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Abstract
This paper uses a Genetic Algorithm (GA) to reduce total tardiness in an identical parallel
machine scheduling problem. The proposed GA is a crossover-free (vegetative reproduc-
tion) GA but used for four types of mutations (Two Genes Exchange mutation, Number of
Jobs mutation, Flip Ends mutation, and Flip Middle mutation) to make the required balance
between the exploration and exploitation functions of the crossover and mutation operators.
The results showed that use of these strategies positively affects the accuracy and robustness
of the proposed GA in minimizing the total tardiness. The results of the proposed GA are
compared to the mathematical model in terms of the time required to tackle the proposed
problem. The findings illustrate the ability of the propounded GA to acquire the results in a
short time compared to the mathematical model. On the other hand, increasing the number
of machines degraded the performance of the proposed GA.

Keywords
Identical parallel machines; Accurate and Robust Generic Algorithm; Immigration; Surrogate
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Introduction

Parallel machine scheduling (PMS) is one of the
active research areas in the industry. Typically, paral-
lel machines are classified with respect to processing
times as: identical machines, uniform machines, and
unrelated machines (Oktafiani & Ardiansyah, 2023).
Identical machines are basically when the processing
time of a job is the same on all machines. However,
processing times vary from one job to the next. Uni-
form machines show a consistent pattern among ma-
chines that is applicable to all jobs and the processing
times may vary proportionally. The fastest machine is
the same for all jobs, the second fastest machine is the
same for all jobs. Unrelated machines are character-
ized by the fact that there is no regular pattern among
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processing times and machines (Asadpour et al., 2022;
Najat et al., 2019; Wang et al., 2020). This paper fo-
cuses on the identical parallel machine scheduling.

In PMS, a group of similar machines is grouped
in a certain area to serve one or more of several ob-
jectives such as minimizing the total tardiness, num-
ber of tardy jobs, maximum tardiness, and flow time
(YounesSinaki, et al., 2022). Various methods includ-
ing metaheuristic, mathematical model, heuristic al-
gorithms and others were proposed in the literature to
schedule (n) jobs into (m) identical parallel machines
given different objectives such as minimization of the
total tardiness, number of tardy jobs, or maximum
tardiness and makespan (Almasarwah & Süer, 2021;
Kim & Kim 2021; Verma et al., 2021). One effective
method for tackling identical PMS is mathematical
modeling. However, for small-scale or basic situations,
these optimal solutions are only achievable in a rea-
sonable amount of time. The problem is no longer
ideally solved in polynomial time as the problem’s
complexity and/or size increase, as is the case in real-
world circumstances. As a result, metaheuristics such
as the genetic algorithm, tabu search and others are
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thought to be effective in generating high-quality so-
lution within reasonable time. On the other hand, the
most studied optimization criterion in the literature
is the minimization of the schedule’s maximum com-
pletion time, the criteria known as makespan (Vallada
et al., 2011).

This paper deals with the identical parallel ma-
chines scheduling problem noticed in the manufactur-
ing system areas. Typically, the identical PMS prob-
lem is a NP-hard problem, and it follows the class of
intensively studied combinatorial optimization prob-
lems, where it does not have exact solutions in poly-
nomial time (Mokotoff, 2004). In this regard, a genetic
algorithm that includes a fast local search and a lo-
cal search enhanced crossover operator among other
innovative features that, as we will see, result in a
state-of-the-art performance for this type of problems
and four different mutation strategies. However, the
identical PMS problem could be observed at different
manufacturing area such as, plastic container manu-
facturing (Muñoz-Villamizar et al., 2019), heat treat-
ment furnaces (Baykasoğlu & Ozsoydan, 2018), etc.

The remainder of this paper is as follows: the re-
lated literature is reviewed; the notations and assump-
tions utilized are illustrated; the proposed genetic al-
gorithm for PMS problem is introduced in detail; the
numerical experiments and results are explained, re-
spectively; and finally, the overall conclusion and fu-
ture research directions are stated.

Literature review

A genetic algorithm has been considered one of the
optimization methods for solving complex problem
(Guo et al., 2010). Many researchers have relied on
the genetic algorithm to schedule the jobs in iden-
tical parallel machines with the goal of minimizing
the total tardiness (e.g., Schaller, 2014; Shim, & Kim,
2007; Tan et al., 2019; Kim et al., 2020; Anghinolfi
et al., 2021; Juybari et al., 2021). Others, such as
Cheng, Gen, & Tozawa (1995) utilized the genetic al-
gorithm to schedule n jobs in the identical parallel
machines with an objective of minimizing the maxi-
mum weighted lateness. Some worked on minimizing
the maximum tardiness for different jobs in parallel
machines with dynamic arrivals time using the genetic
algorithm (Malve, & Uzsoy, 2007). To minimize the
number of tardy jobs, Ho, & Chang (1995) developed
two approaches (Job-Focused and Machine-Focused)
to schedule n jobs in m identical parallel machines
using genetic algorithm.

