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Abstract
Low-cost sensor arrays are an economical and efficient solution for large-scale networked monitoring of
atmospheric pollutants. These sensors need to be calibrated in situ before use, and existing data-driven
calibration models have been widely used, but require large amounts of co-location data with reference
stations for training, while performing poorly across domains. To address this problem, a meta-learning-
based calibration network for air sensors is proposed, which has been tested on ozone datasets. The tests
have proved that it outperforms five other conventional methods in important metrics such as mean absolute
error, root mean square error and correlation coefficient. Taking Manlleu and Tona as the source domain
and Vic as the target domain, the proposed method reduces MAE and RMSE by 17.06% and 6.71% on
average, and improves R2 by an average of 4.21%, compared with the suboptimal pre-trained multi-source
transfer calibration. The method can provide a new idea and direction to solve the problem of cross-domain
and reliance on a large amount of co-location data in the calibration of sensors.
Keywords: low-cost sensor array, ozone pollutants, timing characteristics, meta-learning algorithm, calibra-
tion.
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1. Introduction

Urban air pollution notably impacts the quality of life and overall public health. Contaminants
such as particulate matter (PM), ozone (O3), carbon monoxide (CO), and nitrogen dioxide (NO2)
are capable of provoking ailments associated with both the respiratory and cardiovascular systems.
According to the World Health Organization (WHO), over 4.2 million deaths occur annually due to
air pollution [1]. In order to enhance the monitoring and control of air pollution, governments and
related entities have deployed high-precision reference stations in critical areas, but rising costs and
high maintenance have prevented intensive deployment. In recent years, low-cost sensor arrays
(LCSAs), consisting of low-cost target pollutants sensors and other sensors such as temperature,
humidity [2–5] and other gases that are cross-sensitive to the target pollutants [4–6], have been
applied in urban concentration monitoring due to their low price, removability and maintenance-
free characteristics [7–10].
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Given the potential drift in measurement outcomes induced by environmental shifts and in-
trinsic sensor aging following the deployment of the LCSA [11, 12], the accuracy and reliability
of measurement data may be compromised. Thus, post-calibration becomes decidedly criti-
cal [13,14]. Post-calibration refers to the calibration process undertaken after sensor deployment,
devised to eliminate error sources that could destabilize sensor performance in actual deployment
environments, thereby augmenting the measurement precision and data quality of the LCSA. The
calibration models currently use a variety of methods ranging from simple statistical learning
methods [15–19] to complex deep learning techniques [20–23], from a “one-to-one” approach
where the measured values at the current moment are input to output the calibrated values at
that moment, to a “many-to-many” approach where the measured values at a set of consecutive
moments are input to output the calibrated values at the corresponding moment [20]. Most cal-
ibration models require the LCSA to be co-located with a reference station for a long period of
time to obtain sufficient data for training [23] and to adapt to current patterns of environmental
pollutant change. In practice, however, complex models with weak generalization capabilities can
degrade or even become unusable when the LCSA crosses the domain into a new environment, at
which point the LCSA needs to be co-located with a reference station within this new setting for
a long period of time and the model retrained using the new data. Even some areas have problems
such as low sampling frequency of reference stations or restricted access to reference station data.
This results in the calibration model of LCSA in that area not learning the optimal parameters,
thus affecting measurement accuracy.

Recent studies have addressed the problem above by transfer calibration, and papers [22,24,25]
have applied transfer calibration to map raw feature data collected by low-cost PM2.5 sensor arrays
in the source and target domains in high dimensions, allowing the target domain sensor arrays
to be calibrated with the help of readings from reference stations in the source domain, but this
approach requires sensors to collect raw data in the target domain for a sufficient length of time to
achieve this. Methods [23,26,27] include the use of source domain data to generate a pre-trained
model and a small amount of data in the target domain to fine-tune the model parameters to form
a calibration model with high accuracy in the target domain. However, the calibration model
used does not capture the dynamic patterns of pollutants over time, and most gaseous pollutants
demonstrate periodicity, thus this method is not the best choice for calibrating LCSA.

