
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 72(3), 2024, Article number: e148944
DOI: 10.24425/bpasts.2024.148944

ARTIFICIAL AND COMPUTATIONAL INTELLIGENCE

FedAssess: analysis for efficient communication and
security algorithms over various federated learning
frameworks and mitigation of label-flipping attack

R ANUSUYA 1 ∗ and D KARTHIKA RENUKA

Department of Information Technology, PSG College of Technology, Coimbatore, TN 641004, India

Abstract. Federated learning is an upcoming concept used widely in distributed machine learning. Federated learning (FL) allows a large number
of users to learn a single machine learning model together while the training data is stored on individual user devices. Nonetheless, federated
learning lessens threats to data privacy. Based on iterative model averaging, our study suggests a feasible technique for the federated learning
of deep networks with improved security and privacy. We also undertake a thorough empirical evaluation while taking various FL frameworks
and averaging algorithms into consideration. Secure multi party computation, secure aggregation, and differential privacy are implemented to
improve the security and privacy in a federated learning environment. In spite of advancements, concerns over privacy remain in FL, as the
weights or parameters of a trained model may reveal private information about the data used for training. Our work demonstrates that FL can
be prone to label-flipping attack and a novel method to prevent label-flipping attack has been proposed. We compare standard federated model
aggregation and optimization methods, FedAvg and FedProx using benchmark data sets. Experiments are implemented in two different FL
frameworks – Flower and PySyft and the results are analyzed. Our experiments confirm that classification accuracy increases in FL framework
over a centralized model and the model performance is better after adding all the security and privacy algorithms. Our work has proved that deep
learning models perform well in FL and also is secure.

Keywords: federated learning; privacy in federated learning; deep learning; attacks in federated learning; label-flipping attack in FL.

1. INTRODUCTION

Exponential development of machine learning (ML) and artifi-
cial intelligence have made voluminous innovations in several
fields like smart cities, healthcare, aviation, agriculture. A huge
volume of data is collected and processed every second by
various applications. Traditional machine learning algorithms
collect data from all devices like sensors and aggregate it for
processing. However, as the development becomes prominent,
certain challenges arise when handling big data. Difficulties
such as limited infrastructure, poor network connection, band-
width, compromised privacy [1] and security have been posing
challenges for traditional ML models to handle huge volumes of
data. Traditional ML model owners/developers also face chal-
lenges in collecting user’s private and personal data as they pos-
sess sensitive information and must adhere to rules like General
Data Protection Regulation (GDPR) and Personal Data Protec-
tion Act (PDPA). These limitations are making researchers and
developers shift to decentralized machine learning framework.
Federated learning (FL) is an evolving decentralized machine
learning model. FL allows multiple clients/data owners to train
data locally across devices, such as mobile phones and edge
nodes instead of aggregating all the data in a central server.

∗e-mail: raa.it@psgtech.ac.in

© 2024 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Manuscript submitted 2023-04-05, revised 2023-12-04, initially
accepted for publication 2024-01-07, published in May 2024.

To update the global model, a central server receives just the
model updates. The model update happens in multiple itera-
tions. FL is beneficial in situations when data privacy is impor-
tant, or where collecting and transmitting large amounts of data
is infeasible [2].

FL [3, 4] provides privacy and security as data is not leaving
the device and enhances efficiency as training across multiple
devices happens parallelly. All these features have caused FL
to be adopted in many applications like medical data diagnosis
and mobile next word prediction. Though FL enhances security
and privacy still it is prone to cyber-attacks [5]. There is no
centralized control over the participating devices and hence the
participating devices can behave maliciously. Due to this FL is
prone to adverse machine learning attacks like poisoning attacks.
Bearing in mind, the recent advancement in cyber attacks and
data breaches over various phases of data processing, our work
FedAssess focuses on utilizing the benefits of federated learning
in a multi-user setup for maintaining data privacy during data
analysis. The major contributions of our proposed work are:
• We propose a distributed and collaborative architecture that

enables data owners to share private data for analysis while
conserving privacy.
• Conducted extensive experiments to compare various FL

frameworks.
• Preserving privacy and security algorithms in FL are demon-

strated.
• Provided novel strategy to mitigate label-flipping attacks

in FL.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 3, p. e148944, 2024 1

https://orcid.org/0000-0002-2737-3574
https://orcid.org/0000-0002-6519-4673
mailto:raa.it@psgtech.ac.in

R Anusuya and D Karthika Renuka

The paper is organized as follows: Section 2 details the back-
ground required for this paper. Literature review and gaps iden-
tified is given in Section 3. The algorithm of the proposed
work, the security algorithms and optimization algorithms im-
plemented in the paper are explained in Section 4. Data set
description and the CNN architecture used for implementation
is demonstrated in Section 5. Threat analysis for the imple-
mentation carried out against label-flipping attack and proposed
strategy for mitigation against label-flipping attack is detailed in
Section 6. Performance analysis of the work based on various
evaluation metrics is discussed Section 7. Conclusion is given
in Section 8.

2. BACKGROUND

2.1. Cloud-edge computing

Communication and computational issues develop when rely-
ing solely on a centralized cloud server for data processing.
Edge computing (EC) can complement cloud servers to lever-
age the advantages of cloud computing. In edge computing, the
processing is done in the edge devices like IoT sensors or in
edge servers and only the results or meta-data of the process-
ing is sent to cloud servers. The cloud-edge architecture is a
distributed system, comparable to federated learning. Ongoing
research has started integrating edge computing with federated
learning to improve the efficiency and security of data process-
ing. The challenges and methods for federated-edge deployment
are discussed in the article by Guanming Bao and Ping Guo [6].

