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Abstract. Federated Learning is an upcoming concept used widely in distributed machine learning. Federated learning (FL) allows a large
number of users to learn a single machine learning model together while the training data is stored on individual user devices. Nonetheless,
federated learning lessens threats to data privacy. Based on iterative model averaging, our study suggests a feasible technique for the federated
learning of deep networks with improved security and privacy. We also undertake a thorough empirical evaluation while taking various FL
frameworks and averaging algorithms into consideration. Secure Multi Party Computation, Secure Aggregation, and Differential Privacy are
implemented to improve the security and privacy in a federated learning environment. In spite of advancements, concerns over privacy remain
in FL, as the weights or parameters of a trained model may reveal private information about the data used for training. Our work demonstrates
that FL can be prone to label-flipping attack and a novel method to prevent label-flipping attack has been proposed. We compare standard
federated model aggregation and optimization methods, FedAvg and FedProx using benchmark data sets. Experiments are implemented in two
different FL frameworks - Flower and PySyft and the results are analysed. Our experiments confirm that classification accuracy increases in
FL framework over a centralized model and the model performance is better after adding all the security and privacy algorithms. Our work has
proved that deep learning models perform well in FL and also is secure.
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1. INTRODUCTION

Exponential development of machine learning (ML) and
artificial intelligence have made voluminous innovation in
several fields like smart cities, healthcare, aviation, agriculture.
A huge volume of data is collected and processed every
second by various applications. Traditional machine learning
algorithms collect data from all devices like sensors and
aggregate it for processing. However, as the development
becomes prominent, certain challenges arise when handling
big data. Difficulties such as limited infrastructure, poor
network connection, bandwidth, compromised privacy [1]
and security have been posing challenges for traditional ML
model to handle huge volumes of data. Traditional ML
model owners/developers also face challenges in collecting
user’s private and personal data as they possess sensitive
information and must adhere to rules like General Data
Protection Regulation (GDPR) and Personal Data Protection
Act (PDPA). These limitations are making researchers and
developers shift to decentralized machine learning framework.
Federated learning (FL) is an evolving decentralized machine
learning model. FL allows multiple clients/data owners to
train data locally across devices, such as mobile phones and
edge nodes instead of aggregating all the data in a central
server. To update the global model, a central server receives
just the model updates. The model update happens in multiple
iterations. FL is beneficial in situations when data privacy is
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important, or where collecting and transmitting large amounts
of data is infeasible [2].

FL [3] [4] provides privacy and security as data is not
leaving the device and enhances efficiency as training across
multiple devices happens parallelly. All these features
have made FL to be adopted in many applications like
medical data diagnosis and mobile next word prediction.
Though FL enhances security and privacy still it is prone to
cyber-attacks [5]. There is no centrailized control over the
participating devices and hence the participating devices can
behave maliciously. Due to this FL is prone to adverse machine
learning attacks like poisoning attacks. Bearing in mind, the
recent advancement in cyber attacks and data breaches over
various phases of data processing, our work FedAssess focuses
on utilising the benefits of Federated learning in a multi user
setup for maintaining data privacy during data analysis. The
major contributions of our proposed work are:

• We propose a distributed and collaborative architecture that
enables data owners to share private data for analysis while
conserving privacy.

• Conducted extensive experiments to compare various FL
frameworks.

• Preserving privacy and security algorithms in FL are
demonstrated.

• Provided novel strategy to mitigate label flipping attacks in
FL.

The paper is organized as follows: Section 2 details the
Background required for this paper. Literature Review and
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Gaps Identified is given in Section 3. The algorithm of
the proposed work, the security algorithms and optimization
algorithms implemented in the paper is explained in Section
4. Data set description and the CNN architecture used for
implementation is demonstrated in Section 5. Threat Analysis
for the implementation carried out against label-flipping attack
and proposed strategy for mitigation against label-flipping
attack is detailed in Section 6. Performance analysis of the
work based on various evaluation metrics is discussed Section
7. Conclusion is given in Section 8.

2. BACKGROUND

A. Cloud-Edge Computing

Communication and computational issues develop when
relying solely on a centralized cloud server for data processing.
Edge computing (EC) can compliment cloud servers to
leverage the advantages of cloud computing. In edge
computing, the processing is done in the edge devices like IoT
sensors or in edge servers and only the results or meta-data
of the processing is sent to cloud servers. The cloud-edge
architecture is a distributed system, comparable to federated
learning. Ongoing research has started integrating edge
computing with federated learning to improve the efficiency
and security of data processing. The challenges and methods
for federated-edge deployment is discussed in the article by
Guanming Bao and Ping Guo [6].