In light of this, we have devised a calibration method: initially proposing a temporal LCSA
calibration model – an air sensor calibration network (ASCN). Subsequently, in conjunction with
the model-agnostic meta-learning (MAML), we formed ASCN-MAML. This method ultimately
solves the cross-domain problem in LCSA calibration models and the scarcity of target domain
data. In paper [24], the authors propose a hypothesis that when the distance between the source
domain and the target domain is sufficiently close, the distribution of the actual concentration
of pollutants in both locations is similar over a certain period. Based on this assumption, an
in-field calibration transfer (ICT) method is proposed, mapping the data collected by the LCSA
in the target domain and source domain, thereby enabling the LCSA of the target domain to
be calibrated with the help of the reference station in the source domain. However, this method
requires the LCSA to be placed in the target domain for a period of time to collect sufficient
measurement data. The method proposed in this paper, ASCN-MAML, utilizes a meta-learner
generated from co-location data in the source domain, and only needs to utilize a small amount
of co-location data in the target domain to allow the meta-learner to quickly converge, creating
a calibration model adapted to the target domain, thus enabling the LCSA to be rapidly deployed
in the target domain. In paper [23], the authors proposed a low-cost PM2.5 calibration method
based on domain adaptation. This method uses a deep neural network (DNN) as the basic model,
creates a pre-trained model with co-location data from the source domain and fine-tunes the
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model with a small amount of co-location data from the target domain. The quickly generated
calibration model performs reasonably well in the target domain. However, the basic DNN model
used by the authors is a simple one-to-one model that does not consider the temporal changes
in pollutant concentration. The basic ASCN model used in this paper employs a self-attention
mechanism, capturing the dynamic patterns of pollutant concentration over time, thus offering
performance superior to the DNN. In addition, the multi-source transfer calibration method
with pre-training and fine-tuning used in this paper generates a pre-training model in which
parameters are optimized in the source domain. This paper, aided by the special mechanism
of MAML, uses a meta-learner generated from co-location data from multiple source domains,
which takes into account the entire domain, including the optimal initial parameters of the target
domain, and allowing the model to quickly adapt to the target domain while maintaining superior
measurement accuracy.

1. ASCN introduces past and future measurements to capture the dynamic pattern of gas
concentration changes over time, providing higher accuracy than conventional models.

2. ASCN uses meta-learning MAML training to solve the problem of poor ASCN performance
across domains, and has higher accuracy compared to existing pre-training-fine-tuning
based migration calibration methods.

3. The method significantly reduces the training cost of the model in the target domain by
leveraging the source domain data, and the model is able to converge quickly with only
a small amount of data in the target domain, which is more advantageous than conventional
methods when faced with scenarios where co-location data is insufficient due to restricted
access to reference station data, etc.

2. Design of methods

2.1. Summary

As shown in Fig. 1, the method consists of two phases. In the meta-learner training stage,
continuous-time data is extracted from each source domain to generate a meta-learner with an

Fig. 1. ML calibration method flow: co-location data extraction, ASCN-MAML meta-learner generation, target domain
model training, and sensor calibration.
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ASCN as the base model in a MAML training method, which carries optimal parameters that can
be quickly adapted to the target domain. In the specific model generation stage, the meta-learner is
fine-tuned using a small amount of co-location data from the target domain to generate a specific
ASCN available in that target domain, which is used to calibrate the LCSA readings in the target
domain at subsequent times.

This section then briefly describes the network structure of the ASCN calibration model and
focuses on the role of its key modules and the MAML meta-learning algorithm.

2.2. ASCN

2.2.1. Model structure

Our proposed calibration model, the ASCN, is structured as shown in Fig. 2. ASCN takes
the measurement values of LCSAs in the past, present, and future 2𝛿 time steps, and constructs
a continuous time series 𝑋𝛿 ∈ 𝑅2𝛿×𝑑 as input. Here, 𝑋𝛿 represents the time series matrix of the
input sensor array readings, 2𝛿 represents the length of the input time series, and 𝑑 represents
the dimension of the original and derived features collected by a single sensor array. The model
finally outputs the calibrated values𝑌𝛿 ∈ 𝑅2𝛿×1 of the target pollutant sensor at the corresponding
time.

The main part of this network is the multi-headed self-attention module, which inspired us
the successful applications of TransFormer [28] in natural language processing [29–31], time

Fig. 2. ASCN calibration model: initial Conv1D and Relu for hidden representation, Position Embedding for relative
position capture, Transformer Encoder for inter-temporal relationship learning, and final Conv1D for moment-specific

calibration output.
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series prediction [32, 33] and other fields. As the multi-headed self-attention module is more
adept at handling complex inputs, the time series matrix 𝑋𝛿 ∈ 𝑅2𝛿×𝑑 is first mapped to a hidden
representation𝑈𝛿 ∈ 𝑅2𝛿×𝑠 by a 1D convolutional layer and a rectified linear unit (Relu) activation
function before being input to the module, where 𝑠 represents the hidden dimension. The Relu, is
used to increase training speed, improve non-linearity, gradient propagation and reduce overfitting.
The position embedding module adds a position matrix𝑈pos to the input which is used to capture
the relative position of the LCSA acquisition data. The order of inputting to the LCSA acquisition
data is important as it contains information about how the sensor readings change over time.