2.2. Federated learning

Federated learning environment can be used in a scenario where
multiple and distributed data owners/devices want to jointly
train a model without exchanging data like in IoT or healthcare
environments. This ensures the privacy because the data stays
local. The devices that have the data act as the client. If there
are 𝑁 clients 𝐶1, 𝐶2, . . . , 𝐶𝑁 , then the local models 𝑀1, 𝑀2,
𝑀3, . . . , 𝑀𝑁 get trained in the client end over the data 𝐷1, 𝐷2,
. . . , 𝐷𝑁 . After the training process, the update from each local
model is sent to the server. The server aggregates the updates to
create a global model. The process can be defined as

𝑀global = 𝐹𝑁 (𝑀1, 𝑀2, . . . , 𝑀𝑁) , (1)

where 𝐹𝑁 represents the aggregation algorithms. Thus, we com-
plete a single iteration of federated learning and disseminate the
global model to each client device for further local training.
The specific number of rounds is typically chosen by the model
performance, meaning that we continue the procedure until the
model can attain the desired level of accuracy. Furthermore, in
order to enhance privacy protection, clients have the choice to
apply encryption techniques to the models prior to uploading
them. Differential privacy (DP) [7] and homomorphic encryp-
tion (HE) [8] are often employed strategies to ensure security in
federated learning (FL). The effectiveness of federated learning
is primarily determined by the aggregation technique employed
on the server side. The primary objective of federated learning

is to optimize the objective function. In conventional deep learn-
ing model training, for a training dataset containing 𝑛 samples
(𝑥𝑖 , 𝑦𝑖), 1 ≤ 𝑖 ≤ 𝑛, the training objective is:

min
𝑤∈R𝑑

𝑓 (𝑤) where 𝑓 (𝑤) def
=

1
𝑛

𝑛∑︁
𝑖=1

𝑓𝑖 (𝑤), (2)

𝑓𝑖 (𝑤) = 𝑙 (𝑥𝑖 , 𝑦𝑖 ,𝑤) is the loss of the prediction on example
(𝑥𝑖 , 𝑦𝑖). Using SGD [9] optimization, the weight is updated
with the following formula

𝑤𝑡+1← 𝑤𝑡 −𝜂∇ 𝑓 (𝑤𝑡 ;𝑥𝑘 , 𝑦𝑘) , (3)

where 𝜂 is the learning rate and ∇ 𝑓 (𝑤𝑡 ;𝑥𝑘 , 𝑦𝑘) is the loss func-
tion derivative w.r.t weight. In federated learning setup, Suppose
𝑛 training samples are distributed to 𝐾 clients, where 𝑃𝑘 is the
set of indices of data points on client 𝑘 , and 𝑛𝑘 = |𝑃𝑘 |, the
training objective would be min𝑤∈R𝑑 𝑓 (𝑤)

𝑓 (𝑤) =
𝐾∑︁
𝑘=1

𝑛𝑘

𝑛
𝐹𝑘 (𝑤) where (4)

𝐹𝑘 (𝑤)
def
=

1
𝑛𝑘

∑︁
𝑖∈𝑃𝑘

𝑓𝑖 (𝑤). (5)

2.3. Attacks in federated learning

FL is protected against a wide range of attacks using defense
mechanisms, which reduce the likelihood of hazards. Because
data access is impossible, most of these defenses avoid model
corruption by guaranteeing that the model has trained to realize
the underlying statistical distribution of the actual training data.
That does not rule out the possibility of fraudulent data or up-
dates being used to train the model [10, 11].
Backdoor attack: The objective of backdoor attacks [12, 13]
is to modify a section of training data by adding adversarial
triggers so that deep neural network models provide inaccurate
predictions when the same trigger occurs on the test set.
Gradients attack: A gradient attack in federated learning is a
sort of adversarial assault in which a malicious client delivers
corrupted or modified model updates (gradients) to the central
server. This attack aims to damage the integrity and precision of
the global model by injecting biassed or incorrect updates that
can mislead it during training.
Model poison attack: Poison attacks [14,15] aim to get the FL
model to output the target label that the enemy has provided. Au-
thors in [16] used a data poison attack, for instance, by switching
the labels of training data from one class to another during the
local training phase in order to deceive the output of the global
model. Such type of poisoning attack is known as label-flipping
attack.

The objective of an untargeted poisoning attack [17] is
to produce corrupted local model updates that can be injected
into the system, rendering the learned parameters of the global
model effectively futile. Methods like differential privacy and
zero knowledge proof [18] provide mitigation to few of the above
mentioned attacks.

2 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 3, p. e148944, 2024

FedAssess

Table 1
FL frameworks comparison

Flower: FATE Pysyft Framework:

Description

The FLOWER framework
facilitates a seamless
transition specifically
on a substantial batch
of edge devices.

FATE is one of
the earliest open-source
frameworks for FL that
is ready for
commercial use.

PySyft is a free and
open-source library
for federated learning
and privacy protection.
It allows users
to do deep learning in
a private and safe manner.

Flexible No No No

Ease-of-use Yes No No

Security features No No Yes

Model support No Yes No

2.4. Federated learning frameworks

Various frameworks like PySyft [19] and Flower [20], are avail-
able for implementing federated learning. The fundamental fea-
tures of a federated learning framework are client-side training,
server-side aggregation, and, notably, communication. Further-
more, it is imperative to have a local simulation mode. However,
the frameworks might vary significantly in other aspects such
as scalability, user-friendliness, security techniques, AI algo-
rithms, and more. Table 1 compares the frameworks PySyft,
Flower and FATE.

3. RELATED WORK

The authors of the study titled “Machine Learning with Ad-
versaries: Byzantine Tolerant Gradient Descent” [21] discuss
the issue of guaranteeing the dependability of gradient descent
algorithms when confronted with the presence of malevolent
or Byzantine nodes. The deliberate manipulation of gradients
by these nodes might undermine the efficacy of distributed ma-
chine learning systems, hence affecting the learning process. The
authors propose technique (multi-Krum or MKrum) to make
gradient descent resilient against Byzantine adversaries. The
primary emphasis of this paper lies in the theoretical and al-
gorithmic dimensions of Byzantine tolerance. However, it does
not extensively explore the practical obstacles associated with
implementing such systems in real-world scenarios. It supports
only iid data.

FoolsGold (FGold) [22] discusses the incentives for partici-
pants to conduct Sybil attacks in federated learning, including
competitive or adversarial motivations, and the potential conse-
quences for the system. The paper discusses potential strategies
to mitigate Sybil attacks, such as reputation-based mechanisms
and secure aggregation. However, it may not provide a compre-
hensive evaluation of the effectiveness, trade-offs, and imple-
mentation challenges of these strategies.

Works based on aggregation such as Median [23] and
Trimmed Median [23] and RMedian [24] against Poisoning At-
tacks are sensitive to outliers. These methods minimize the im-
pact of bad updates on the global model. Median and Trimmed

Median can face scalability issues in large-scale distributed sys-
tems. The RMedian algorithm incurs a significant processing
overhead.

Singh, A.K. et al., [25] attempted to find a balance in effort
between preventing poisoning and embracing diversity to aid in
the development of more equitable and nondiscriminatory fed-
erated learning models. The strategy to distinguish genuine from
malicious updates provides models that are more accurate than
those developed using typical poisoning detection techniques.
Addressing the difficulty of identifying abnormal/malicious ac-
tions from valid ones in federated learning is presented in this
paper. They concentrate on cases involving small groups of
clients, who are likely to be labeled as outliers or malevolent by
traditional attack detection algorithms provided in the literature.