B. Federated Learning

Federated learning environment can be used in a scenario
where multiple and distributed data owners/devices want to
jointly train a model without exchanging data like in IoT or
healthcare environments. This ensures the privacy because the
data stays local. The devices that have the data act as the client.
If there are N clients C1, C2, . . . .CN , then the local models
M1,M2,M3,...MN gets trained in the client end over the data
D1, D2,..DN . After the training process, the update from each
local model is sent to the server. The server aggregates the
updates to create a global model. The process can be defined
as

Mglobal = FN(M1,M2, . . . ,MN) (1)

where FN represents the aggregation algorithms. Thus,
we complete a single iteration of federated learning and
disseminate the global model to each client device for further
local training. The specific number of rounds is typically
chosen by the model’s performance, meaning that we continue
the procedure until the model can attain the desired level of
accuracy. Furthermore, in order to enhance privacy protection,
clients have the choice to apply encryption techniques to the
models prior to uploading them. Differential privacy (DP) [7]
and homomorphic encryption (HE) [8] are often employed
strategies to ensure security in federated learning (FL). The
effectiveness of federated learning is primarily determined
by the aggregation technique employed on the server side.
The primary objective of federated learning is to optimize
the objective function. In conventional deep learning model

training, for a training dataset containing n samples (xi,yi) ,1≤
i≤ n, the training objective is:

min
w∈Rd

f (w) where f (w) def
=

1
n

n

∑
i=1

fi(w) (2)

fi(w) = l (xi,yi,w) is the loss of the prediction on example
(xi,yi). Using SGD [9] optimization, the weight is updated
with the following formula

wt+1← wt −η∇ f (wt ;xk,yk) (3)

where η is the learning rate and ∇ f (wt ;xk,yk) is the loss
function derivative w.r.t weight. In federated learning setup,
Suppose n training samples are distributed to K clients, where
Pk is the set of indices of data points on client k, and nk = |Pk|,
the training objective would be minw∈Rd f (w)

f (w) =
K

∑
k=1

nk

n
Fk(w) where (4)

Fk(w)
def
=

1
nk

∑
i∈Pk

fi(w) (5)

C. Attacks in Federated Learning

FL is protected against a wide range of attacks using defence
mechanisms, which reduce the likelihood of hazards. Because
data access is impossible, most of these defences avoid model
corruption by guaranteeing that the model has trained to realise
the underlying statistical distribution of the actual training
data. That does not rule out the possibility of fraudulent
data or updates being used to train the model. [10] [11]
Backdoor attack: The objective of backdoor attacks [12]
[13] is to modify a section of training data by adding
adversarial triggers so that Deep Neural Network models
provide inaccurate predictions when the same trigger occurs
on the test set.
Gradients attack: A gradient attack in federated learning is a
sort of adversarial assault in which a malicious client delivers
corrupted or modified model updates (gradients) to the central
server. This attack aims to damage the integrity and precision
of the global model by injecting biassed or incorrect updates
that can mislead it during training.
Model poison attack: Poison attacks [14] [15] aim to get
the FL model to output the target label that the enemy has
provided. Authors in [16] used a data poison attack, for
instance, by switching the labels of training data from one class
to another during the local training phase in order to deceive
the output of the global model. Such type of poisoning attack
is known as "Label Flipping Attack".
The objective of an "Untargeted Poisoning Attack" [17] is
to produce corrupted local model updates that can be injected
into the system, rendering the learned parameters of the global
model effectively futile. Methods like differential privacy and
zero knowledge proof [18] provide mitigation to few of the
above mentioned attacks.
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D. Federated Learning Frameworks

Various frameworks like PySyft [19] and Flower [20],
are available for implementing Federated Learning. The
fundamental features of a federated learning framework are
client-side training, server-side aggregation, and, notably,
communication. Furthermore, it is imperative to have a
local simulation mode. However, the frameworks might
vary significantly in other aspects such as scalability,
user-friendliness, security techniques, AI algorithms, and
more. Table 1 compares the frameworks PySyft, Flower and
FATE.