The multi-headed self-attention module is able to fully learn the hidden relationships between
the readings taken by the LCSA at each moment in the input time series data and the readings
taken by the sensor array at other moments in the series, with a single self-attention module
represented as follows:

𝐴𝑖 = Softmax
(
𝛼𝑄𝑖𝐾
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𝑖

)
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denoting the scaling factor used to mitigate the product

magnitude within a large number of matrices.
The entire TransFormer coding module is computed as follows: first the feature hiding matrix

𝑈𝛿 ∈ 𝑅2𝛿×𝑠 is merged with the position matrix 𝑈pos to form a new matrix 𝑈 as input, after 𝐾
self-attention modules, the residual connections are used to maintain the original information
and prevent the gradient from disappearing, and finally the training process is stabilized by
normalization to prevent overfitting. It is expressed by the mathematical expression as:

𝑈 = concat (𝑈𝛿 ; 𝑈pos) , (2)

𝑈𝑘 = 𝐵𝑁 (𝑀𝑆𝐾𝑘 (𝑈) +𝑈) , 𝑘 = 1, 2, . . . , 𝐾. (3)

The output𝑈𝑘 , 𝑘 = 1, 2, . . . , 𝐾 of the TransFormer coding module is used as input to the 1D
convolutional layer, which outputs the calibration values 𝑌𝛿 ∈ 𝑅2𝛿×1 of the target gas sensor in
the LCSA.

2.2.2. Loss function

Our task is to solve the multiple output regression problem, the choice of loss function is
a current hot research content, the commonly used loss function is the mean square error, Eq:

𝐿MSE =
1
2𝛿

2𝛿∑︁
𝑖

(
𝑌𝑖 − 𝑌𝑖

)2
. (4)

However, in practical application scenarios, the calibrated value of the output of the model
after using 𝐿MSE does not correctly capture the dynamic shape of the true pollutants value over
the time series, so this paper introduces a shape and time loss function 𝐿DILATE [34]. In summary,
the loss function used in this paper is formulated as:

𝐿 = _𝐿MSE + `𝐿DILATE, (5)

where _ and ` are used to balance the constants of the two loss functions. 𝐿DILATE in (5) is
defined as:

𝐿DILATE = 𝜔𝐿shape + (1 − 𝜔)𝐿temporal . (6)
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In the equation, 𝐿shape represents the shape-based loss function, while 𝐿temporal stands for
the time-based loss function, both of which are predicated upon the dynamic time warping
(DTW) algorithm. 𝜔 is the weighting factor that orchestrates the relative significance of shape
and temporal aspects. 𝐿DILATE proves notably instrumental in addressing time series prediction
issues as it explicitly disassembles the penalties affiliated with errors in shape and temporal
alignment. This implies that the loss function dissects the loss into two distinct components:
one concerning shape misalignment, and the other relating to temporal discrepancies, thereby
facilitating a more precise and accurate prediction of abrupt fluctuations in non-stationary signals.
The shape component penalizes inaccuracies in the prediction of the signal’s shape. In contrast,
the temporal component penalizes timing errors in the predicted changes. More exhaustive details
concerning this loss function can be procured from the indicated literature [34].

2.3. Meta-learning algorithms

Model-agnostic meta-learning (MAML) algorithms [35] have been applied to a variety of
problems, including few-shot learning, multi-task learning and reinforcement learning [36].
MAML trains a meta-learner with strong generalization capabilities based on source domain
data, and learns from only a small amount of data in the target domain, achieving a high level of
performance of the model in the target domain in a small number of iterations.

The basic model ASCN, based on the MAML training approach, uses data from multiple
source domains to train a meta-learner𝑀ASCN

meta with initialization parameters that converge quickly
in the target domain for different environments and pollutant concentrations followed by a small
number of data pairs in the target domain where there is a shortage of data to fine-tune the model
𝑀ASCN

meta to a specific model 𝑀ASCN
fine−tune that can be adapted to a particular target domain, as follows:

Training the meta-learner 𝑀ASCN
meta on the source domain: First, a random initialization 𝑀ASCN

meta
is done to extract a continuous segment of data 𝑝𝑖 from the source domain and divide it into
a support set 𝐷𝑆pi

source and a query set 𝐷𝑄pi
source. 𝐷

𝑆pi
source is used to train the ASCN, while 𝐷𝑄pi

source is
used to evaluate the performance of ASCN and train 𝑀ASCN

meta .
The gradient update formula used to train the ASCN is

\pi ← \pi − 𝛼∇\pi𝐿𝐷
𝑆pi
source

(
\pi

)
. (7)