Zhao, Y. et al., [26] proposed a poisoning defense method that
employs generative adversarial networks to create auditing data
in the training phase and removes adversaries by auditing their
model correctness to detect and neutralize poisoning attempts
in federated learning.

Tolpegin, V. et al., [16] investigated data poisoning attacks on
FL systems. They showed that label-flipping poisoning assaults
are vulnerable to FL systems and that these attacks can have
a considerable negative impact on the global model. They also
demonstrated that as the proportion of malicious individuals in-
creases, the detrimental influence on the global model increases,
and that targeted poisoning may be achieved. It is shown that ad-
versaries can improve the effectiveness of attacks by increasing
the number of malevolent participants available in later rounds.
Finally, they proposed a defense to assist an FL aggregator in
distinguishing between malicious and honest participants. It is
shown that this defense can detect malevolent individuals and is
resistant to gradient drift.

The research conducted by Zhuoran Ma et al., (ShieldFL) [27]
primarily addresses the issue of countering model poisoning at-
tacks when the attacker uses encryption to mask the harmful
local gradient modifications. It is an untargeted model poison-
ing attack. ShieldFL employs a two-trapdoor homomorphic en-
cryption system with the cosine similarity method to effectively
identify and eliminate probable poisoned updates. The work
appears to be computationally costly.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 3, p. e148944, 2024 3

R Anusuya and D Karthika Renuka

Auror [28] cluster the group of clients into malicious and
normal clients and disregard the malicious group. The study in-
vestigates the analysis of independent and identically distributed
(iid) data, which results in increased occurrences of both false
positives and false negatives when the data vary from being
independent and identically distributed (non-iid). Furthermore,
it is necessary to have prior understanding of the characteris-
tics of the training data distribution or the expected quantity of
attackers within the system. Moreover, the effectiveness of the
defense mechanism is compromised in cases where the attack is
a single-shot attack.
Gaps identified from the literature:
Huge datasets generated by multiple sources are used by ML and
AI algorithms nowadays. Due to privacy concerns, the majority
of the existing systems store data privately. In traditional ML
involving multiple sources if data is not shared, the model train-
ing is less efficient due to limited data. If data is combined for
collaborative training, privacy is a concern. Though FL helps
to address this issue, it is also vulnerable to multiple attacks.
There are many existing papers which provide solutions for at-
tacks in FL, but most methods are computationally overhead or
work only for iid data. Many papers provide security algorithms
but do not provide threat analysis. A few papers on mitigation
are only theoretical. Our work demonstrates image classifica-
tion in FL setup with security and privacy algorithms which
works robustly against label-flipping attack with less computa-
tion overhead.

4. PROPOSED METHODOLOGY

We propose a distributed framework named FedAssess that en-
ables many clients to jointly train an image classification model
without compromising privacy. Our goal is to foster image clas-
sification via federated learning with improved security and pri-
vacy. We show that a decentralized system can meet the re-
quirements for data safety without compromising performance
compared to a centralized machine learning system. The work
also provides mitigation methods against label-flipping attacks
(Fig. 1, Algorithm 1).

Algorithm 1 FedAssess
Input: Images for classification from multiple clients
1: The federated learning server transmits the

global model to the clients.
2: Every client use the global model to train the

local data.
3: The gradients updated are communicated to

the client with security algorithms: secure
aggregation, secure multi-party computation and
differential privacy.

4: FedProx and FedAvg are utilised to implement
client-to-server communication and parameter
aggregation on the server.

5: The model is evaluated.
6: The model is tested against Model Poisoning

attacks and mitigation algorithm is executed.

4.1. Secure multi-party computation

Secure multi-party computation (SMPC) [29] is a technique that
guarantees the involvement of numerous parties in a computa-
tion, where each party contributes its own set of inputs and
receives the desired outputs, while ensuring the confidentiality
of everyone’s data. SMPC is implemented using cryptography
algorithms like SecureNN [30] and SPDZ [31]. In SMPC the
data that is to be protected is split into Secret shares. The shares
are distributed to all the participants involved in such a way that
each one does not have an idea of the other participant’s share. In
federated learning setup for image classification, for enhanced
privacy the model and the data have to be protected. Let us as-
sume there are ‘n’ participants and a model that is shared by the
server. Each of the ‘n’ client’s data is split into ‘n’ secret shares
and shared with all the other ‘n-1’ clients. The model is also split
into ‘n’ shares and shared with all the ‘n’ clients. Each of them
now owns their own shares, as well as one share of all the other
users and one share of the model. Now, computation can begin
in order to train the model confidentially using the necessary
cryptography protocols. Once the model has been trained, all
shares can be returned to the server for decryption.

4.2. Secure aggregation

Secure aggregation [32] approaches allow a group of individ-
uals who do not trust each other to calculate the total sum of

Fig. 1. Architecture of proposed FedAssess framework

4 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 3, p. e148944, 2024

FedAssess

their private values without disclosing the actual values. Secure
aggregation for federated learning enhances federated learning
by encrypting received weights before sending them to a central
device. Secure aggregation prevents the server from identifying
individual users’ model but still being able to sum the updates
from the model. Users mask the model with pair-wise random
keys. Each pair of users also agrees on pair-wise seeds. The
server combines the masked models obtained from the surviv-
ing users. The server then gets the secret shares of the dropped
users’ pairwise seeds and the secret shares of the surviving
users’ private seeds. Using the secret shares, the server recon-
structs the pairwise and private seeds relating to dropped and
surviving users and removes them from the sum of the masked
models. The above process ensures that the central model has
no access to the weights directly from the remote model, but
only to the aggregated encrypted form. It adds an extra layer
of privacy, protecting data on remote devices by preventing the
central model from using weights to compromise privacy on
remote devices.

4.3. Differential privacy

Differential privacy (DP) is a mechanism that enables re-
searchers and database analysts to obtain useful information
from databases holding the personal information of individu-
als while protecting their anonymity. This can be achieved by
incorporating few interruptions into the database contents. The
introduced interruption is both substantial enough to ensure
privacy and limited enough to allow analysts to still obtain im-
portant information. In its simplest form, differential privacy
anonymizes data by introducing noise into a dataset. It enables
data specialists to conduct all statistical analysis without dis-
closing personally identifying information.

