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Abstract
This paper takes a look at the state-of-the-art solutions in the field of spectral imaging systems by way
of application examples. It is based on a comparison of currently used systems and the challenges they
face, especially in the field of high-altitude imaging and satellite imaging, are discussed. Based on our own
experience, an example of hyperspectral data processing is presented. The article also discusses how modern
algorithms can help in understanding the data that such images can provide.
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1. Introduction

Any process in science and technology, the purpose of which is to study an object or phe-
nomenon, involves taking appropriate steps and using appropriate measurement tools. The vast
majority of such processes are based on one-dimensional measurements, 𝑖.𝑒., those in which,
under specific conditions (𝑒.𝑔. at a specific location), a single physical quantity is observed. The
reason for such one-dimensional (point) observation is to simplify the architecture of measure-
ment equipment and techniques. A simple example could be the measurement of surface water
temperature of the ocean which can be realized with a single sensor that provides temperature in-
formation only at selected point on the water’s surface. In many different applications such point
measurements are sufficient. However, if it is important for the research process to determine
the temperature at multiple locations at the same time, it will be necessary to use the so-called
imaging techniques.
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Imaging, from the technical point of view, can be defined as the acquisition and representation
of point measurement data in the spatial domain [1]. In the simplest case, individual point’s data
are stored in the cells of a two-dimensional matrix at locations that correspond to their actual
arrangement in space – these are called pixels. Sets of such pixels are referred to as images.
Such recording allows reconstruction of images in grayscale. In the case of the most common
imaging in the form of tri-color images, we deal with a set of three such matrices with each matrix
corresponding to a different component color (R, G and B).

Another technique, commonly used nowadays not only in scientific laboratories, is spec-
troscopy (or spectrophotometry). This technique, based on the analysis of the spectrum of light
in the wavelength (or frequency) domain, makes it possible to analyze, among the others, the ma-
terial composition of substances under analysis. Information is obtained due to the interaction of
light with matter (through reflection or absorption) and is its fingerprint, that allows to recognize
its chemical composition [2].

The combination of the imaging technique and spectroscopy is referred to as imaging spec-
trometry, also known today as multi- or hyper-spectral imaging [2, 3]. Numerical data of each
image pixel is stored in a three-dimensional matrix in which the third dimension is related to the
wavelength of optical radiation.

The formal definition of hyperspectral imaging, after Qian [2], is “the acquisition of many
images of contiguous, narrow, registered spectral bands such that for each pixel a radiance
spectrum can be derived”. The difference between “hyper-” and “multi-” spectral imaging is
that in multispectral imaging systems we may distinguish only a limited number of wide spectral
bands separated by (blind) gaps. The number of channels in hyperspectral imaging can be counted
the hundreds, but even more important is the bandwidth that in this case is typically 10 nm or
even less, whereas for multispectral systems the bandwidth of selected several bands is typically
about 100 nm.

Simultaneous recording and analyzing images in a very large number of relatively narrow
spectral ranges (including those invisible to the human eye, such as infrared) opens up new
possibilities, as it allows the world to be seen in an enhanced form, without simplifying or
losing information. The invention of hyperspectral imaging is another step toward increasing
the resolution of imaging in the light spectrum domain. This invention can be compared to the
digital revolution in imaging, which was sparked by the invention of the CCD (charge coupled
device) sensors and their replacement of traditional analog film. Currently, spectral imaging has
emerged as a new, fascinating generation of remote sensing for application in a broad range of
fields of earth observation starting from the military and defense, geology, biology, environment,
atmosphere, climate, agriculture, mining and other purposes [2–6]. At present, hyperspectral
imaging systems, mainly due to their relatively high price, are only used to a limited extent.
However, it is anticipated that the spread of such techniques into even wider and more everyday
applications is only a matter of time.