Here, 𝛼 is the learning rate. The loss function is defined in (5)
For training the meta-learner 𝑀ASCN

meta with different time periods of query set 𝐷𝑄pi
source, and

updating the parameters 𝜑 in the 𝑀ASCN
meta , the equation is

𝜑← 𝜑 − 𝛽
∑︁
𝑖

∇𝜑𝐿
𝐷

𝑄pi
source

(
\pi

)
. (8)

Here, 𝛽 is the learning rate. The loss function is used in (5).
The final meta-learner𝑀ASCN

meta is saved and the specific ASCNs trained by the different support
sets 𝐷𝑄pi

source are discarded.
To train a specific model 𝑀ASCN

fine-tune to fit the target domain by using the target domain, we first
train the model using the parameters 𝜑 in the initialization and a small amount of data from the
target domain, update the 𝜑 again and finally test the performance using the subsequent data from
the target domain.

The pseudo-code for the computation process is presented in Algorithm 1.
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Algorithm 1 Calibration Method Based on MAML.
Requirement: 𝐷source: source domain dataset; 𝐷target: target domain dataset.
Requirement: 𝛼, 𝛽: learning rate
1 Randomly initialize parameters 𝜑
2 while not done do
3 Randomly extracting multiple sets of data 𝑝𝑖 from multiple source domains 𝐷source
4 for each data 𝑝𝑖 do
5 𝑝𝑖’s front portion of data as support set 𝐷𝑆pi

source, and the remaining data as query set 𝐷𝑄pi
source

6 Compute ∇\pi𝐿
𝐷

𝑆pi
source

(
\pi

)
7 Gradient update \pi ← \pi − 𝛼∇\pi𝐿

𝐷
𝑆pi
source

(
\pi

)
8 Evaluate 𝐿

𝐷
𝑄pi
source

(
\pi

)
9 end for

10 Gradient update 𝜑← 𝜑 − 𝛽∑𝑖 ∇𝜑𝐿
𝐷

𝑄pi
source

(
\pi

)
11 end while
12 Initialize meta-learner 𝑀ASCN

meta with 𝜑
13 𝜑 is updated using a small training set of 𝐷target to generate the basic model 𝑀ASCN

fine−tune
14 Test the performance of 𝑀ASCN

fine−tune using the remaining data in 𝐷target

3. Tests and results

This section evaluates the proposed calibration method. A publicly available ozone dataset
and several conventional methods are used to assess the effectiveness and accuracy of the methods
in this paper.

3.1. Test dataset

The LCSA dataset used in this paper is from the European H2020 CAPTOR project [37], which
aims to raise public awareness of ozone pollution’s harmful effects and that of environmental
protection. The project participants deployed three test beds in Italy, Spain and Australia. These
nodes are called Captor and each node contains four SGX Sensortech MICS 2614 metal-oxide
O3 sensors, as well as one temperature and one relative humidity sensor, as shown in Fig. 3.
Each Captor node is powered by an external power supply and connected to the Internet via
Wi-Fi or 3G.

We used data from three of these devices, numbered C17013, C17016 and C17017, with data
collected from 26 May 2017 to 4. October 2017, and from their high-cost ozone reference stations
Manlleu, Tona and Vic [38], which were set up and maintained by the Government of Catalonia,
with a sampling frequency of 1 hour. Figure 4 delineates the relative positioning of the reference
station to the Captor nodes. Specifically, Captor nodes deployed across Spain are marked with
blue icons and annotated with the respective node numbers. The sites of reference stations are
designated with red icons. Data collection points integral to this study are also indicated, using
a bold red font for clarity and emphasis. In Section 3.4, Table 2 provides a further layer of
information, presenting the GPS coordinates for the ozone reference stations situated in Manlleu,
Tona, and Vic. Different features in the dataset have different ranges of data values. Because
calibration model accuracy and training efficiency are affected by the scale of the input data, we
normalized the feature portion of the dataset through the MinMaxScaler function in Scikit-Learn.
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Fig. 3. Photograph of the interior of the nodes of the Captor.

Fig. 4. Geographical layout of the Captor nodes: reference stations (red), Captor nodes (blue),
with a label number adjacent to each node’s mark.

3.2. Method comparison testing

A total of five comparison methods and one original method were used in this study, namely
uncalibrated (UC), target source train (TT), single source1 train (SS1), single source 2 train
(SS2), many source train (MS), and ASCN-MAML (AM). UC denotes raw collected readings
from the target contaminant sensors in the sensor array. In the dataset used, each sensor array
contains four ozone sensors, and we took the average of the four readings as the raw readings
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for that sensor array. TT denotes training of the ASCN model from scratch, using only a small
amount of target-domain data that is available, without any pretraining. SS1 and SS2 indicate
that the ASCNs were pre-trained with data sets from a single source domain respectively, and
the resulting pre-trained models were fine-tuned using a small amount of data from the target
domain. MS indicates that the ASCNs were pre-trained with data from all source domains and
fine-tuned based on a small amount of data in the target domain. AM is the method proposed in
this paper, see Section 2 for details.