In differential privacy, noise is added to the data to preserve
the privacy. It seeks to limit the impact of any individual’s
data on the final outcome. Differential privacy ensures that no
inference can be made about any of the data from the final re-
sult, irrespective of whether any individual’s information was
included in the input for the analysis. DP gives a mathemati-
cally verifiable guarantee of privacy protection against a broad
spectrum of privacy attacks.

While training machine learning models on various data sets,
DP typically consists of two injections: clipping the maximum
model parameter updates and adding noise to the model param-
eters. DP is an effective method for obscuring sensitive data.
In deep learning, we employ neural network for prediction on
user-provided input data. It is made up of multiple aspects, such
as a model with architecture, loss value, weights, etc. The idea is
to prevent the network from memorizing the data. Hence, when
we wish to add noise to the data to make it DP, we can add it
to the input data, the model training weights, and the loss func-
tion. The goal of privacy preserving data analysis is to obtain as
much helpful information as is attainable while compromising
privacy as little as possible. To formalize this concept, consider
a database 𝐷, which is simply a set of data points, and a prob-
abilistic function 𝑀 acting on databases. The function is said
to be (𝜀, 𝛿)-differentially private if for all subsets of possible
outputs 𝑆 ⊆ Range(𝑀), and for all pairs of databases 𝐷 and 𝐷′

that differ by one element,

Pr[𝑀 (𝐷) ∈ 𝑆] ≤ exp(𝜀)Pr [𝑀 (𝐷′) ∈ 𝑆] + 𝛿, (6)

𝜀 denotes privacy leakage. Equation (6) shows that if one dat-
apoint in the database is changed, the results of 𝑀 will have
a distribution that is essentially unchanged when both are very
small positive values. In other words, adding a single user’s data
to a differential private analysis will not probably change the
results.

4.4. Optimization algorithms in federated learning:
FedAvg and FedProx

One of the important challenges normal federated learning
framework faces is the communication cost as the model up-
dates are sent in each round from all the participating rounds.
There are a few communication optimization algortihms like
FedAvg and FedProx.

4.4.1. FedAvg

Federated averaging (FedAvg) [33] can be used in a distributed
environment with many clients. The data is kept locally in the
participating device. The global model is distributed by the cen-
tral server to 𝑘 clients chosen at random. The selected clients
train the model with the current state gradient 𝑤𝑡 and updates
the gradient parameter to𝑤𝑡+1 federated averaging (FedAvg) is a
technique for distributed training with a large number of clients
that is efficient in terms of communication. The communication
rounds are lesser than in FedSGD(Aggregation model based on
SGD) as the updates are not sent in each round to the server. Fe-
dAvg updates the global model by averaging the model updates
from each client, whereas FedSGD updates the global model by
averaging the gradients of each client’s model. The pseudocode
of FedAvg is given in Algorithm 2.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 3, p. e148944, 2024 5

R Anusuya and D Karthika Renuka

4.4.2. FedProx

FedProx [34] can be viewed as a generalization and re-parame-
terization of FedAvg. FedAvg is a federated learning algorithm
that computes the average of model parameters from multiple
clients. FedProx, on the other hand, is an optimization method
that adds a proximal term to the loss function in FedAvg to
improve the privacy and communication efficiency of federated
learning. Although it makes only minor modifications to the re-
parameterization method, these modifications have important
implications both in theory and in practice. In FedProx variable
amount of work and iteration is used. To address heterogeneity
[17], along with local loss term a proximal term is also used. In
FedProx, the proximal term encourages the model to stay close
to the previous iteration parameters, reducing the amount of
information communicated between clients and the server. On
each device 𝑘 , the local model 𝑤𝑘

𝑡+1 is updated by minimizing
the sum of the local loss 𝐹𝑘 (𝑤) and the proximal term

min
𝑤
ℎ𝑘 (𝑤;𝑤𝑡) = 𝐹𝑘 (𝑤) +

𝜇

2
∥𝑤−𝑤𝑡 ∥2 , (7)

where 𝜇 is the hyperparameter controlling the regularization
strength, 𝑤 is the the parameter vector of the local model and
𝑤𝑡 is the parameter vector of the global (server) model. In Fed-
Prox the number of epochs is not uniform throughout and it is
identified with 𝛾𝑡

𝑘
.

The pseudocode of FedProx is given in Algorithm 3.

5. IMPLEMENTATION

In this paper, we present a decentralized and collaborative ar-
chitecture for image classification. The federated learning ar-
chitecture used for implementation involves a central server and
multiple clients. The clients have the data and execute the model.
Our objective is to show that deep CNN federated learning al-
lows for data exchange among multiple clients for classification
without compromising privacy. Our work focuses on the secu-
rity and machine learning aspect while the various available
software design architecture and patterns are discussed in detail

in [35]. The CNN architecture is not our primary focus, and
there are other architectural options that can marginally boost or
decrease overall performance. A typical architecture of a convo-
lutional neural network (CNN) includes the following elements:
Convolutional layers: Responsible for applying filters to extract
features.
Pooling layers: Reduce the data spatial dimensions to reduce
computation and over-fitting.
Activation functions: Add non-linearity to the network so that it
can learn complex representations.
Fully connected layers: Integrate the previous layer information
into output.
Regularization methods: Helps to prevent over-fitting.
Loss function: Utilizing a metric such as cross-entropy, calcu-
late the difference between the expected and actual outputs.
Optimizer: Based on the gradient of the loss function, such as
stochastic gradient descent (SGD), modify the network weights.

The design of a CNN might vary based on the task and the
data, however these components are typical of many cutting-
edge models. This CNN model learning phase is comprised of
multiple communication rounds in which the central server in-
teracts synchronously with the clients. Initially, the CNN model
is setup with random weights 𝑤0. We assume that 𝐾 clients
are available, with each client storing 𝑛𝑘 private images locally.
Each round consists of 3 rounds:
• The server distributes a global model ‘g’ with initial weights
𝑤0 for a random subset of 𝑠𝑡 clients.
• The weights are modified using the local objective mini-

mization and averaging techniques.
• Lastly, to update the parameters of the global model g, the

server receives updates from all involved clients and com-
putes an average model 𝑤𝑡 in accordance with equation (8).