Different strategies such as initial population size,

crossover, mutation, immigration and selection,
should be taken into consideration when the GA is
applied to solve a problem (Mahjoob et al., 2022).
The initial population is the first step in GA de-
sign, and many methods can be used to create and
code the initial population. Cochran, Horng, & Fowler
(2003) explained two stages of multi-population ge-
netic algorithm to schedule jobs in parallel machines
and to implement multi-objective (i.e., Makespan, To-
tal weighted tardiness, and Total weighted completion
time). Chang, Chen, & Lin (2005) clarified the impor-
tance of using two phases of subpopulation genetic al-
gorithm to schedule jobs in parallel machines to solve
several objectives.

Typically, crossover and mutation along with selec-
tion are the main strategies to create the next genera-
tion, so they are considered the main strategies in ge-
netic operations. Many crossover strategies have been
developed in the literature. For example, partially
mapped crossover, cycle crossover, order crossover,
order-based crossover, position-based crossover, and
heuristic crossover are suggested by Larranaga, et al.
(1999). Further, they also suggested use of genetic
edge recombination crossover, sorted match crossover,
maximal preservative crossover, voting recombination
crossover, and alternating-position crossover. Other
researchers utilized two-point crossover mechanism as
crossover operator in their research (Chaudhry, &
Drake, 2009; Min, & Cheng, 1999). Schaller (2014)
used the uniform – order crossover, and Cheng
& Gen (1997) implemented preservation crossover
mechanism. Ramadan (2012) proposed the frequency
crossover as the crossover strategy in his research.

Mutation mechanism is the second strategy in ge-
netic operations, many strategies were suggested in
the literature for mutation. For instance, Ramadan
(2012) tested two groups of mutation. The first group
consists of (ends exchange mutation, group insertion
mutation, and reverse ends mutation, two genes ex-
change mutation) to implement exploration purpose.
In the second group, reverse ends exchange mutation,
reverse ends mutation, one position swap mutation,
and middle reverse mutation were used for exploita-
tion purpose. Others utilized swapping mutation as
mutation operator wherein two genes are selected ran-
domly and their content are swapped (Chaudhry, &
Drake, 2009; Kashan et al., 2008).

When designing GA, the designers have to keep in
their mind how to balance the search direction to the
optimal solution and the search speed. Immigration
and stop point strategies are usually added to the GA
optimization method to enhance and improve the re-
sults. Mensendiek, Gupta, & Herrmann (2015) ex-
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plained the importance of using immigration to avoid
premature convergence to local optimum. Essentially,
the ten worst chromosomes are replaced by ten new
chromosomes, which are created randomly. Immigra-
tion is applied when there is no improvement in the
generations due to the premature convergence to lo-
cal optimum. In addition, Balasubramanian, Mönch,
Fowler, & Pfund (2004) and Schaller (2014) defined
two stop points to finish the genetic algorithm based
on different assumptions. The first stop point is cre-
ated when the tardiness equals zero. The second stop
point accrues when the time limit is finished.

Finally, the last stage in the GA is the selection
stage. Different methods have been approached in lit-
erature to create the next generation. Chang, Chen,
& Lin (2005) applied the elitist strategy to determine
the best individual (Chromosome) in each objective.
Also, Cheng & Huang (2017) relied on the elitist strat-
egy to create the next generation based on the top
10% of paternal chromosomes with the best offspring
chromosomes. While the Mir & Rezaeian (2016) uti-
lized two selection methods to create the new genera-
tion roulette wheel selection method and tournament
selection procedure. Moreover, the chromosomes with
the highest fitness values receive the highest probabil-
ity of creating the next generation. Several methods
are used to calculate the fitness value. They developed
an equation to find the fitness value based on the ob-
jective function. However, in their research, two types
of fitness functions, a surrogate fitness function and an
actual fitness function, are implemented to calculate
the fitness value.

To the best of our knowledge, there are a limited
number of studies that have considered the identical
parallel machines scheduling problem with details of
minimizing the total tardiness with a large number
of machines. In this study, total tardiness is consid-
ered to be tackled and a genetic algorithm is pro-
posed. The expanded initial population strategy along
with crossover-free strategy (vegetative reproduction
technique) were used. Further, four mutation strate-
gies were implemented beside the immigration and eli-
tist selection strategy to minimize the total tardiness
for n jobs in m identical parallel machines. The pro-
posed GA will be tested using 13 standard problems
found in Tanaka & Araki (2008).