3. RELATED WORK

The authors of the study titled "Machine Learning with
Adversaries: Byzantine Tolerant Gradient Descent" [21]
discuss the issue of guaranteeing the dependability of gradient
descent algorithms when confronted with the presence of
malevolent or Byzantine nodes. The deliberate manipulation
of gradients by these nodes might undermine the efficacy
of distributed machine learning systems, hence affecting the
learning process. The authors propose technique (multi-Krum
or MKrum) to make gradient descent resilient against
Byzantine adversaries. The primary emphasis of this paper
lies in the theoretical and algorithmic dimensions of Byzantine
tolerance. However, it does not extensively explore the
practical obstacles associated with implementing such systems
in real-world scenarios. It supports only iid data.

FoolsGold (FGold) [22] discusses the incentives for
participants to conduct Sybil attacks in federated learning,
including competitive or adversarial motivations, and the
potential consequences for the system. The paper
discusses potential strategies to mitigate Sybil attacks, such
as reputation-based mechanisms and secure aggregation.
However, it may not provide a comprehensive evaluation of
the effectiveness, trade-offs, and implementation challenges of
these strategies.

Works based on aggregation such as Median [23] and
Trimmed Median [23] and RMedian [24] against Poisoning
Attacks are sensitive to outliers. These methods minimize
the impact of bad updates to the global model. Median and
Trimmed Median can face scalability issues in large-scale
distributed systems. The RMedian algorithm incurs a
significant processing overhead.

Singh, A. K et al., [25] attempted to find a balance in effort
between preventing poisoning and embracing diversity to aid
in the development of more equitable and nondiscriminatory
federated learning models. The strategy to distinguish
genuine from malicious updates provides models that are
more accurate than those developed using typical poisoning
detection techniques. Addressing the difficulty of identifying
abnormal/malicious actions from valid ones in federated
learning is presented in this paper. They concentrate on
cases involving small groups of clients, who are likely to be
labeled as outliers or malevolent by traditional attack detection
algorithms provided in the literature.

Zhao, Y et al., [26] proposed a poisoning defense method

that employs generative adversarial networks to create auditing
data in the training phase and removes adversaries by auditing
their model correctness to detect and neutralize poisoning
attempts in federated learning.

Tolpegin, V et al., [16] investigated data poisoning attacks
on FL systems. They showed that label flipping poisoning
assaults are vulnerable to FL systems and that these attacks
can have a considerable negative impact on the global model.
They also demonstrated that as the proportion of malicious
individuals increases, the detrimental influence on the global
model increases, and that targeted poisoning may be achieved.
It’s shown that adversaries can improve the effectiveness of
attacks by increasing the number of malevolent participants
available in later rounds. Finally, they proposed a defense to
assist an FL aggregator in distinguishing between malicious
and honest participants. It’s shown that this defense can detect
malevolent individuals and is resistant to gradient drift.

The research conducted by Zhuoran Ma et al., (ShieldFL)
[27] primarily addresses the issue of countering model
poisoning attacks when the attacker use encryption to mask
the harmful local gradient modifications. It is an untargeted
model poisoning attack. ShieldFL employs a two-trapdoor
homomorphic encryption system with the cosine similarity
method to effectively identify and eliminate probable poisoned
updates. The work appears to be computationally costly.

Auror [28] cluster the group of clients into malicious
and normal clients and disregard the malicious group. The
study investigates the analysis of independent and identically
distributed (iid) data, which results in increased occurrences
of both false positives and false negatives when the data vary
from being independent and identically distributed (non-iid).
Furthermore, it is necessary to have prior understanding of
the characteristics of the training data distribution or the
expected quantity of attackers within the system. Moreover,
the effectiveness of the defence mechanism is compromised in
cases where the attack is a single-shot attack.
Gaps identified from the literature:
Huge datasets generated by multiple sources are used by
ML and AI algorithms nowadays. Due to privacy concerns,
the majority of the existing systems store data privately. In
traditional ML involving multiple sources if data is not shared,
the model training is less efficient due to limited data. If data
is combined for collaborative training, privacy is a concern.
Though FL helps to address this issue, it is also vulnerable
to multiple attacks. There are many existing works which
provide solutions for attacks in FL, but most methods are
computationally overhead or work only for iid data. Many
works provide security algorithms but doesnot provide threat
analysis. Few mitigation works only theoretically. Our
work demonstrates image classification in FL setup with
security and privacy algorithms which works robustly against
label-flipping attack with less computation overhead.