𝑤𝑡 ←
𝐾∑︁
𝑘

𝑛𝑘

𝑛
𝑤𝑡𝑘 . (8)

These are the 𝑤𝑡 parameters that were modified at round 𝑡, 𝑤𝑡
𝑘

are the parameters sent by client 𝑘 at round 𝑡, 𝑛𝑘 is the number of
data points stored on client 𝑘 , and 𝑛 is the total number of data
points that participated in collaborative training. The work is
divided into three sections: CNN architecture, federated learning
setup, and label-flipping attack configuration. For training a
model that is utilized for image classification, MNIST dataset is
used. All of the experiments were designed to train the model
federatively utilizing ten virtual workers or agents, as well as to
introduce and prevent malicious attacks by one or more agents.
Dataset description: The Modified National Institute of Stan-
dards and Technology dataset is known by the abbreviation
MNIST dataset. This dataset includes 70 000 handwritten single
digits between 0 and 9 in small square 28 by 28 pixel grayscale
images. So, we are dividing this dataset into 60 000 training pho-
tos and 10 000 testing images. The training-testing ratio would
be 85:15.

For demonstrating the security algorithms over FL frame-
works, our proposed methodology includes the implementation

6 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 3, p. e148944, 2024

FedAssess

in CNN for image classification for MNIST Dataset over the
PySyft and Flower framework. The implementation for the effi-
cient communication of the clients and server are demonstrated
using the FedAvg and FedProx and for privacy preservation the
Differential privacy is implemented/employed. Threat analysis
is carried out on this implementation against label-flipping at-
tack and mitigation strategy is demonstrated in the next section.

6. THREAT ANALYSIS

6.1. Threat and adversary model in label flipping attack

Participants in a federated learning system share model param-
eters with the centralized server rather than their dataset. There
is no one to check each participant’s dataset, which creates a
vulnerability when the global model trains over each partic-
ipant’s dataset. An attacker can manipulate the training data
such that the model learns incorrect patterns in label-flipping
attack. Label-flipping attacks have the potential to weaken the
resilience of machine learning models, leading to a substan-
tial drop in their performance when used for real-world data.
Label-flipping attacks can have significant effects in applica-
tions that utilize machine learning models for security-sensitive
tasks, such as malware detection and fraud detection. A com-
promised model may fail to detect malicious activities, leading
to security breaches. The objective of a targeted attack is to de-
liberately influence the behavior of the model in order to get it
to incorrectly classify a particular set of instances.

An adversary participant can misclassify intentionally for
example “Digit 1” data samples of the local training data as
“Digit 7”. The Scenario is explained in Fig. 2 [15].

Fig. 2. Federated learning with label-flipping attacks

Since malevolent players can choose which class the model
should identify, label-flipping is a targeted data poisoning attack.
Each malevolent client 𝐶𝑖 alters their dataset by changing 𝑐src
to 𝑐tar, given a source class 𝑐src and a target class 𝑐src from 𝐶.
As a result, the final global model M accuracy suffers, as it is
more likely to misclassify images during testing.

6.2. Attack simulation

Attacking is simulated by establishing two PySyft federated
loaders, one with genuine (benign) training data and the other
with identical training data in the same sequence, but with the

class labels swapped on one or all instances of a class (malicious
data). The training logic iterates over both loaders, but batches
from the benign and malicious data loaders are distributed to
virtual benign and malicious agents, respectively. Training is
carried out through a series of “timestamp” iterations, with the
global model being disseminated to all agents and each agent
receiving its initial batch of training data at the start of each iter-
ation. During many training epochs per timestamp, each agent
local model is incrementally updated. The model update param-
eters are calculated at the end of each timestamp by comparing
the trained agent models to the global model that was originally
broadcast to the agents.

The updates of malicious agents are boosted by a factor of
10, which is evenly divided across the malicious agents before
the model parameter updates are collected and applied to the
global model. For example, with only one hostile agent, model
parameter updates would be boosted ten-fold, whereas, with two
agents, each would be boosted five-fold, and so on. The changes
are added to the global model before being delivered to the
agents for the next scheduled iteration of training after they have
been aggregated via weighted average.

6.3. Threat mitigation and prevention against label-flipping
attack

The malicious agent seeks to attack the base model by increasing
the weight deltas, which implies they must be relatively large
compared to the weight deltas of benign agents to have an in-
fluence when all of the agents weight deltas are added together.
To detect the anomalous agents in our experiment, a two-step
technique implemented is given below.

6.3.1. Calculating the average distance

1. For each layer the distance between the weight deltas is
calculated using the matrix multiplication method.

2. The weight deltas between two agents inside a layer are x1
and x2.

3. The p-norm distance between each vector pair ∈ [0,∞] is
calculated using the parameter p.

4. Find the mean of the Euclidean distance, which indicates
how dissimilar the means of two agents in a single layer are
on average.

6.3.2. Ranking system

1. Score each layer agents based on how close or far they are
to other agents.

2. The punishment metric is utilized, and each agent ranks the
other agents according to how far they are from it.
• The one who is closest to you gets a higher rank than

the one who is far away.
• The top 30%, average 40%, and worst 30% of the

rankings are divided into three groups.
• Punishment increases from the top to the bottom (re-

mains the same within the group).
3. After calculating the score for each agent across all levels at

a time stamp. Check if the score is less than a THRESHOLD

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 3, p. e148944, 2024 7

R Anusuya and D Karthika Renuka

= Mean + SD, If Check is true, Tag agent as non-malicious
Else, Tag Agent as malicious

4. The mean+SD provided insight into how different the larger
score is from the lesser ones, which was useful in determin-
ing the threshold.

7. RESULTS AND DISCUSSION

7.1. Evaluation metrics

The metrics Precision, Recall, F1-Score, and False Positive Rate
are used to assess the effectiveness of the proposed model’s
categorization and are defined as follows.

Accuracy: The Accuracy score is the proportion of correctly
categorized images relative to the total number of images.

Accuracy =
TN+TP

TN+TP+FP+FP
. (9)

Precision: The percentage of classification that were gen-
uinely accurate is known as precision.

Precision =
TP

TP+FP
. (10)

Recall: Recall measures a model ability to properly identify
all instances of a certain class within a dataset. For example, if
we want to measure the model’s performance for classifying the
hand written image 5, recall measures the percentage of actual
image of ‘5’ in the dataset that is actually classified as ‘5’

Recall =
TP

TP+FN
. (11)

F1-Score: This metric helps to identify how many times a
model made correct prediction and is a measure of accuracy.

F1-score =
2∗Precision∗Recall

Precision+Recall
. (12)

A True Positive (TP) is a picture that a machine learning model
properly identifies as being a member of a certain class or cat-
egory. For example, the hand-written image of number ‘9’ if
properly classified by the model as ‘9’, then it is TP.

