 150} = 0.

Hence, G12 =
(
G1

12, G
2
12, G

3
12, G

4
12

)
= (0, 0, 0, 0).

The other fuzzy interval gains can be calculated as
follows:

G21 = (11750, 12200, 13950, 19800),

G31 = (0, 0, 0, 0),

G13 = (19350, 21550, 23050, 25100),

G32 = (0, 0, 0, 0),

G23 = (38200, 40825, 44250, 53400).

Example Let N = {1, 2, 3} and the trapeziodal fuzzy
interval coalitional values are

U ({1}) = U ({2}) = U ({3}) ∈ (0, 0, 0, 0),

U ({1, 2}) =
∑
i∈2

∑
k∈1

Gki = G12 = (0, 0, 0, 0),

U ({2, 3}) =
∑
i∈3

∑
k∈2

Gki = G23

= (38200, 40825, 44250, 53400),

U ({1, 3}) =
∑
i∈1

∑
k∈3

Gki = G31 = (0, 0, 0, 0),

U(N) = (57550, 62375, 67300, 78500).

Now, we compute the fuzzy interval equal splitting
rule without constructing the game and by using co-
operative game theory. We find the fuzzy interval
equal splitting rule as follows:

FEGS1 = (9675, 10775, 11525, 12550) ,

FEGS2 = (19100, 20412.5, 22125, 26700) ,

FEGS3 = (28775, 3187.5, 33650, 39250) .

Thus, the fuzzy interval equal splitting rule calcu-
lated as:

FEGSi =
(
(9675, 10775, 11525, 12550) ,

(19100, 20412.5, 22125, 26700) ,

(28775, 3187.5, 33650, 39250)
)
.

Conclusions

This paper is the first to study these problems for
one-machine sequencing situations with fuzzy interval
data. In the literature, two issues associated with se-
quencing situations have been investigated. The first
one is to figure out the best sequence for agents in
the waiting line. The second one is to suggest fair al-
locations of the savings that an optimum order might
production, consequently operating agents to transfer
places in accordance with that order. We presented
two techniques to address these issues in such situ-
ations. Based on fuzzy interval urgency indices and
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fuzzy interval relaxation indices. However, these ap-
proaches have severe limits in applications as mainly
illustrated in Section 3. For dealing with situations
when neither strategy can be utilized alone, a com-
bined approach using both types of fuzzy interval in-
dices for determining an optimal order shows promis-
ing. Thus, one could find an optimal order by using,
for example, generalized fuzzy interval indices corre-
sponding to fuzzy interval relaxation indices based on
the relation between urgency indices and relaxation
indices determined by known fuzzy interval parame-
ters.

In this paper, we study one-machine sequencing sit-
uations by using fuzzy intervals. We present different
possible scenarios and extend classical results and well
known rules and on sequencing games to fuzzy in-
terval setting. Under the assumptions of one-machine
sequencing situations the FEGS-rule is introduced as
a solution concept. It is shown that fuzzy interval co-
operativegames are convex. Finally, in addition to our
theoretical results, a numerical example based on Pri-
ority Based Scheduling Algorithm is given.

This paper is novel and pioneering. For further re-
search, other Operations Research situations can be
extended by using fuzzy interval setting. We provide
this offer to the reader, particularly in outlook sec-
tion. Ellipsoidal calculus and probability theory for
uncertainty modeling and handling, dynamical sys-
tems and stochastic calculus for modeling the time
dependence of unfolded dynamic games, and strong
corresponding instruments such as suitable implicit
function theorems and novel algebraic geometries are
among the mathematical instruments to be employed
and partly even newly prepared. Our research should
be the basis for such efforts.
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