3.3. Test parameter configuration

For both conventional methods mentioned in the paper and the proposed new method, the
number of self-attention modules in the basic model ASCN is one, because this paper uses
a structured dataset and too many self-attention modules will affect the meta-learner’s convergence
speed. The loss function (5) is partially set to. For this dataset, we set the timing length to _ = 1,
` = 0.15. In the three conventional methods SS1, SS2, and MS, as detailed in Section 3.3,
adaptive moment estimation (Adam) is used as the optimizer for the model ASCN. This model
has a learning rate of 3E-4. In our method, the meta-learning phase trains the basic model using
a stochastic gradient descent optimizer with a learning rate 𝛼 = 1E-3; for the training meta-learner,
Adam is used as the optimizer with a learning rate 𝛽 = 1E-4, the support data in a single training
session is the data from two days and the query set is the data from the following two days, and
the iterations are not stopped until the losses in both the support and query sets have stabilized.

3.4. Result comparison

3.4.1. Verification of the ASCN Model

In light of the self-attention mechanism inherent within the ASCN model, it competes ad-
mirably with recurrent neural network (RNN) in temporal regression problems. Hence, prior
to integrating ASCN as a foundational model with MAML, it is necessary to contrast ASCN
with existing calibration models predicated on RNN modules to substantiate its effectiveness and
accuracy. We carried out a performance comparison of the basic ASCN model with six prevalent
methods where substantial co-localization data was accessible, in locations such as Vic, Tona,
and Manlleu. The methods compared were:

1. UC: Uncalibrated raw ozone sensor readings, the average of measurements from four ozone
sensors.

2. MLR: Multivariate linear regression, a typical sensor calibration method that linearly maps
sensor readings to true values.

3. DNN: A straightforward, efficient deep learning model composed of three linear layers
and activation functions, demonstrating exceptional performance in the sensor calibration
field [23, 27]. The hidden units of the linear layer are set to 128.

4. LSTNet [39]: Long short-term time series network (LSTNet), combining convolutional
neural networks, recurrent neural networks and autoregressive modules for multivariate
time series prediction tasks. The input and output of this model were altered to apply it to
our tasks, using parameters identical to the original paper.

5. DeepCM [22]: A calibration model based on RNN, utilizing past data during calibration.
The parameters disclosed in the authors’ paper were employed.

6. ASCN-G: A variant of ASCN, which eliminated the Position Embedding module and
replaced the self-attention module with the gated recurrent unit (GRU) from RNN.
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In this assessment, the dataset used was described in detail in Section 3.1. For deep learning
models, we allocated 80%, 10%, and 10% of each location’s dataset for training, validation, and
testing, respectively. For the MLR method specifically, we used the first 90% and the last 10%
as the training and testing sets, respectively. The results, as illustrated in Table 1, indicate that
the UC method, being uncalibrated, is utterly unsuitable. MLR fails to consider the nonlinear
relationship between low-cost sensors and true concentrations, resulting in lesser accuracy than
subsequent models. Despite being a simple deep learning model, DNN excels with the dataset
from Vic, outperforming even the time-series based models, although it did not meet expectations
at the other two locations. LSTNet, DeepCM, and ASCN-G, all RNN-based temporal models,
demonstrate similar performance in this assessment.

Table 1. Test results of the ASCN model and six post-deployment calibration algorithms at different locations.

Model
Loc1: Vic Loc2: Tona Loc3: Manlleu

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

UC 72.62 91.82 –7.80 129.62 159.27 23.83 104.29 130.48 21.58
MLR 7.30 9.43 0.91 10.31 12.39 0.82 8.27 11.10 0.84
DNN 5.91 8.21 0.93 9.08 12.99 0.80 7.65 9.90 0.87

LSTNet 8.19 10.16 0.89 8.55 10.74 0.87 7.88 10.12 0.89
DeepCM 8.16 10.26 0.88 8.95 11.53 0.85 7.76 10.03 0.89
ASCN-G 6.03 8.30 0.93 8.86 11.27 0.85 8.11 10.54 0.87
ASCN 5.92 8.26 0.94 5.72 6.86 0.95 6.13 7.34 0.92

The ASCN method proposed herein proves to be the most effective in this evaluation. Av-
eraging the results from the three locations, ASCN reduces the MAE by 27.82%, 28.55%, and
22.74% compared to LSTNet, DeepCM, and ASCN-G respectively. It also reduces the RMSE
by 27.60%, 29.42%, and 25.41%, and improves R2 by 6.04%, 7.25%, and 6.04%. This superior
performance can be attributed to the self-attention mechanism within ASCN, which, compared
to RNN, captures the complex patterns of ozone concentration over time, such as periodicity
and trends, more flexibly. This mechanism can allocate different weights to each element within
the input sequence, thereby enhancing performance when dealing with time series exhibiting
complex patterns. Furthermore, both ASCN and ASCN-G introduce future measurements, thus
producing more accurate calibration values than LSTNet and DeepCM.