A machine learning model that wrongly classifies a picture
as being a member of a certain class or category is known as a
False Positive (FP).

A True Negative (TN) in image classification is an image that
a machine learning model properly identifies as not being within
a specific class or category.

A False Negative (FN) in image classification is when an
image is labelled as negative (not falling under a certain class)
even when it does in fact fall under that class.

The accuracy is compared between various security algo-
rithms and framework and here are the result analysis.

From Fig. 3, we conclude that the Pysyft framework works
better in terms of accuracy than the Flower framework. Pysyft
framework gives an accuracy of about 99% and Flower frame-
work has an accuracy of 92%. Pysyft can be used to implement

Fig. 3. Accuracy comparision

some privacy preserving algorithms where as it is not possible
in Flower framework.

When privacy algorithms applied to the FL framework, the
accuracy does not drastically change and remains the same for a
few algorithms such as secure multi party computation with an
accuracy of 99%. Whereas the other algorithms gave an accuracy
of 97% for Secure Aggregation and 89% for Differential Privacy.
The noise that is added to the gradients is what causes the
accuracy for DP to decrease. Though there is a decrease, it
makes it harder for an attacker to identify individual data in the
training set thus providing more privacy.

From the graph in Fig. 4, we can understand that federated
learning implemented in Pysyft framework executes the highest
accuracy of 99% and federated learning with DP executes the
lowest accuracy of 89%.

Fig. 4. Comparision based on evaluation metrics

The loss and accuracy of when algorithms FedProx and Fe-
dAvg were implemented is shown below.

Figures 5 and 6 represent the accuracy graph of training the
model on 3 clients using FedProx and FedAvg algorithms re-
spectively. All the clients were executed with same configuration
on i5-9400 machines. The accuracy is approximately around
90% for both the algorithms. For label-flipping attack, we have
calculated the misclassification rates:

Misclassification Rate

=
Number of misclassified class 5 -> images

Total number of class 5 images
∗100, (13)

8 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 3, p. e148944, 2024

FedAssess

Global model accuracy

=
No. of Correct Predictions

Total no. of images in test dataset
∗100. (14)

Attack success rate (ASR) is the percentage of samples from the
source class that were misclassified as belonging to the target
class. ASR value should be low.

Fig. 5. Loss and accuracy of FedProx

Fig. 6. Loss and accuracy of FedAvg

We deployed one malevolent agent and nine benign agents in
our scenario. The dataset was spread evenly among all agents,
and the malicious agent training data was adjusted for targeted
attack by changing all class 5 sample labels to class 7. The
datasets were also switched between timestamps to ensure that
both benign and malicious agents received a fresh set of train-
ing examples, while the malicious agent data was distorted by
changing its class from 5 to 7. We gradually increased the num-
ber of malicious clients and found our work robust even when
there is increase in number of clients. The attack success rate of
our work and FGold is compared and the results are shown in
the next section.

The malicious agent weight delta boosting factor is calculated.
The boosting factor in this example is 10 because the weights are
evenly distributed. In this case, two trials were carried out with
attack prevention disabled and with attack prevention enabled.

7.2. Attack prevention disabled

The global model accuracy on the test dataset is represented
by the orange line, whereas the global model misclassification
accuracy on class 5 is represented by the blue line in Fig. 7.

Fig. 7. Accuracy/misclassification rate of attack

The global model is quite confident (approximately 75%)
in its misclassification at timestamp 1, while the overall accu-
racy is only about 60%. The weight deltas from benign agents
override the influence of the malicious agent delta in times-
tamp 2, resulting in an extremely low misclassification rate.
With higher timestamps, the oscillating behavior is repeated,
with the global model misclassification confidence stabilizing.
However, the global model misclassification does not totally sta-
bilize even after 13 timestamps. At the end of the training, the
overall accuracy of the test dataset reaches 76%.

7.3. Attack prevention enabled

The behavior is absolutely different in this instance. The attack
detection and prevention approach identifies malicious updates
and prevents them from influencing the global model. Figure 8
shows the situation. At timestamp 1, the global model is mod-
erately confident in misclassifying class 5 to class 7 on the test
data, but its misclassification confidence quickly drops in higher
timestamps, reaching low confidence of roughly 3% by the end
of timestamp 13. The accuracy of the whole global model is
similarly trending upwards, reaching 85 percent by the end of
timestamp 13. The analysis shows that the hostile agent had
no effect on the global model, proving that attack prevention
worked.

Fig. 8. Accuracy/misclassification rate of attack when attack is enabled

7.4. Comparison with existing approach

The work is tested against existing method for Poisoning Attack
FoolsGold (FGold) [22] on the metrics ASR. The result of anal-
ysis is showed in Fig. 9. Our work proves to be stable even when

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 3, p. e148944, 2024 9

R Anusuya and D Karthika Renuka

Fig. 9. Analysis of attack success rate

the number of malicious clients increases and attack success
rate seems to be low when compared to FoolsGold [22].

8. CONCLUSION

In this article, federated learning has been implemented for
benchmark data set and we have found the accuracy has im-
proved compared to a centralized machine learning system. Our
work has analyzed FL with additional security features and im-
plemented algorithms for communication efficient Federated
Learning. The proposed model demonstrates label-flipping at-
tack in FL and developed a novel method for mitigating model
poisoning attack. All our empirical results prove that our work is
robust against label-flipping attack and the model performs well,
even after adding all the security algorithms. We have demon-
strated the work in two different FL frameworks. Our future
work focuses on quantum computing based federated learning
which provides better performance in FL with any ML model
and is more secure.

REFERENCES

[1] K. Kuźniewski, K. Matusiewicz, and P. Sapiecha, “The high-
level practical overview of open-source privacy-preserving ma-
chine learning solutions,” International Journal of Electronics
and Telecommunications, pp. 741–747, 2022, doi: 10.24425/
ĳet.2022.143880.

[2] X. Zheng and Z. Cai, “Privacy-preserved data sharing towards
multiple parties in industrial iots,” IEEE Journal on Selected
Areas in Communications, vol. 38, no. 5, pp. 968–979, 2020,
doi: 10.1109/JSAC.2020.2980802.

[3] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learn-
ing: Concept and applications,” ACM Transactions on Intelligent
Systems and Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019,
doi: 10.1145/3298981.

[4] M.H. Ur Rehman and M.M. Gaber, Federated learning systems:
Towards next-generation AI. Springer Nature, 2021, vol. 965, doi:
10.1007/978-3-030-70604-3.