Notations and assumptions

Herein, the assumptions and notations used in this
work are listed. Figure 1 shows the general PMS prob-
lem where jobs have to be scheduled on machines.

Fig. 1. Schematic diagram for PMS problem

Throughout this paper, the following notations are
used:
1. n: number of jobs.
2. m: number of machines.
3. n/m PMS problem: a jobs and machines parallel

machine scheduling problem.
4. TT : Total tardiness.
5. nT : Total number of tardy jobs.
6. k: Index for machine number and index for se-

quence number as each machine has a correspond-
ing sequence.

7. i: Index for the job in its sequence on the machine.
8. j: Index for the job name in the jobs set.
9. Sik: The start time for job i on machine k.
10. Pik: The processing time for job i on machine k.
11. dik: The due date for job on machine k.
12. ξik: The i-th gene on the k-th row of the chromo-

some.
13. dξik : The due date for the job corresponding to the

gene ξik.
14. Sξik : The start time for the job corresponding to

the gene ξik.
15. Pξik : The processing time for the job correspond-

ing to the gene ξik.
16. nk: Number of jobs in sequence k.
17. PopSize: Population size.
18. E[Nu off]: The expected number of offspring gen-

erated in each generation.
The n/m PMS problem is concerned about schedul-

ing jobs on machines such that the TT is minimized.
The TT can be calculated as:

TT =

m∑
k=1

∑
∀i : dik<(Sik+Pik)

(Sik + Pik − dik) (1)

The following assumptions are made in this paper:
1. Independent Jobs.
2. Each job has a single operation.
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3. The process times include the corresponding set-
up times, and the set-up times are independent of
the sequence.

4. Machines are identical and have 100% availability
and utilization while jobs are waiting.

5. No preemption, no cancelation and no priority for
jobs are allowed.

6. All of the jobs are available at time zero.
7. The problem is static and deterministic.
8. The propounded GA is formulated and modeled

using MATLAB software program.

The proposed genetic algorithm
for PMS problem

Chromosome representation

The chromosome consists of m rows, one row for
each machine, and n − (m − 1) genes in each row to
enforce that at least one job will be processed on each
machine. In this representation, gene ξik = j means
that the ith job on the kth machine is job j. Hence,
each gene carries three pieces of information: the po-
sition of the gene represents both the machine num-
ber and the sequence of the job on the machine while
the value of the gene represents the job number. This
representation ensures the feasibility of the offspring,
hence; avoid the repair actions to the offspring. To il-
lustrate the Chromosome representation, consider the
data for 7/3 PMS problem in Table 1.

Table 1
Illustrative example data

Job pi di

1 4 12

2 6 10

3 3 8

4 12 15

5 10 22

6 7 15

7 2 6

The table displays processing times (pi) and due
dates (di) for seven jobs. As an illustration, Job 1
has a processing time of 4 and a due date of 12. The
notation “7/3 PMS” signifies that seven jobs will be
processed on three machines. Additionally, the chro-
mosome is structured with three rows (m = 3), and
each row contains 5 genes determined by the formula
n− (m− 1) = 7 − (3 − 1). Figure 2 provides a visual

representation of a possible chromosome correspond-
ing to the information in Table 1.

3 1 6 0 0

7 5 0 0 0

2 4 0 0 0

Fig. 2. Feasible chromosome for the 7/3 PMS problem
in Table 1

The phenotype can be readily extracted from the
genotype in this representation. For instance, if gene
ξ22 equals 5, it indicates that job 5 will be the second
to be processed on machine 2. On the other hand, if
ξ14 equals 0, it signifies that no jobs will be processed
in slot 4 or beyond for machine 1.

Fitness function

Two fitness functions are used in this work. A sur-
rogate fitness function is used in the first 100 gener-
ations and the actual fitness function is used for the
rest of the runs. The surrogate fitness function is the
total number of tardy jobs nT while the actual fitness
function is the total tardiness TT . The purpose of the
surrogate fitness function is to locate the promising
regions for the rest of the generation as, from au-
thors experience, finding the minimum nT is easier
than finding the minimum TT and often the solution
(Schedule) at the minimum is close to the solution at
the minimum TT .