4. PROPOSED METHODOLOGY

We propose a distributed framework named FedAssess that
enables many clients to jointly train an image classification
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Table 1. FL Frameworks Comparison

Flower: FATE Pysyft Framework:

Description

The FLOWER framework
facilitates a seamless transition
specifically on a substantial
batch of edge devices.
devices.

FATE is
one of the earliest
open-source
frameworks for FL that
is ready for
commercial use.

PySyft is a free and open-
source library for
Federated Learning and
Privacy Protection. It
allows users to do Deep
Learning in a private and
safe manner.

Flexible No No No
Ease-of-use Yes No No

Security Features No No Yes
Model Support No Yes No

model without compromising privacy. Our goal is to foster
image classification via federated learning with improved
security and privacy. We show that a decentralised system can
meet the requirements for data safety without compromising
performance compared to a centralised machine learning
system. The work also provides mitigation methods against
label-flipping attacks.

Algorithm 1 FedAssess
Input: Images for classification from multiple clients

1: The federated learning server transmits the
global model to the clients.

2: Every client use the global model to train
the local data.

3: The gradients updated are communicated to
the client with security algorithms: Secure
Aggregation, Secure Multi-Party Computation
and Differential Privacy.

4: FedProx and FedAvg are utilised to implement
client-to-server communication and parameter
aggregation on the server.

5: The model is evaluated.
6: The model is tested against Model Poisoning

attacks and mitigation algorithm is
executed.

A. Secure Multi-Party Computation
Secure multi-party computation (SMPC) [29] is a technique
that guarantees the involvement of numerous parties in a
computation, where each party contributes their own set of
inputs and receives the desired outputs, while ensuring the
confidentiality of everyone’s data. SMPC is implemented
using cryptography algorithms like SecureNN [30] and SPDZ
[31] In SMPC the data that is to be protected is split into
Secret shares. The shares are distributed to all the participants
involved in such a way that each one does not have an idea
of the other participant’s share. In federated learning setup
for image classification, for enhanced privacy the model and
the data has to be protected. Let us assume there are ‘n’
participants and a model that is shared by the server. Each

of the ‘n’ client’s data is split into ‘n’ secret shares and shared
with all the other ‘n-1’ clients. The model is also split into ‘n’
shares and shared with all the ‘n’ clients. Each of them now
owns their own shares, as well as one share of all the other
users and one share of the model. Now, computation can begin
in order to train the model confidentially using the necessary
cryptography protocols. Once the model has been trained, all
shares can be returned to the server for decryption.

B. Secure Aggregation

Secure Aggregation [32] approaches allow a group of
individuals who do not trust each other to calculate the total
sum of their private values without disclosing the actual
values. Secure Aggregation for Federated Learning enhances
federated learning by encrypting received weights before
sending them to a central device. Secure Aggregation prevents
the server from identifying individual user’s model but still
be able to sum the updates from the model. Users mask the
model with a pair-wise random keys. Each pair of user also
agrees on pair-wise seeds. The server combines the masked
models obtained from the surviving users. The server then gets
the secret shares of the dropped users’ pairwise seeds and the
secret shares of the surviving users’ private seeds. Using the
secret shares, the server reconstructs the pairwise and private
seeds relating to dropped and surviving users and removes
them from the sum of the masked models. The above process
ensures that the central model has no access to the weights
directly from the remote model, but only to the aggregated
encrypted form. It adds an extra layer of privacy, protecting
data on remote devices by preventing the central model from
using weights to compromise privacy on remote devices.

C. Differential Privacy

Differential privacy (DP) is a mechanism that enables
researchers and database analysts to obtain useful information
from databases holding the personal information of individuals
while protecting their anonymity. This can be achieved by
incorporating few interruptions into the database’s contents.
The introduced interruption is both substantial enough to
ensure privacy and limited enough to allow analysts to still
obtain important information. In its simplest form, differential
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Fig. 1. Architecture of proposed FedAssess framework

privacy anonymizes data by introducing noise into a dataset.
It enables data specialists to conduct all statistical analysis
without disclosing personally identifying information.