[5] P. Kairouz et al., “Advances and open problems in federated learn-
ing,” Foundations and Trends® in Machine Learning, vol. 14, no.
1–2, pp. 1–210, 2021, doi: 10.1561/2200000083.

[6] G. Bao and P. Guo, “Federated learning in cloud-edge collabora-
tive architecture: key technologies, applications and challenges,”
J. Cloud Comput., vol. 11, no. 1, p. 94, 2022, doi: 10.1186/
s13677-022-00377-4.

[7] C. Dwork, “Differential privacy: A survey of results,” in Theory
and Applications of Models of Computation: 5th International
Conference, TAMC 2008, Proceedings 5 China: Springer, 2008,
pp. 1–19, doi: 10.1007/978-3-540-79228-4_1.

[8] C. Gentry, “Fully homomorphic encryption using ideal lattices,”
in Proceedings of the forty-first annual ACM symposium on The-
ory of computing, 2009, pp. 169–178, doi: 10.1145/1536414.
1536440.

[9] R. Johnson and T. Zhang, “Accelerating stochastic gradient de-
scent using predictive variance reduction”, Advances in Neural
Information Processing Systems, vol. 26, 2013, [Online]. Avail-
able: https://proceedings.neurips.cc/paper_files/paper/2013/file/
ac1dd209cbcc5e5d1c6e28598e8cbbe8-Paper.pdf

[10] L. Lyu, H. Yu, and Q. Yang, “Threats to federated learning: A sur-
vey,” arXiv preprint arXiv:2003.02133, 2020, doi: 10.48550/
arXiv.2003.02133.

[11] N. Rodríguez-Barroso, D. Jiménez-López, M. V. Luzón, F. Her-
rera, and E. Martínez-Cámara, “Survey on federated learning
threats: Concepts, taxonomy on attacks and defences, experi-
mental study and challenges,” Inf. Fusion, vol. 90, pp. 148–173,
2023, doi: 10.1016/j.inffus.2022.09.011.

[12] P. Rieger, T.D. Nguyen, M. Miettinen, and A.-R. Sadeghi, “Deep-
sight: Mitigating backdoor attacks in federated learning through
deep model inspection,” arXiv preprint arXiv:2201.00763, 2022,
doi: 10.48550/arXiv.2201.00763.

[13] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov,
“How to backdoor federated learning,” in International Confer-
ence on Artificial Intelligence and Statistics. PMLR, 2020, pp.
2938–2948. [Online]. Available: https://proceedings.mlr.press/
v108/bagdasaryan20a.html

[14] Z. Chen, P. Tian, W. Liao, and W. Yu, “Towards multi-party
targeted model poisoning attacks against federated learning sys-
tems,” High-Confidence Computing, vol. 1, no. 1, p. 100002,
2021, doi: 10.1016/j.hcc.2021.100002.

[15] S. Awan, B. Luo, and F. Li, “Contra: Defending against poisoning
attacks in federated learning,” in Computer Security–ESORICS
2021: 26th European Symposium on Research in Computer Se-
curity, Darmstadt, Germany, October 4–8, 2021, Proceedings,
Part I 26. Springer, 2021, pp. 455–475, doi: 10.1007/978-3-030-
88418-5_22.

[16] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data poi-
soning attacks against federated learning systems,” in Computer
Security–ESORICS 2020: 25th European Symposium on Re-
search in Computer Security, ESORICS 2020, Proceedings, Part
I 25. UK: Springer, 2020, pp. 480–501, doi: 10.1007/978-3-030-
58951-6_24.

[17] V. Valadi, X. Qiu, P.P.B. de Gusmão, N.D. Lane, and M. Al-
ibeigi, “Fedval: Different good or different bad in federated learn-
ing,” arXiv preprint arXiv:2306.04040, 2023, doi: 10.48550/
arXiv.2306.04040.

[18] R. Anusuya, D. Karthika Renuka, S. Ghanasiyaa, K. Harshini,
K. Mounika, and K. Naveena, “Privacy-preserving blockchain-
based ehr using zk-snarks,” in Computational Intelligence, Cyber
Security and Computational Models. Recent Trends in Compu-
tational Models, Intelligent and Secure Systems: 5th Interna-
tional Conference, ICC3 2021, Revised Selected Papers. India:
Springer, 2022, pp. 109–123, doi: 10.1007/978-3-031-15556-7_8.

[19] A. Ziller et al., “Pysyft: A library for easy federated learning,”
Federated Learning Systems: Towards Next-Generation AI, pp.
111–139, 2021, doi: 10.1007/978-3-030-70604-3_5.

10 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 3, p. e148944, 2024

https://doi.org/10.24425/ijet.2022.143880
https://doi.org/10.24425/ijet.2022.143880
https://doi.org/10.1109/JSAC.2020.2980802
https://doi.org/10.1145/3298981
https://doi.org/10.1007/978-3-030-70604-3
https://doi.org/10.1561/2200000083
https://doi.org/10.1186/s13677-022-00377-4
https://doi.org/10.1186/s13677-022-00377-4
https://doi.org/10.1007/978-3-540-79228-4_1
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://proceedings.neurips.cc/paper_files/paper/2013/file/ac1dd209cbcc5e5d1c6e28598e8cbbe8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/ac1dd209cbcc5e5d1c6e28598e8cbbe8-Paper.pdf
https://doi.org/10.48550/arXiv.2003.02133
https://doi.org/10.48550/arXiv.2003.02133
https://doi.org/10.1016/j.inffus.2022.09.011
https://doi.org/10.48550/arXiv.2201.00763
https://proceedings.mlr.press/v108/bagdasaryan20a.html
https://proceedings.mlr.press/v108/bagdasaryan20a.html
https://doi.org/10.1016/j.hcc.2021.100002
https://doi.org/10.1007/978-3-030-88418-5_22
https://doi.org/10.1007/978-3-030-88418-5_22
https://doi.org/10.1007/978-3-030-58951-6_24
https://doi.org/10.1007/978-3-030-58951-6_24
https://doi.org/10.48550/arXiv.2306.04040
https://doi.org/10.48550/arXiv.2306.04040
https://doi.org/10.1007/978-3-031-15556-7_8
https://doi.org/10.1007/978-3-030-70604-3_5

FedAssess

[20] D.J. Beutel et al., “Flower: A friendly federated learning re-
search framework,” arXiv preprint arXiv:2007.14390, 2020, doi:
10.48550/arXiv.2007.14390.