The surrogate fitness function is:

TT =

m∑
k=1

∑
dξik<(Sξik+Pξik)
i=1:n−(m−1)

i (2)

and the actual fitness function is

TT =

m∑
k=1

∑
dξik<(Sξik+Pξik)
i=1:n−(m−1)

(Sξik + Pξik − dξik) (3)

where Sξik , Pξik and dξik are the start time, processing
time, and due date for the job represented by gene ξik.

The surrogate fitness function value for the chro-
mosome in Figure 2 is:

nT =

3∑
k=1

∑
dξik<(Sξik+Pξik)

i=1:5

i = (0) + (0) + (1) = 1
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while the actual fitness function value is

TT =

3∑
k=1

∑
dξik<(Sξik+Pξik)

i=1:5

(Sik + Pik − dik)

= (0) + (0) + (3) = 3

Initial population

An expanded initial population strategy was
adopted in this work. In this strategy, the initial popu-
lation size was the population size PopSize multiplied
by a factor of c. The jobs were assigned to the ma-
chines randomly such that at least one job is assigned
for each machine.

Mutation

In this study, a crossover-free Genetic Algorithm
(GA) was employed, exclusively utilizing mutation
to generate offspring from a single parent. This
crossover-free approach emulates vegetative reproduc-
tion observed in plants. Each selected chromosome un-
derwent mutation with four distinct types:
1. Two Genes Exchange Mutation: This mutation

type exclusively affects two genes within the same
machine sequence, similarly to traditional muta-
tions. It induces a limited change in the chromo-
some, primarily serving exploitation purposes.

2. Number of Jobs Mutation: This mutation alters
the number of jobs in the machine sequence, con-
sequently impacting two machines’ sequences.

3. Flip Ends Mutation: This mutation involves flip-
ping the ends of sequences in the machines.

4. Flip Middle Mutation: This mutation entails flip-
ping the middle of sequences in the machines.

These four mutation types collectively serve the
roles of both traditional mutation and crossover.
Two Genes Exchange Mutation, resembling tradi-
tional mutation, generates subtle changes for exploita-
tion. On the other hand, the remaining three mu-
tations, by introducing more significant disturbances
in the chromosome, function similarly to crossovers,
playing a role in exploration.

A noteworthy advantage of these mutation types
lies in their consistent production of feasible offspring,
eliminating the need for post-mutation adjustments
commonly required in crossovers or other mutation
approaches.

Figure 3 shows a schematic diagram of the Two
Genes Exchange mutation. In this mutation, two ran-
dom genes were selected from a randomly selected se-
quence and switched. It should be noticed here that
the resulting offspring is always feasible.

3 1 6 0 0

7 5 0 0 0

2 4 0 0 0

Parent

6 1 3 0 0

7 5 0 0 0

2 4 0 0 0

Offspring

Fig. 3. Schematic diagram for Two Genes Exchange
mutation

Figure 4 shows a schematic diagram of the Number
of Jobs mutation. In this mutation, the machine se-
quence with the largest tardiness is selected and the
last job in that sequence is removed and added after
the last job in the sequence with the lowest tardiness
providing that the minimum of one job per machine
constraint is conserved. Ties are broken arbitrary. In
Figure 4, the tardiness for the three sequences in the
parent chromosome are [0 0 3] respectively. Therefore,
Job 4 will be removed from sequence 3 and added af-
ter Job 6 in sequence 1 to form the offspring. The
main function of this type of mutation is to balance
out the load on the machines.

3 1 6 0 0

7 5 0 0 0

2 4 0 0 0

Parent

3 1 6 4 0

7 5 0 0 0

2 0 0 0 0

Offspring

Fig. 4. Schematic diagram for Number of Jobs mutation

Figure 5 shows a schematic diagram for the Flip
Ends mutation for 13/3 PMS problem. In this muta-
tion, one of the sequences is chosen at random and
then two random numbers, less than or equal to the
number of jobs in that sequence, are generated. The
jobs between 1 and the smallest number will be flipped
and the jobs between the largest number and will be
flipped also. For this case, the sequence of Machine 1
is selected, and the two random numbers are 3 and 6.

3 1 2 9 4 11 10 0 0 0 0

5 6 0 0 0 0 0 0 0 0 0

8 7 12 13 0 0 0 0 0 0 0

Parent

2 1 3 9 4 10 11 0 0 0 0

5 6 0 0 0 0 0 0 0 0 0

8 7 12 13 0 0 0 0 0 0 0

Offspring

Fig. 5. Schematic diagram for Flip Ends mutation
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Figure 6 shows a schematic diagram for the Flip
Middle mutation for 13/3 PMS problem. In this mu-
tation, one of the sequences is chosen at random and
then two random numbers, less than or equal to the
number of jobs in that sequence nk, are generated.
The jobs between (and including) the smallest num-
ber and the largest number will be flipped. For this
case, the sequence of Machine 1 is selected, and the
two random numbers are 3 and 6.