In this article, selected spectral imaging systems are used as application examples; they have
been selected and reviewed based on the authors’ recent experience. By comparing currently
used spectral imagers, a general overview of the challenges is highlighted, especially in the field
of high-altitude and satellite imagery. The last group is crucial for modern hyperspectral data
acquisition, and the paper presented brings the state-of-art solutions in this field. This article
also introduces digital hyperspectral image processing, and how modern algorithms can help
understand the data that such images can provide.
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2. Review of spectral imaging missions and systems

This chapter contains a short review on the history of satellite missions using spectral imaging
instrumentation, and an overview of primary elements of each spectral imaging system with
a special focus on cameras.

2.1. Airborne hyperspectral imaging

One of the very first steps into hyperspectral imaging, different than astronomy, were airborne
platforms and agriculture related observations. As early as 1966, Michigan University of Tech-
nology started to adapt military imaging instruments for civil applications. The university started
an imaging campaign registering from 12 to 18 spectral channels for instructional purposes. Sev-
eral years later, between 1970–75, the Department of Agriculture ordered an imaging campaign
to obtain data which could show patterns in the spread of corn disease epidemy called SCLB
(Southern Corn Leaf Blight). The following imaging runs resulted in considerable amounts of
data which remain important sources of data even today, especially in the context of types of
soil, crops, state of biomass and invasive species in agriculture. This campaign together with the
Landsat mission were turning points in the imaging technology development and showed the full
potential of spectral imaging [7].

The next important airborne spectral imaging application and instrument was AVRIS (Air-
borne Visible/InfraRed Imaging Spectrometer), developed by NASA JPL. First implementation of
AVRIS was in 1987 and its maiden flight was completed onboard NASA ER-2 with data obtained
at the altitude of 20 km above the ground. The quality and radiometric correlation are considered
as the best hyperspectral implementation of remote sensing in Earth Observation [8].

Other important airborne hyperspectral implementations are commercial products such as
DAIS (Digital Airborne Imaging Spectrometer) developed by GERoM (Geophysical Environ-
mental Research of Millbrook) in 1987, CASI (Compact Airborne Spectrographic Imager) from
ITRES (1989) and HYDICE (HYperspectral Digital Imagery Collection Experiment) from NRL
(Naval Research Lab) from 1994. The spectrally very similar HyMap instrument from HyVista
Corporation was introduced in 1999 [8].

2.2. Satellite missions with hyperspectral imaging instruments on-board

The first spectral remote imaging systems (multispectral) appeared as early as the 1970s with
the satellite Landsat mission (launched in 1972). Since then, many missions with on-board spectral
imaging systems have been launched, with activity peaking in the 1980s and 1990s. However, it
seems that a tremendous amount of application of (hyper)spectral imaging has begun with the new
millennium. From a literature review, one can see a rapid increase in the number of publications
on the subject of hyperspectral remote sensing, and especially after 2010, it has increased nearly
three times year-on-year [4]. The particular factors that influenced this accelerated evolution was
the development of semiconductor technology and computing techniques as well as the initiation
of low-cost space missions by private corporations with the use of cubsats [3]. Table 1 presents
an overview of selected satellite missions with on-board hyperspectral instruments together with
their base imaging parameters, launched (or yet planned) in the last years.

Spectral imaging is most often used to image electromagnetic radiation in bands ranging
from ultraviolet (UV), through the visible (VIS) range, to infrared (usually SWIR – short wave
infrared). However, there are also some examples of exploration of the far infrared range, up to
about 15 μm, as in MetOP-OG or MODIS missions (Table 1).
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Table 1. Satellite missions and instruments using hyperspectral imaging instruments [9–25].

Mission/Instrument
Name Agency/Country Spectral Range

[µm]
No. of

Channels

Ground
Sampling
Distance –
GSD [m]

Launching
Year Ref.