In differential privacy, noise is added to the data to preserve
the privacy. It seeks to limit the impact of any individual’s
data on the final outcome. Differential privacy ensures that no
inference can be made about any of the data from the final
result, irrespective of whether any individual’s information
was included in the input for the analysis. DP gives
a mathematically verifiable guarantee of privacy protection
against a broad spectrum of privacy attacks.

While training machine learning models on various data
sets, DP typically consists of two injections: clipping the
maximum model parameter updates and adding noise to the
model parameters. DP is an effective method for obscuring
sensitive data. In Deep Learning, we employ Neural Network
for prediction on user-provided input data. It is made up of
multiple of aspects, such as a model with architecture, loss
value, weights, etc. The idea is to prevent the network from
memorising the data. Hence, when we wish to add noise to
the data to make it DP, we can add it to the input data, the
model’s training weights, and the loss function. The goal of
privacy preserving data analysis is to obtain as much helpful
information as is attainable while compromising privacy as
little as is possible. To formalise this concept, consider a
database D, which is simply a set of data points, and a
probabilistic function M acting on databases. The function
is said to be (ε , δ )-differentially private if for all subsets of
possible outputs S ⊆ Range(M), and for all pairs of databases
D and D’ that differ by one element,

Pr[M(D) ∈ S]≤ exp(ε)Pr
[
M
(
D′
)
∈ S

]
+δ (6)

ε denotes privacy leakage. Eq. (6) shows that if one
datapoint in the database is changed, the results of M will have
a distribution that is essentially unchanged when both are very
small positive values. In other words, adding a single user’s
data to a differential private analysis won’t probably change
the results.

D. Optimization algorithms in federated learning: FedAvg
and FedProx

One of the important challenge normal federated learning
framework faces is the communication cost as the model
updates are sent from is the communication as the model
updates are sent in each round from the all the participating
rounds. There are few communications optimization
algortihms like FedAvg and FedProx.

D.1. FedAvg
Federated Averaging (FedAvg) [33] can be used in a
distributed environment with many clients. The data is
kept locally in the participating device. The global model
is distributed by the central server to k clients chosen at
random. The selected clients train the model with the current
state gradient wt and updates the gradient parameter to wt+1
Federated Averaging (FedAvg) is a technique for distributed
training with a large number of clients that is efficient in terms
of communication. The communication rounds are lesser than
in FedSGD(Aggregation model based on SGD) as the updates
are not sent in each round to the server. FedAvg updates the
global model by averaging the model updates from each client,
whereas FedSGD updates the global model by averaging the
gradients of each client’s model. The pseudocode of FedAvg
is given Algorithm 2.

D.2. FedProx
FedProx [34] be viewed as a generalisation and
re-parameterization of FedAvg. FedAvg is a federated
learning algorithm that computes the average of model
parameters from multiple clients. FedProx, on the other
hand, is an optimization method that adds a proximal term
to the loss function in FedAvg to improve the privacy and
communication efficiency of federated learning. Although it
makes only minor modifications to the re-parameterization
method, these modifications have important implications both
in theory and in practice. In FedProx variable amount of
work and iteration is used. To address heterogeneity [17],
along with local loss term a proximal term is also used. In
FedProx, the proximal term encourages the model to stay
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close to the previous iteration’s parameters, reducing the
amount of information communicated between clients and the
server. On each device k, the local model wk

t+1is is updated by
minimizing the sum of the local loss Fk(w) and the proximal
term

min
w

hk (w;wt) = Fk(w)+
µ

2
∥w−wt∥2 (7)

where µ is the hyperparameter controlling the regularization
strength, w is the the parameter vector of the local model and
wt is the parameter vector of the global (server) model. In
FedProx the number of epochs is not uniform throughout and
it is identified with γ t

k.
The pseudocode of FedProx is given in Algorithm 3.

5. IMPLEMENTATION

In this paper, we present a decentralised and collaborative
architecture for image classification. The Federated learning
architecture used for implementation involves a central server
and multiple clients. The clients have the data and execute
the model. Our objective is to show that deep CNN federated
learning allows for data exchange among multiple clients
for classification without compromising privacy. Our work
focuses on the security and machine learning aspect while the
various available software design architecture and patterns
are discussed in detail in [35]. The CNN architecture is not
our primary focus, and there are other architectural options
that can marginally boost or decrease overall performance.
A typical architecture of a Convolutional Neural Network
(CNN) includes the following elements:
Convolutional layers: Responsible for applying filters to

extract features.
Pooling layers: Reduce the data’s spatial dimensions to reduce
computation and over-fitting.
Activation functions: Add non-linearity to the network so that
it can learn complex representations.
Fully connected layers: Integrate the previous layers’
information into output.
Regularization methods: Helps to prevent over-fitting.
Loss function: Utilising a metric such as cross-entropy,
calculate the difference between the expected and actual
outputs.
Optimizer: Based on the gradient of the loss function, such
as stochastic gradient descent (SGD) , modify the network
weights.