[21] P. Blanchard, E.M. El Mhamdi, R. Guerraoui, and J. Stainer,
“Machine learning with adversaries: Byzantine tolerant gra-
dient descent,” in Advances in Neural Information Process-
ing Systems 30 (NIPS 2017), vol. 30, 2017. [Online]. Avail-
able: https://proceedings.neurips.cc/paper_files/paper/2017/file/
f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf

[22] C. Fung, C.J.M. Yoon, and I. Beschastnikh, “The limita-
tions of federated learning in sybil settings,” in 23rd Interna-
tional Symposium on Research in Attacks, Intrusions and De-
fenses (RAID 2020). San Sebastian, USA: USENIX Association,
2020, pp. 301–316. [Online]. Available: https://www.usenix.org/
conference/raid2020/presentation/fung

[23] N.M. Jebreel, J. Domingo-Ferrer, D. Sánchez, and A. Blanco-
Justicia, “Defending against the label-flipping attack in feder-
ated learning,” arXiv preprint arXiv: 2207.01982, vol. abs/2207.
01982, 2022, doi: 10.48550/arXiv.2207.01982.

[24] A.F. Siegel, “Robust regression using repeated medians,” Bio-
metrika, vol. 69, no. 1, pp. 242–244, 1982.

[25] A.K. Singh, A. Blanco-Justicia, J. Domingo-Ferrer, D. Sánchez,
and D. Rebollo-Monedero, “Fair detection of poisoning attacks in
federated learning,” in 2020 IEEE 32nd International Conference
on Tools with Artificial Intelligence (ICTAI). IEEE, 2020, pp.
224–229, doi: 10.1109/ICTAI50040.2020.00044.

[26] L. Zhao et al., “Shielding collaborative learning: Mitigating poi-
soning attacks through client-side detection,” IEEE Trans. De-
pendable Secur. Comput., vol. 18, no. 5, pp. 2029–2041, 2020,
doi: 10.1109/ TDSC.2020.2986205.

[27] Z. Ma, J. Ma, Y. Miao, Y. Li, and R.H. Deng, “Shieldfl: Mitigating
model poisoning attacks in privacy-preserving federated learn-
ing,” IEEE Trans. Inf. Forensic Secur., vol. 17, pp. 1639–1654,
2022, doi: 10.1109/TIFS.2022.3169918.

[28] S. Shen, S. Tople, and P. Saxena, “Auror: Defending against
poisoning attacks in collaborative deep learning systems,” in
Proceedings of the 32nd Annual Conference on Computer Se-

curity Applications, 2016, pp. 508–519, doi: 10.1145/2991079.
2991125.

[29] M. Hirt and D. Tschudi, “Efficient general-adversary multi-party
computation,” in Advances in Cryptology-ASIACRYPT 2013:
19th International Conference on the Theory and Application
of Cryptology and Information Security, Bengaluru, India, De-
cember 1-5, 2013, Proceedings, Part II 19. Springer, 2013, pp.
181–200, doi: 10.1007/978-3-642-42045-0_10.

[30] S. Wagh, D. Gupta, and N. Chandran, “Securenn: 3-party secure
computation for neural network training.” Proc. Priv. Enhancing
Technol., vol. 2019, no. 3, pp. 26–49, 2019, doi: 10.2478/popets-
2019-0035.

[31] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N.P.
Smart, “Practical covertly secure mpc for dishonest majority–or:
breaking the spdz limits,” in Computer Security–ESORICS 2013:
18th European Symposium on Research in Computer Security,
Egham, UK, September 9-13, 2013. Proceedings 18. Springer,
2013, pp. 1–18, doi: 10.1007/978-3-642-40203-6_1.

[32] K. Bonawitz et al., “Practical secure aggregation for privacy-
preserving machine learning,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security,
2017, pp. 1175–1191, doi: 10.1145/3133956.3133982.

[33] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B.A. y Ar-
cas, “Communication-efficient learning of deep networks from
decentralized data,” in Artificial intelligence and statistics.
PMLR, 2017, pp. 1273–1282. [Online]. Available: https://
proceedings.mlr.press/v54/mcmahan17a.html

[34] T. Li, A.K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and
V. Smith, “Federated optimization in heterogeneous networks,”
Proceedings of Machine learning and systems, vol. 2, pp. 429–
450, 2020. [Online]. Available: https://proceedings.mlsys.org/
paper/2020/file/38af86134b65d0f10fe33d30dd76442e-Paper.pdf

[35] S. Kit Lo, Q. Lu, L. Zhu, H.-y. Paik, X. Xu, and C. Wang,
“Architectural patterns for the design of federated learning sys-
tems,” arXiv preprint arXiv: 2101.02373, 2021, doi: 10.48550/
arXiv.2101.02373.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 3, p. e148944, 2024 11

https://doi.org/10.48550/arXiv.2007.14390
https://proceedings.neurips.cc/paper_files/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://www.usenix.org/conference/raid2020/presentation/fung
https://www.usenix.org/conference/raid2020/presentation/fung
https://doi.org/10.48550/arXiv.2207.01982
https://doi.org/10.1109/ICTAI50040.2020.00044
https://doi.org/10.1109/TDSC.2020.2986205
https://doi.org/10.1109/TIFS.2022.3169918
https://doi.org/10.1145/2991079.2991125
https://doi.org/10.1145/2991079.2991125
https://doi.org/10.1007/978-3-642-42045-0_10
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1145/3133956.3133982
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlsys.org/paper/2020/file/38af86134b65d0f10fe33d30dd76442e-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/38af86134b65d0f10fe33d30dd76442e-Paper.pdf
https://doi.org/10.48550/arXiv.2101.02373
https://doi.org/10.48550/arXiv.2101.02373

	INTRODUCTION
	 BACKGROUND
	Cloud-edge computing
	Federated learning
	Attacks in federated learning
	Federated learning frameworks

	RELATED WORK
	Proposed Methodology
	Secure multi-party computation
	Secure aggregation
	Differential privacy
	Optimization algorithms in federated learning: FedAvg and FedProx
	FedAvg
	FedProx

	IMPLEMENTATION
	 THREAT ANALYSIS
	Threat and adversary model in label flipping attack
	Attack simulation
	Threat mitigation and prevention against label-flipping attack
	Calculating the average distance
	Ranking system

	Results and Discussion
	Evaluation metrics
	Attack prevention disabled
	Attack prevention enabled
	Comparison with existing approach

	Conclusion