MODIS NASA 0.460–14.390 36 250–1 000 1999
2002 [9]

EO–1 NASA 0.357–2.570 242 30 2000 [10]

PROBA–1 ESA 0.415–1.050 63/150 18 2001 [11]

ADEOS-II Japan 0.380–12.00 36 1 000 2002 [12]

IMS–1 India 0.400–0.950 64 505 2008 [13]

HysIS India 0.400–2.400 316 30 2018 [14]

PRISMA ASI – Italy 0.400–2.500 250 30 2019 [15]

Jilin–1 China – 28 5 2019 [16]

HISUI Japan 0.400–2.500 185 30 2020 [17]

GEO-KOMPSAT-2B Korea 0.300–0.500 250 7 000 2020 [18]

EOS-3 (GISAT-1) India 0.900–2.500 150 200 2021 [19]

EnMap DLR – Germany 0.420–2.450 228 30 2022 [20]

TEMPO NASA 0.290–0.740 666 4 400 2022 [21]

Intuition-One Poland 0.470–0.900 150 25 2023 [22]

HyspIRI USA 0.380–2.510 – 60 2024 [23]

MetOP-SG A1
MetOP-SG A2
MetOP-SG A3

(UVNS)

ESA 0.270–2.385 3936 7 000–28 000 2024 [24]

MTG-S1
MTG-s2
(UVN)

ESA 0.305–0.775 598 8 000 2024 [24]

FLEX ESA 0.500–0.780 300 300 2024 [25]

2.3. Elements of spectral imaging system

Imaging systems typically consist of an optical system, a camera and data processing unit.
Depending on the required spectral range, different types of sensors are used. For example, for
VIS and near-UV silicon detectors are suitable for which the range of spectral sensitivity is, at
most, from 400 nm to 1100 nm. For SWIR, it is necessary to use detectors that are sensitive in this
spectral range, such as those based on InGaAs, which allow recording of spectra typically from
about 700 nm to 1700 nm. Table 2 provides an overview of commercially available detectors used
in spectral imaging systems.

The data presented in Table 2 shows a wide variety of available detectors in terms of both
available spectral ranges and technology from which they are made. The role of the sensor is to
convert an optical signal (electromagnetic radiation in the range of optical waves) to an electric
one. Conversion takes place at each particular pixel of a 2-dimensional sensor’s matrix, giving
the possibility of recording the image presented to the sensor. CCD detectors were introduced to
imaging systems as early as the 1970s. Unlike CCD detectors, the CMOS (Complementary Metal
Oxide Semiconductor) technology came into widespread use in the 1990s and now occupies most

640



Metrol. Meas. Syst.,Vol. 30 (2023), No. 4, pp. 637–654
DOI: 10.24425/mms.2023.147951

Ta
bl

e
2.

Re
vi

ew
of

ca
m

er
as

us
ed

in
sp

ec
tra

li
m

ag
in

g.
FO

V
–

fie
ld

of
vi

ew
[2

6–
38

].

M
an

uf
ac

tu
re

r
M

od
el

Se
ns

or
Te

ch
no

lo
gy

R
es

ol
ut

io
n

[M
px

]
FO

V
[d

eg
]

Sp
ec

tr
al

R
an

ge
[n

m
]

N
o.

of
C

ha
nn

el
s

Fr
am

e
R

at
e

[H
z]

W
ei

gh
t

[k
g]

R
ef

.

CO
R

N
IN

G
m

ic
ro

H
SI

41
0

C
C

D
/C

M
O

S
hy

br
id

–
29

.5
40

0–
10

00
–

30
0

0.
45

[2
6]

C
U

B
ER

T
ul

tri
sx

20
pl

us
–

3
35

35
0–

10
0

16
4

6
0.

63
[2

7]

EL
D

IM
EZ

LI
TE

H
X

S
C

oo
le

d
C

C
D

3
±6

0
40

0–
70

0
15

(V
IS

)+
2(

N
IR

)
–

10
.0

0
[2

8]

EV
K

H
EL

IO
S

EQ
32

–
32

0p
x

–
90

0–
17

00
8

44
6

7.
80

[2
9]

Sc
an

w
ay

H
SS

-1
02

0
C

M
O

S
1

–
40

0–
11

00
20

00
–

9.
0

[3
0]

G
A

M
AY

A
Se

ns
or

O
X

I
2

45
0–

63
0

60
0–

95
0

45
0–

95
0

60
0–

95
0

16
,2

5,
40

,
10

0
16

–3
0

0.
10

[3
0]

H
IN

D
SI

G
H

T
Sp

ec
V

u
C

M
O

S
2.