3.4.2. Test Results

To evaluate the approach above, the following tests were conducted as shown in Table 1.
We selected two locations as the source domain and the remaining one as the target domain.
In order to ensure the integrity of the tests, three sets of tests were done, each with a different

Table 2. Data division and coordinates of the reference site.

Source domain Target domain
(Early/Mid peak)

Target domain GPS coordinates

Longitude Latitude

Manlleu+Tona Vic (5.27 − 6.17/7.15 − 8.15) 2◦14′18.8′′ E 41◦56′08.4′′N

Manlleu+Vic Tona (5.27 − 6.17/7.15 − 8.15) 2◦13′14.7864′′ E 41◦50′49.7796′′N

Tona+Vic Manlleu (5.27 − 6.17/8.1 − 8.31) 2◦17′13.7868′′ E 42◦0′6.966′′N
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source and target domain. In each set of tests, we selected data from the target domain during
the early and mid-peak periods, assuming that ozone is a seasonal pollutant and the evnironment
is usually more polluted with it during the summer months when meteorological factors such
as high temperatures and high humidity accelerate ozone production and ozone concentrations
fluctuate more than at the beginning of the peak.

We compared the proposed calibration algorithm with each of the other five basic methods.
A small amount of data from the starting one to three days was used as training on the target
domain dataset and the remaining data were used to test the calibration method and to assess the
goodness of fit of the calibration method using three evaluation metrics: correlation coefficient
(r-square, R2), mean absolute error (MAE), and root mean squared error (RMSE).

Table 3a. Metrics of various calibration methods evaluated over Vic as the target domain utilizing 1–3 days data from the
early-phase of the ozone peak.

Method
1 day 2 days 3 days

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

UC
TT
SS1
SS2
MS
AM

62.96
69.64
8.50
9.57
7.41
6.89

83.53
81.65
11.76
13.59
10.89
10.08

–2.74
–2.58
0.93
0.90
0.94
0.95

59.53
71.87
8.79
8.56
8.66
8.49

79.15
84.47
11.75
12.77
12.74
10.92

–2.31
–2.53
0.92
0.91
0.92
0.94

55.83
67.01
7.86
8.37
8.12
7.38

73.05
79.32
11.72
12.35
12.52
10.63

–1.81
–2.32
0.93
0.92
0.94
0.94

Table 3b. Metrics of various calibration methods evaluated over Vic as the target domain utilizing 1–3 days’ data from
the mid-phase of the ozone peak.

Method
1 day 2 days 3 days

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

UC
TT
SS1
SS2
MS
AM

91.00
62.29
14.70
14.33
12.45
9.17

117.94
72.54
19.03
17.82
15.61
11.19

–8.50
–2.58
0.75
0.78
0.83
0.91

91.67
60.28
13.99
11.45
10.95
8.69

118.66
70.45
18.12
14.18
13.79
10.54

–8.82
–2.45
0.77
0.86
0.87
0.92

89.16
60.06
11.83
10.87
10.81
7.82

114.64
70.08
15.67
13.72
13.83
10.08

–8.47
–2.52
0.82
0.86
0.86
0.93

In Table 3a, we take Manlleu and Tona as the source domain, Vic is set as the target domain,
and the test dataset time for the target domain is 5.27–6.17. When the time period is early summer
in Vic, the beginning of the ozone peak, we assume that no more than three days of data are
available at the reference station in the target domain during this time period, and the data for the
remaining time period are used to test the performance of the different calibration methods and
to observe the difference between the methods in obtaining a small amount of available training
data in the target domain. As can be seen from the data in the table, in the case of the difference
between the calibration values generated using the calibration methods on the subsequent test
data and the true values, the results of the new AM method are better than those of the other five
conventional methods. As ozone is a seasonal pollutant, we tested again during the midsummer
period of 7.15–8.15 when ozone concentrations are high. This was to verify the effectiveness
of the revised method. The results are shown in Table 3b. Still assuming no more than three
days of actual data in the target domain, the calibrated method AM is still valid and highly
accurate.