The design of a CNN might vary based on the task and the data,
however these components are typical of many cutting-edge
models. This CNN model’s learning phase is comprised of
multiple communication rounds in which the central server
interacts synchronously with the clients. Initially, the CNN
model is setup with random weights w0. We assume that K
clients are available, with each client storing nk private images
locally. Each round consists of 3 rounds

• The server distributes a global model ‘g’ with initial weights
w0 for a random subset of st clients.

• The weights are modified using the local objective
minimization and averaging techniques.

• Lastly, to update the parameters of the global model g,
the server receives updates from all involved clients and
computes an average model wt in accordance with "Eq.(8)".

wt←
K

∑
k

nk

n
wt

k (8)

These are the wt parameters that were modified at round
t, wt

k are the parameters sent by client k at round t, nk is
the number of data points stored on client k, and n is the
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total number of data points that participated in collaborative
training. The work is divided into three sections: CNN
architecture, federated learning setup, and label flipping attack
configuration. For training a model that is utilized for image
classification, MNIST dataset is used. All of the experiments
were designed to train the model federatively utilizing ten
virtual workers or agents, as well as to introduce and prevent
malicious attacks by one or more agents.

Dataset Description: The Modified National Institute
of Standards and Technology dataset is known by the
abbreviation MNIST dataset.This dataset includes 70,000
handwritten single digits between 0 and 9 in small square 28
by 28 pixel grayscale images. So, we are dividing this dataset
into 60,000 training photos and 10,000 testing images. The
training-testing ratio would be 85:15.
For demonstrating the security algorithms over FL
frameworks, our proposed methodology includes the
implementation in CNN for image classification for MNIST
Dataset over the PySyft and Flower framework. The
implementation for the efficient communication of the clients
and server are demonstrated using the FedAvg and FedProx
and for privacy preservation the Differential privacy is
implemented /employed. Threat analysis is carried out on this
implementation against label-flipping attack and mitigation
strategy is demonstrated in the next section.

6. THREAT ANALYSIS

A. Threat and Adversary model in Label Flipping attack

Participants in a Federated Learning system share model
parameters with the centralised server rather than their dataset.
There is no one to check each participant’s dataset, which
creates a vulnerability when the global model trains over
each participant’s dataset. An attacker can manipulate the
training data such that the model learns incorrect patterns in
label-flipping attack. Label-flipping attacks have the potential
to weaken the resilience of machine learning models, leading
to a substantial drop in their performance when used for
real-world data. Label-flipping attacks can have significant
effects in applications that utilize machine learning models for
security-sensitive tasks, such as malware detection and fraud
detection. A compromised model may fail to detect malicious
activities, leading to security breaches. The objective of a
targeted attack is to deliberately influence the behavior of the
model in order to get it to incorrectly classify a particular set
of instances.

An adversary participant can misclassify intentionally for
example "Digit 1" data samples of the local training data as
"Digit 7". The Scenario is explained in Fig.2 [15]

Since malevolent players can choose which class the model
should identify, label flipping is a targeted data poisoning
attack. Each malevolent client Ci alters their dataset by
changing csrc to ctar, given a source class csrc and a target class
csrc from C. As a result, the final global model M’s accuracy
suffers, as it is more likely to misclassify images during testing.

Fig. 2. Federated learning with label-flipping attacks

B. Attack Simulation

Attacking is simulated by establishing two PySyft federated
loaders, one with genuine (benign) training data and the other
with identical training data in the same sequence, but with
the class labels swapped on one or all instances of a class
(malicious data). The training logic iterates over both loaders,
but batches from the benign and malicious data loaders are
distributed to virtual benign and malicious agents, respectively.
Training is carried out through a series of "timestamp"
iterations, with the global model being disseminated to all
agents and each agent receiving its initial batch of training data
at the start of each iteration. During many training epochs per
timestamp, each agent’s local model is incrementally updated.
The model update parameters are calculated at the end of each
timestamp by comparing the trained agent models to the global
model that was originally broadcast to the agents.