3
6–

22
40

0–
10

00
60

0
–

2.
00

[3
0]

H
yS

pe
x

V
N

IR
-1

80
0

C
M

O
S

17
40

0–
10

00
18

6
26

0
5.

00

[3
1]

V
N

IR
-3

00
0N

–
–

16
40

0–
10

00
30

0
11

7
5.

00
V

S-
12

00
–

–
40

40
0–

10
00

40
0

28
5

35
SW

IR
-6

40
–

–
16

96
0–

25
00

36
0

14
0

4.
10

M
jo

ln
ir

V
S-

62
0

–
–

20
40

0–
25

00
49

0
28

5(
V

IS
)

10
0(

N
IR

)
6.

00

B
al

du
rV

-1
02

4
N

–
–

16
/4

0
40

0–
10

00
72

/8
8

–
–

IM
EC

SN
A

PS
CA

N
SW

IR
–

0.
8

–
11

00
–1

65
0

10
0

–
0.

89
5

[3
2]

SN
A

PS
CA

N
V

N
IR

–
7

–
47

0–
90

0
15

0
–

0.
58

SN
A

PS
H

O
T

UA
V

V
IS
+N

IR
–

1
–

48
0–

86
0

25
50

0.
50

C
us

to
m

–
–

–
–

–
–

–

641

https://doi.org/10.24425/mms.2023.147951


J. Kowalewski et al.: HYPERSPECTRAL IMAGING – A SHORT REVIEW OF METHODS AND APPLICATIONS

Ta
bl

e
2

co
nt

in
ue

d.

M
an

uf
ac

tu
re

r
M

od
el

Se
ns

or
Te

ch
no

lo
gy

R
es

ol
ut

io
n

[M
px

]
FO

V
[d

eg
]

Sp
ec

tr
al

R
an

ge
[n

m
]

N
o.

of
C

ha
nn

el
s

Fr
am

e
R

at
e

[H
z]

W
ei

gh
t

[k
g]

R
ef

.

IN
N

O
-S

PE
C

Re
dE

ye
1.

7
–

0.
08

–
95

0–
17

00
up

to
66

33
0

4.
30

[3
3]

Re
dE

ye
2.

2
–

0.
08

–
12

00
–2

20
0

up
to

66
33

0
10

.5
0

B
lu

ee
ye

C
M

O
S

4
–

22
0–

38
0

–
40

1.
30

G
re

en
ey

e
C

M
O

S
1

–
40

0-
10

00
–

54
2.

00

JA
I

Fu
si

on
Se

rie
s

2
–

40
5–

10
00

3
(V

IS
)1

(N
IR

)
20

0
–

[3
4]

LL
A

in
str

um
en

ts

un
iS

PE
C

0.
9H

SI
C

M
O

S
–

–
39

5–
99

5
–

11
–5

00

16
.8

0
[3

5]
K

U
ST

A
1.

7
M

SI
In

G
aA

s
–

–
95

0-
17

00
–

27
0

K
U

ST
A

1.
9

M
SI

–
–

13
20

–1
90

0
–

79
5

K
us

ta
2.

2
M

SI
–

–
16

20
–2

19
0

–
79

5

M
ic

aS
en

se
D

ua
lC

am
er

a
Sy

ste
m

3.
6

47
47

5–
74

0
10

–
0.

50
8

[3
6]

O
ce

an
In

si
gh

t-F
lu

xD
at

a
FD

-1
66

5
C

C
D

1
–

40
0–

11
00

3–
8

70
–

[3
7]

FX
50

In
Sb

–
24

,4
5,

60
27

00
–5

30
0

15
4

38
0

7
FX

-1
0

1
40

40
0–

10
00

22
0

>
33

0
1.

4
SP

EC
IM

FX
-1

7
In

G
aA

s
40

90
0–

17
00

23
0

>
67

0
1.

4
[3

8]
IQ

–
–

–
40

0–
10

00
–

–
–

LW
IR

–
–

–
80

00
–1

20
00

42
/8

4
–

3.
50

/1
3.