627

https://doi.org/10.24425/mms.2023.147957


T. Feng, X. Xiong, S. Jin: THE DEVELOPMENT OF A META-LEARNING CALIBRATION NETWORK . . .

When analyzing the results for both time periods, the UC method performed the worst. This
is because none of the four ozone sensors in the LCSA were laboratory calibrated. This resulted
in significant differences between sensor readings and true values. The TT method was slightly
better than the UC method, but still not usable because the basic model of ASCN contains a large
number of parameters. Training with only a small amount of data does not make the model valid.
The three SS1, SS2 and MS methods obtained more accurate model initialization parameters
from single or multiple source domain data. The MS method is slightly more accurate than the
SS1 and SS2 methods. Our proposed AM method showed superior performance due to the use
of meta-learning to learn a generic calibration model in the source domain, which can better fit
the data distribution in the target domain compared to other calibration methods.

Figure 5 presents a clear visual representation of the RMSE results derived from Table 3.
Owing to the considerable discrepancy in RMSE values between the UC and TT methods and
other approaches, these are excluded from the figure. The left and right plots illustrate the test
results for the early and middle stages of the ozone peak in the target domain for Vic, respectively.
The SS1 and SS2 methods are designated by blue and red lines, the MS method by a green line,
and the AM method by a purple line.

Fig. 5. Vic as target domain: RMSE comparison between the AM method and the three alternatives during the early
and mid-phases of the ozone peak.

As observed in the figure, SS1 and SS2, which rely solely on co-location data from a single
source domain, demonstrate instability in their performance. Specifically, while the SS1 method
manifests decent performance during the initial phase of the ozone peak in Vic, it lags behind other
methods during the middle phase. Conversely, the MS method, with its model pre-trained on data
from two source domains, exhibits more consistent performance across both phases compared to
SS1 and SS2.

Under the condition of using only one to three days’ data from the target domain, Vic, the AM
method’s average RMSE significantly outperforms the other three methods during both the early
and middle stages of the ozone peak. This superior performance can be attributed to the MAML
approach, which effectively leverages data from both source domains and promptly adapts to the
target domain.

Test results with Manlleu and Vic as the source domains, Tona as the target domain and Tona
and Vic as the source domains, Manlleu as the target domain can be seen in the Table 4 and
Table 5, respectively. They all show similar results as in Table 2, which proves the effectiveness
and universality of our method. Figures 6 and 7 present the intuitive results for the RMSE
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Table 4a. Metrics of various calibration methods evaluated over Manlleu as the target domain utilizing 1–3 days’ data
from the early-phase of the ozone peak.

Method
1 day 2 days 3 days

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

UC
TT
SS1
SS2
MS
AM

123.25
63.60
8.99
9.45
7.68
6.53

160.87
75.72
11.98
12.88
10.95
8.69

–13.64
–2.24
0.92
0.91
0.93
0.96

123.86
62.61
9.50
9.68
8.55
9.89

161.15
74.00
12.62
13.21
12.17
13.06

–14.16
–2.19
0.91
0.90
0.91
0.90

123.54
62.01
10.23
10.64
10.30
8.76

161.29
72.98
13.72
14.34
14.52
11.31

–14.28
–2.12
0.89
0.88
0.88
0.93

Table 4b. Metrics of various calibration methods evaluated over Manlleu as the target domain utilizing 1–3 days’ data
from the mid-phase of the ozone peak.

Method
1 day 2 days 3 days

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

UC
TT
SS1
SS2
MS
AM

82.71
60.68
8.50
9.68
8.39
8.44

109.34
72.37
10.74
12.40
11.38
10.44

–6.44
–2.25
0.93
0.90
0.92
0.93

81.29
59.01
9.16
9.72
8.78
8.20

107.45
70.62
11.61
12.32
11.15
10.73

–6.21
–2.11
0.92
0.91
0.92
0.93

80.70
57.67
9.22
9.39
8.66
8.65

106.79
68.95
11.44
11.85
10.87
11.15

–6.29
–2.03
0.92
0.91
0.92
0.92

Table 5a. Metrics of various calibration methods evaluated over Tona as the target domain utilizing 1–3 days’ data from
the early-phase of the ozone peak.

Method
1 day 2 days 3 days

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

UC
TT
SS1
SS2
MS
AM

178.82
84.71
9.26
15.13
11.60
8.79

201.49
94.30
13.27
22.45
16.76
11.11

–22.37
–4.09
0.90
0.71
0.84
0.93

172.63
83.08
9.01
12.23
9.90
10.49

194.54
92.94
12.60
18.28
14.28
13.73

–20.39
–3.85
0.91
0.81
0.89
0.89

165.53
82.87
10.56
12.20
10.00
9.44

184.96
92.57
14.59
17.76
14.16
12.84

–18.23
–3.79
0.88
0.82
0.89
0.91

Table 5b. Metrics of various calibration methods evaluated over Tona as the target domain utilizing 1–3 days’ data from
the mid-phase of the ozone peak.