3 1 2 9 4 11 10 0 0 0 0

5 6 0 0 0 0 0 0 0 0 0

8 7 12 13 0 0 0 0 0 0 0

Parent

3 1 11 4 9 2 10 0 0 0 0

5 6 0 0 0 0 0 0 0 0 0

8 7 12 13 0 0 0 0 0 0 0

Offspring

Fig. 6. Schematic diagram for Flip Middle mutation

It should be noticed here that all of the four muta-
tion types are designed such that a feasible offspring
is generated when using them. Therefore, there is no
need for any type of repair for the offspring as repairs
consume computational time. Figure 7 shows the gen-
eral framework for the proposed GA.

Fig. 7. The framework of the proposed GA

In this GA, a 25% mutation rate is adopted. This
means that E[Nu off] is the same as as PopSize:

E[Nu off] = PopSize× 0.25 × 4 = PopSize (4)

Immigration

This strategy was important in this GA as it helped
in reducing the effect of premature convergence, there-
fore helping the GA to reach the optimal solution
many times. The immigration operator in this GA
simply replaced the entire population with a fresh ran-
dom population if 250 generations elapsed before any
improvement on the fitness value was achieved.

Selection

The Elitist selection strategy was adopted in this
work. Under this strategy, all the parents and the
offspring competed according to their fitness values,
both in the surrogate fitness function stage and in the
actual fitness function stage, and the best PopSize
chromosomes, corresponding to the minimum fitness
values, were selected to be the parents of the next
generation.

Experimentations

Thirteen benchmark instances from Tanaka &
Araki (2008) were considered for experimentation as
in Table 2. The data given in these problems include

Table 2
The 13 benchmark instances used in the experimentation

Problem Number
of jobs

Number of
machines

Optimal
value

20_02_02_02_001 20 2 147

20_02_02_02_002 20 2 102

20_02_02_02_003 20 2 152

20_02_02_06_001 20 2 0

20_02_10_10_005 20 2 1513

20_05_02_02_001 20 5 149

20_05_02_02_002 20 5 111

20_10_02_02_001 20 10 195

20_10_10_10_005 20 10 739

25_02_02_02_001 25 2 163

25_05_02_02_001 25 5 153

25_10_02_02_001 25 10 174

25_10_10_10_005 25 10 1202
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Table 3
The results obtained by the GA, the average fitness value, the standard deviation, and the number of times

Problem Average
TT

Standard
deviation for

TT

Number of
times optimal
value found

Average time
to the best
solution (s)

Average
number of
generations

% Average
deviation

from optimal

20_02_02_02_001 147 0 100 53.7 4133.6 0.0%

20_02_02_02_002 102 0 100 2.1 160.4 0.0%

20_02_02_02_003 152 0 100 8.1 624.8 0.0%

20_02_02_06_001 0 0 100 2.3 180.1 0.0%

20_02_10_10_005 1517.6 2.5 16 273.1 20952 0.3%

20_05_02_02_001 151.5 2.7 44 248.8 8070.7 1.7%

20_05_02_02_002 111 0 100 90.0 2912.6 0.0%

20_10_02_02_001 199.9 2.5 4 286.9 4559.0 2.5%

20_10_10_10_005 739 0 100 12.7 201.6 0.0%

25_02_02_02_001 163 0 100 9.5 713.2 0.0%

25_05_02_02_001 160.4 3.17 3 297.2 9738.9 4.8%

25_10_02_02_001 198.7 4.7 0 280.9 4394.1 14.2%

25_10_10_10_005 1235.5 7.83 0 294.0 4600.4 2.8%

number of jobs, number of machines, processing time,
and due date. Each instance was solved 100 times, and
the TT value was recorded each time. The average, the
standard deviation, the number of times the GA was
able to find the optimal solution and the percentage
of the average deviation from the optimal value along
with the average time and average generation number
were recorded in Table 3.

Column 7 of Table 3 shows the percentage of the
deviation between the average TT and the optimal
TT. One can see that the proposed GA gave accurate
results. In all the 13 instances, the GA was able to
provide solutions with a percentage of the deviation
between the average TT and the optimal TT of less
than 5% except for one instance, 25_10_02_02_001.
In fact, in 7 instances out of the 13 instances the GA
was able to find the exact optimal value consistently.
Moreover, the table showed that the GA was robust
as the standard deviations in column 3 were small. In
fact, 7 out of the 13 instances had zero standard de-
viation, which means that in each replication of these
instances, the GA was able to reach the same TT
value. Furthermore, the maximum time average for
the 13 instances was less than 5 minutes with an over-
all average of 2.3 minutes which indicates that this GA
was efficient in terms of computational time. Table 3
also displays the average number of generations for
the reader’s convenience.