The malicious agents’ updates are boosted by a factor of
10, which is evenly divided across the malicious agents before
the model parameter updates are collected and applied to the
global model. For example, with only one hostile agent, model
parameter updates would be boosted 10-fold, whereas, with
two agents, each would be boosted 5-fold, and so on. The
changes are added to the global model before being delivered
to the agents for the next scheduled iteration of training after
they have been aggregated via weighted average.

C. Threat Mitigation and Prevention Against
Label-Flipping Attack

The malicious agent seeks to attack the base model by
increasing the weight deltas, which implies they must be
relatively large compared to the weight deltas of benign agents
to have an influence when all of the agents’ weight deltas
are added together. To detect the anomalous agents in our
experiment, a two-step technique implemented is given below.

C.1. Calculating the Average Distance
1) For each layer the the distance between the weight deltas is
calculated using the matrix multiplication method.
2) The weight deltas between two agents inside a layer are x1
and x2.
3) The p-norm distance between each vector pair ∈ [0,∞] is
calculated using the parameter p.
4) Find the mean of the Euclidean distance, which indicates
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how dissimilar the means of two agents in a single layer are on
average.

C.2. Ranking System
1) Score each layer’s agents based on how close or far they are
to other agents.
2) The punishment metric is utilized, and each agent ranks the
other agents according to how far they are from it.

• The one who is closest to you gets a higher rank than the one
who is far away.

• The top 30%, average 40%, and worst 30% of the rankings
are divided into three groups.

• Punishment increases from the top to the bottom (remains
the same within the group).

3) After calculating the score for each agent across all levels at
a time stamp. Check if the score is less than a THRESHOLD =
Mean+SD, If Check is true, Tag agent as non-Malicious Else,
Tag Agent as Malicious
4) The mean+SD provided insight into how different the larger
score is from the lesser ones, which was useful in determining
the threshold.

7. RESULTS AND DISCUSSION

A. Evaluation Metrics
The metrics Precision, Recall, F1-Score, and False Positive
Rate are used to assess the effectiveness of the proposed
model’s categorization and are defined as follows.

Accuracy: The Accuracy score is the proportion of correctly
categorised images relative to the total number of images.

Accuracy =
TN+TP

TN+TP+FP+FP
(9)

Precision: The percentage of classification that were genuinely
accurate is known as precision.

Precision =
TP

TP+FP
(10)

Recall: Recall measures a model’s ability to properly
identify all instances of a certain class within a dataset. For
example, if we want to measure the model’s performance
for classifying the hand written image 5, recall measures the
percentage of actual image of ‘5’ in the dataset that is actually
classified as ‘5’

Recall =
TP

TP+FN
(11)

F1-Score: This metric helps to identify how many times a
model made correct prediction and is a measure of accuracy.

F1− score =
2∗ Precision ∗ Recall

Precision + Recall
(12)

A True Positive (TP) is a picture that a machine learning
model properly identifies as being a member of a certain class
or category. For example, the hand-written image of number
‘9’ if properly classified by the model as ‘9’ , then it is TP.

A machine learning model that wrongly classifies a picture as
being a member of a certain class or category is known as a
false positive (FP).

A true negative (TN) in image classification is an image that a
machine learning model properly identifies as not being within
a specific class or category.

A false Negative (FN) in image classification is when an image
is labelled as negative (not falling under a certain class) even
when it does in fact fall under that class.
The accuracy is compared between various security algorithms
and framework and here are the result analysis

Fig. 3. Accuracy comparision

Fig. 4. Comparision based on evaluation metrics

From Figure 3, we conclude that the Pysyft framework
works better in terms of accuracy than the Flower framework.
Pysyft framework gives an accuracy of about 99% and flower
framework has an accuracy of 92%. Pysyft can be used to
implement some privacy preserving algorithms where as it is
not possible in flower framework.

When privacy algorithms applied to the FL framework, the
accuracy doesn’t drastically change and remains the same
for few algorithms such as Secure Multi Party Computation
with an accuracy of 99 %.Whereas the other algorithms gave
a accuracy of 97% for Secure Aggregation and 89% for
Differential Privacy.The noise that is added to the gradients is
what causes the accuracy for DP to decrease. Though there
is an decrease, it makes harder for an attacker to identify
individual data in the training set thus providing more privacy.