Method
1 day 2 days 3 days

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

UC
TT
SS1
SS2
MS
AM

118.69
72.48
10.48
10.26
8.08
6.54

135.87
80.28
13.13
12.81
10.28
8.99

14.14
–4.30
0.86
0.87
0.91
0.93

120.28
71.37
13.71
10.61
6.76
6.75

137.24
78.78
16.89
13.48
9.14
9.26

–14.72
–4.20
0.76
0.85
0.93
0.93

121.35
69.81
12.80
9.84
7.69
6.51

138.36
77.20
15.99
12.75
10.10
8.70

–15.17
–4.05
0.78
0.86
0.91
0.94

performance metric from Tables 4 and 5, respectively, revealing findings analogous to those from
Fig. 5. Moreover, considering the three figures collectively, our method AM proves superior to
other compared methods in all test results across various times and locations when co-localization
data is available for one day in the target domain. This underscores the fact that the MAML method,
while ensuring stability and accuracy, adapts to new environments faster than the other methods.
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Fig. 6. Manlleu as the target domain: RMSE comparison between the AM method and three alternatives during the early
and mid-phases of the ozone peak.

Fig. 7. Tona as target domain: RMSE comparison between the AM method and three alternatives during the early and
mid-phases of the ozone peak.

Figures 8a and 8b show a comparison of the calibrated values and the reference station
readings obtained from training and learning of our model using only one day of data in the target
domain, respectively. (a) and (b) are for the early and mid-peak ozone in the Vic region, where the
purple lines represent the calibrated LCSA output and the blue lines represent the ozone reference
station readings.

Our method uses only one day’s data in the target domain, and the resulting calibrated values
perform well with the reference station readings in subsequent time periods because the self-
attention module in ASCN takes into account the temporal pattern of ozone concentrations, and
the inclusion of a shape distortion loss function further optimizes the trend of concentrations at
spikes and troughs. The learning approach of MAML maximizes the use of data from the source
domain. The learned parameters can be adapted for longer time periods in the future.

630



Metrol. Meas. Syst.,Vol. 30 (2023), No. 4, pp. 617–635
DOI: 10.24425/mms.2023.147957

a)

b)

Fig. 8. Calibration results for the ASCN-MAML method: comparative analysis using one day’s data from the Vic target
domain for subsequent time periods. (a) early phase of the ozone peak (b) median phase of the ozone peak.

4. Conclusions

This paper proposes a low-cost ozone sensor array calibration method, ASCN-MAML, which
addresses the problems of degraded cross-domain performance of calibration models and limited
co-location time of reference stations in the target domain. The self-attention module and shape
distortion loss function in the basic model of ASCN overcome the inability of other conventional
models to capture the temporal patterns of ozone concentration variation and shape distortion at
concentration spikes and troughs. The training approach using MAML, with the help of multiple
source domain data, enables the model to learn the optimal parameters that can adapt to the
full-time ozone concentration in the target domain. The test results from a real ozone dataset
show that ASCN-MAML produces accurate calibration results over the following tens of days,
both at the beginning and middle of the ozone peak, with the aid of 1–3 days of data from the
target domain. Using Manlleu and Tona as source domains and Vic as the target domain, for
example, our method compared to the original uncalibrated sensor readings showed an average
reduction in MAE, RMSE of 66.95 and 87.26 and an average improvement in R2 from -5.44 to
0.93, compared to the next best result of the pre-trained-trimmed multi-source migration-based
calibration method, with an average reduction in MAE, RMSE of 17.06% and 6.71%, and an
average improvement in R2 of 4.21%. Our method enables the model to have high calibration
accuracy and generalization capability under the condition that the calibration model is oriented
to cross-domain and the target domain reference station data acquisition is limited, which can be
effectively applied to practical ozone monitoring systems.
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In the future, we will continue our in-depth research to further improve the stability and
accuracy of our calibration models and expand their applicability to more types of gases, such as
CO2, CO, SO2, formaldehyde, etc. At the same time, we will continue to explore more efficient
calibration methods and deploy large-scale low-cost sensor arrays to support our conclusions with
more data, to contribute to air quality monitoring and environmental protection. Moreover, we
will further delve into the influence of drift caused by prolonged deployment of low-cost sensors
on the precision of calibration models, seeking a calibration model that can maintain excellent
accuracy even after long-term deployment.
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