The optimal solutions found for the different in-
stances are shown in Table 4. One should notice here

that there may be alternative optimal for each in-
stance and hence these optimal solutions may vary
from one run to another, but their corresponding op-
timal values are the same. The proposed GA was able
to find the optimal TT for 10 out of the 13 instances.

The worst result among the 13 instances was for
instance 25_10_02_02_001 where the average TT
found was about 14% more than the optimal one. The
accuracy of the GA was measured by the deviation be-
tween the average fitness value and the optimal value.
The robustness of the GA was measured by the stan-
dard deviation of the TT values. Finally, six tests of
hypothesis were performed to test the claims about
the effectiveness of the immigration, surrogate fitness
function, and the expanded initial population sets of
strategies used in the proposed GA.

Immigration operator effect on GA
performance testing

The first two tests of hypotheses were designed to
see if the immigration operator improved the perfor-
mance of the GA or not in terms of accuracy and ro-
bustness. To do so, the problem 25_10_02_02_001
which is the one with the worst GA performance, was
selected. The problem was solved again 100 times with
the same GA setup used to construct Table 3 except
that the immigration operator was eliminated. The
average optimal value found was 215.0 with a stan-
dard deviation of 14.5.
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Table 4
Optimal solutions found for the different problems

Problem Optimal solution

20_02_02_02_001 M1: 13 10 1 6 2 19 14 5 11 20 18
M2: 8 3 15 16 7 17 12 9 4

20_02_02_02_002 M1: 12 4 11 9 20 6 16 3 10 15
M2: 14 7 17 5 19 1 18 13 8 2

20_02_02_02_003 M1: 13 17 18 12 1 2 14 11 3 4
M2: 19 15 9 10 16 5 8 7 6 20

20_02_02_06_001 M1: 14 12 2 5 8 19 11 15 4
M2: 6 3 7 10 1 13 16 17 9 20 18

20_02_10_10_005 M1: 15 2 3 8 16 18 20 19 9
M2: 6 1 4 11 13 17 12 10 7 14 5

20_05_02_02_001

M1: 17 13 15 9
M2: 5 7 14 18
M3: 16 19 11 20
M4: 2 8 10 4
M5: 1 3 6 12

20_05_02_02_002

M1: 17 9 7 2
M2: 5 18 8 14
M3: 20 12 6 16 4
M4: 10 19 3
M5: 1 13 11 15

20_10_02_02_001 Not Found

20_10_10_10_005

M1: 18 19
M2: 16 9
M3: 6 17 14
M4: 8 20
M5: 12 2
M6: 5
M7: 3 1
M8: 15
M9: 13 11
M10: 4 10 7

25_02_02_02_001
M1: 3 25 12 24 18 9 23 10 6 20 17
13 15
M2: 2 14 21 16 19 1 22 11 5 8 7 4

25_05_02_02_001

M1: 3 18 2 7 25
M2: 24 9 1 15
M3: 16 20 17 19 23
M4: 5 11 12 22 13
M5: 14 6 10 21 8 4

25_10_02_02_001 Not Found

25_10_10_10_005 Not Found

Figure 8 displays the normality probability plot il-
lustrating the outcomes from 100 replicates. The ob-
tained p-value is 0.59, which is less than the signifi-
cance level of 0.05, suggesting that the optimal results
across the 100 replicates adhere to a normal distribu-
tion.

Fig. 8. Normality probability plot for the 100 optimal
values

The following set of hypotheses were tested:
H01: The average TT value found with immigration

operator is the same as the average TT found without
immigration factor; hence immigration factor did not
improve the accuracy of the GA.

H11: The average TT found with immigration op-
erator is less than the average TT found without im-
migration operator; hence immigration operator im-
proved the accuracy of the GA.

The t-test for the difference between two means
showed that the p-value is 0.000, which allows us to
reject H01 and accept H11, i.e., accept that the im-
migration operator improved the accuracy of the GA.

H02: The standard deviation for the fitness values
found for the 100 replications with immigration oper-
ator is the same as the standard deviation for the fit-
ness values found for the 100 replications without im-
migration operator; hence immigration operator did
not improve the robustness of the GA.

H12: The standard deviation for the fitness values
found for the 100 replications with immigration oper-
ator is less than the standard deviation for the fitness
values found for the 100 replications without immigra-
tion operator; hence immigration operator improved
the robustness of the GA.