From the graph in Figure 4, we can understand that
Federated learning implemented in Pysyft framework executes
the highest accuracy of 99% and Federated learning with DP
executes the lowest accuracy of 89%.
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The loss and accuracy of when algorithms FedProx and
FedAvg were implemented is shown below.

Fig. 5. Loss and Accuracy of FedProx

Fig. 6. Loss and Accuracy of FedAvg

The Figure 5 and 6 represents the accuracy graph of
training the model on 3 clients using FedProx and FedAvg
algorithms respectively. All the clients were executed with
same configuration on i5-9400 machines. The accuracy is
approximately around 90% for both the algorithms. For
label-flipping attack, we have calculated the misclassification
rates:

Misclassification Rate =
Number of misclassified class 5 -> images

Total number of Class 5 images
∗100

(13)

Global model accuracy =
No. of Correct Predictions

Total no. of images in test dataset
∗100

(14)

Attack Success Rate(ASR) is the percentage of samples
from the source class that were misclassified as belonging to
the target class. ASR value should be low.

Deployed one malevolent agent and nine benign agents
in our scenario. The dataset was spread evenly among all
agents, and the malicious agent’s training data was adjusted
for targeted attack by changing ALL class 5 samples’ labels to
class 7. The datasets were also switched between timestamps
to ensure that both benign and malicious agents received a
fresh set of training examples, while the malicious agent’s

data was distorted by changing its class from 5 to 7. We
gradually increased the number of malicious clients and found
our work works is robust even when there is increase in number
of clients. The attack success rate of our work and FGold is
compared and the results are shown in the next section.

The malicious agent’s weight delta boosting factor is
calculated. The boosting factor in this example is 10 because
the weights are evenly distributed. In this case, two trials were
carried out with attack prevention disabled and with attack
prevention enabled.

B. Attack Prevention Disabled

The global model’s accuracy on the test dataset is
represented by the orange line, whereas the global model’s
misclassification accuracy on Class 5 is represented by the blue
line in Fig. 7.

The global model is quite confident (approximately 75%)
in its misclassification at timestamp 1, while the overall
accuracy is only about 60%. The weight deltas from benign
agents override the influence of the malicious agent’s delta in
timestamp 2, resulting in an extremely low misclassification
rate. With higher timestamps, the oscillating behavior is
repeated, with the global model’s misclassification confidence
stabilizing. However, the global model’s misclassification does
not totally stabilize even after 13 timestamps. At the end of the
training, the overall accuracy of the test dataset reaches 76%.

Fig. 7. Accuracy/Misclassification Rate of Attack

C. Attack Prevention Enabled

The behavior is absolutely different in this instance. The attack
detection and prevention approach identifies malicious updates
and prevents them from influencing the global model. Below
figure shows the situation. At timestamp 1, the global model
is moderately confident in misclassifying class 5 to class 7 on
the test data, but its misclassification confidence quickly drops
in higher timestamps, reaching low confidence of roughly 3%
by the end of timestamp 13. The accuracy of the whole global
model is similarly trending upwards, reaching 85 percent by
the end of timestamp 13. The analysis shows that the hostile
agent had no effect on the global model, proving that attack
prevention worked.
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D. Comparison with Existing Approach

The work is tested against existing method for Poisoning
Attack FoolsGold (FGold) [22] on the metrics ASR. The result
of analysis is showed in Fig. 9. Our work proves to be
stable even when the number of malicious clients increases
and Attack Success Rate seems to be low when compared to
FoolsGold [22].

Fig. 8. Accuracy/Misclassification Rate of Attack when Attack is
enabled

Fig. 9. Analysis of Attack Success Rate

8. CONCLUSION

In this article, Federated learning has been implemented for
benchmark data set and have found the accuracy has improved
than the centralized machine learning system. Our work has
analyzed FL with additional security features and implemented
algorithms for communication efficient Federated Learning.
The proposed model demonstrates label flipping attack in FL
and developed a novel method for mitigating Model Poisoning
attack. All our empirical results prove that our work is
robust against label-flipping attack and the model performs
well, even after adding all the security algorithms. We have
demonstrated the work in two different FL frameworks. Our
future work focuses on quantum computing based Federated
Learning which provides better performance in FL with any
ML model and is more secure.
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