The F-test of equality of two variances showed that
the p-value is 0.000, which allows us to reject H02 and
accept H12, i.e., accept that the immigration operator
improved the robustness of the GA.

Surrogate fitness effect on GA performance
testing

The second set of hypotheses were designed to see if
the use of the surrogate fitness function improved the
performance of the GA or not in terms of accuracy and
robustness. To do so, the problem 25_10_02_02_001
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was solved again 100 times with the same GA setup
used to construct Table 3 except that the surrogate
fitness function was not used. The average optimal
value found was 204.9 with a standard deviation of
6.6. The following two sets of hypotheses were tested:

H03: The average TT value found with the use of
the surrogate fitness function is the same as the aver-
age TT value found without the use of the surrogate
fitness function; hence surrogate fitness function did
not improve the accuracy of the GA.

H13: The average TT value found with the use of
the surrogate fitness function is less than the aver-
age TT value found without the use of the surrogate
fitness function; hence surrogate fitness function im-
proved the accuracy of the GA.

The t-test for the difference between two means re-
sults showed that the p-value is 0.000 which allows
us to reject H03 and accept H13, i.e., accept that the
surrogate fitness function improved the accuracy of
the GA.

H04: The standard deviation for the TT values
found with the use of the surrogate fitness function is
the same as the standard deviation for the TT values
found without the use of the surrogate fitness func-
tion; hence the use of the surrogate fitness function
did not improve the robustness of the GA.

H14: The standard deviation for the TT values
found with the use of the surrogate fitness function
is less than the standard deviation for the TT values
found without the use of the surrogate fitness func-
tion; hence the use of the surrogate fitness function
improved the robustness of the GA.

The F-test for the equality of two variances showed
that the p-value is 0.000, which allows us to reject
H04 and accept H14, i.e., accept that the use of the
surrogate fitness function improved the robustness of
the GA.

The expanded initial population effect on GA per-
formance testing.

H05: The average value TT found with the ex-
panded initial population is the same as the average
TT found without the expanded initial population;
hence the expanded initial population did not improve
the accuracy of the GA.

H15: The average TT found with the expanded ini-
tial population is less than the average TT found
without the expanded initial population; hence the
expanded initial population improved the accuracy of
the GA.

The t-test for the difference between two means
showed that the p-value is 0.000, which allows us to
reject H05 and accept H15, i.e., accept that the ex-
panded initial population improved the accuracy of
the GA.

H06: The standard deviation for the TT values
found with the use of the expanded initial popula-
tion is the same as the standard deviation for the TT
values found without the use of the expanded initial
population hence the use of the expanded initial pop-
ulation did not improve the robustness of the GA.

H16: The standard deviation for the TT values
found with the use of the expanded initial population
is less than the standard deviation for the TT values
found without the use of the expanded initial popula-
tion; hence the use of the expanded initial population
improved the robustness of the GA.

The F-test for the equality of two variances results
showed that the p-value is 0.000, which allows us to
reject H06 and accept H16, i.e., accept that the use of
the expanded initial population improved the robust-
ness of the GA.

The test of hypothesis that was performed to test
the accuracy and robustness of the three strategies,
i.e., immigration, surrogate fitness function, and the
expanded initial population, showed a p-value of 0.00
for all of the tests. This result showed that it is im-
portant to make use of the three strategies to improve
the robustness and the accuracy of the proposed GA.

Balancing time and quality

Several studies have been proposed in the litera-
ture to solve the identical parallel machine schedul-
ing problem to minimizing the total tardiness us-
ing the mathematical model (Biskup et al., 2008).
Mathematical modeling is a powerful problem-solving
tool. However, these optimal solutions are only attain-
able within a tolerable time for simple or small-scale
problems. As the problem complexity and/or size in-
creases, as found in real-life scenarios, the problem is
no longer optimally solved in polynomial time.

One of the essential features that could be consid-
ered during experiments with genetic algorithm and
mathematical models is the tradeoff between the solu-
tions and the time needed to acquire solutions. It has
been observed that the genetic algorithm could obtain
the near optimal solutions or duplicate the results of
the mathematical model in a short time. Meanwhile,
the mathematical model takes longer to obtain the
optimal solutions. In this regard, the time to obtain
the optimal solution in the mathematical model was
considered to make a fair comparison between the re-
sults of the mathematical and genetic algorithm. The
results tabulated in Table 5, compares the solutions
time for the mathematical model and genetic algo-
rithm. The results show the ability of the genetic al-
gorithm to obtain the near optimal solution or dupli-
cate the results of the mathematical model in short
time compared to the mathematical model.
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Table 5
Comparison of the results of the mathematical model and
genetic algorithm in terms of the total tardiness and the

time value to obtain the results

Problem

Mathematical
model results

Proposed GA

Total
tardiness

Time
(second)

Total
tardiness

Time
(second)

20-02-02-02-001 147 67.2 147 53.7

20-02-02-02-002 102 20.43 102 2.1

20-02-02-02-003 152 50.46 152 8.1

20-02-02-06-001 0 19.63 0 2.3

20-02-10-10-005 1513 285 1517.6 273.1

20-05-02-02-001 149 348.1 151.5 248.8

20-05-02-02-002 111 134.74 111 90

20-10-02-02-001 195 379.35 199.9 286.9

20-10-10-10-005 739 62.05 739 12.7

25-02-02-02-001 163 30.03 163 9.5

25-05-02-02-001 153 541.85 160.4 297.2

25-10-02-02-001 174 651.91 198.7 280.9

25-10-10-10-005 1202 646 1235.5 294

Results

The proposed GA was tested using the benchmark
instances for PMP as given in Table 3. As shown
in Figure 9, the proposed GA can find the optimal
solution for seven problems out of 13 problems. In

this case, the system is capable of finding the solution
to 53.85% of problems.
1. Comparison the Total Tardiness Value for the

Optimal Value with the Average TT Using Pro-
posed GA.

2. Comparison the Number of Machines and % Av-
erage Deviation from Optimal

On the other hand, the number of machines was
found to be the main factor that affects the perfor-
mance of the proposed GA. In this regard, increas-
ing the number of machines were found to reduce the
system performance. Therefore, the system was inca-
pable of finding the optimal solution when the number
of machines increases. For example, in problem nine,
25 jobs are assigned to be processed on 10 machines.
In this case, the percentage of Average Deviation from
Optimal equals to 14.2%, and it represents the worst
case compared to the other cases where the percent-
age of Average Deviation from Optimal is less than
5% as shown in Figure 10.

To test the accuracy and robustness of the pro-
posed genetic algorithm for minimizing the total tar-
diness, two tests of hypothesis (t-test and F-test)
were implemented to examine the performance of the
three strategies (immigration, surrogate fitness func-
tion, and the expanded initial population) which were
developed in the proposed GA at p-value 0.00. The t-
test was applied to check the ability of the suggested
strategy to improve the accuracy of the proposed GA.
While the F-test is implemented to test the impor-
tance of implementing the strategy on the robust-
ness of the proposed GA. The results showed the im-
portance of applying the three strategies to improve
the accuracy and robustness of the proposed GA.
To summarize, it is important to employ the three

Fig. 9. Comparison the Total Tardiness Value for the Optimal Value with the Average TT Using Proposed GA
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Fig. 10. Comparison the Number of Machinesand % Average Deviation from Optimal

sets of strategies (immigration, surrogate fitness func-
tion and the expanded initial population) to enhance
and improve the accuracy and robustness of the pro-
posed GA.

Conclusions

A proposed GA is developed in this research for
minimizing the total tardiness for jobs in identical
parallel machines. The proposed algorithm considered
three strategies, expanded initial population, surro-
gate fitness function and immigration. Next, the effect
of immigration, surrogate fitness function, and the ex-
panded initial population strategies on improving the
robustness and the accuracy of the proposed GA were
tested. The obtained results led to conclude that us-
ing these strategies improve the accuracy and robust-
ness of the GA to schedule the jobs in the identical
parallel machines under the objective of minimizing
the total tardiness. Moreover, the system performance
was found to depend on the number of machines in
the system with indirect relation. Increasing the num-
ber of machines reduced the accuracy and robustness
of the proposed GA. On the other hand, minimizing
the total tardiness in the systems would improve the
customer satisfaction level; thus, this creates an envi-
ronmentally friendly system.

Even of the benefits provided by the genetic algo-
rithm in solving a large part of problem, where the
near-optimal solutions are obtained, coding the fit-
ness function to achieve a higher fitness and gener-
ate better solutions or the near-optimal solution for

a given problem is a significant challenge/limitation.
Additionally, the efficacy of the propounded heuristic
decreases as the number of machines and jobs in the
manufacturing systems increases. For future research,
it is recommended to consider the unrelated and uni-
form parallel machine scheduling problem and develop
an algorithm to minimize the total energy consump-
tion in a green parallel machine. The uncertainty in
the processing time and demand for jobs in machines
should also be taken into consideration. The setup
and the maintenance times for the machines could be
considered.
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