10

642



Metrol. Meas. Syst.,Vol. 30 (2023), No. 4, pp. 637–654
DOI: 10.24425/mms.2023.147951

of the market for commercial imaging detectors, including amateur photography or special, 𝑒.𝑔.,
military applications. These detectors have the advantage of higher frame rates, lower power
requirements and much simpler manufacturing technology compared to CCD detectors. Overall
classification of hyperspectral cameras comes from its planned application. A general tradeoff
is the spectral (number of channels) vs spatial resolution (number of pixels) which is directly
connected with the acquisition technique used in a particular application. For most common areas,
such as agriculture, mining classification and food sorting, a linescan camera with the number of
spectral channels not greater than 100, and spatial resolution not greater than 3 million of pixels
can be used. It is plausible to assume that instruments with greater spectral and spatial resolutions
are aimed at highly demanding applications and platforms such as airborne, orbital or military
imaging.

Independent of the type of sensor used, imaging in a wide spectrum of wavelengths requires
appropriate segmentation of the detected optical radiation to discrete (or continuous) wave bands
of the desired width. The most commonly used techniques are the following:

– diffraction grating – used to split the light, which is then directed to the sensor surface.
The use of a 2D matrix of active pixels in combination with a diffraction grating makes it
possible to obtain a linear spectral imaging sensor,

– prism – used to split the light beam. In a similar way to the diffraction grating-based sensors,
it is possible to obtain linear hyperspectral imaging sensors,

– spectral filters placed in front of the sensor. A plate with applied bandpass filters is placed
directly in front of the sensor surface in such a way as to separate groups of pixels responsible
for imaging in particular spectral bands. This allows the construction of a spectral imaging
device in a spatial-spectral configuration (imaging is performed in the field mode, but to
obtain a full spectral image of the subject, it requires relative movement of the imaging
platform to the to the subject),

– spectral filters applied directly to the sensor’s surface. A separate Fabry-Pérot filter is ap-
plied directly to each imaging pixel. Technologies that allow filters to be applied directly to
the pixel’s surface are currently the subject of intensive work by the world’s leading com-
panies and research institutes, and sensors based on their use are finding increasing use in
observational instruments. The methodology for developing sensors using this technology
allows for unrestricted shaping of both geometry and distribution of spectral bands within
the sensor as well as unrestricted shaping of the spectral characteristics of a given pixel.

Another interesting proposition is the application of an acousto-optic tunable filter utilizing
a birefringent crystal and piezoelectric transducer excited with a radio-frequency signal [39].

Because the entire spectrum is acquired for each pixel of a camera sensor, hyperspectral
images contain a huge number of data (sometimes referred as hypercubes). Extraction of desired
information requires further processing of collected data using different algorithms that require
high computing power.

2.4. Additional special systems requirements

Athermicity. A fundamental problem for spectral imaging systems operating on satellite
missions is to ensure athermicity, 𝑖.𝑒., minimized susceptibility to temperature fluctuations.
Regardless of the band at which a hyperspectral system operates, temperature has a significant
impact on the behavior of the optical instrument. The basic phenomena, related to thermality,
are the deformation, shortening and elongation of components with temperature change. If the
instrument operates in the VIS and SWIR bands, the problems are purely mechanical, while in the
case of the deeper infrared bands (above 2 μm of wavelength), the increased temperature turns the
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lenses and mirrors of the optical system into objects that emit the light seen by the sensor. Thus,
it becomes clear that the basic requirement for an instrument used on aerospace platforms is to
choose a design that ensures the optical path independent of temperature deformation phenomena,
and to decide whether active cooling (less often heating) of optical system components is needed.

Vibrations. High levels and specific vibration characteristics are the hallmarks of aircraft
and space platforms. The system adapted for use on such platforms must be designed to resist
vibrations that may cause undesirable disassembly of its components, decalibration or even
damage. Most often this is done through the use of properly selected vibro-isolators, and if such
a solution is not possible, because of 𝑒.𝑔. limited weight – the implementation of adhesives to
the final, inseparable joining of the instrument’s elements.

Power consumption. Due to limited power supply, which is extremely prominent in space
platforms, spectral instruments must be characterized by low power consumption and overall low
energy requirements during a mission or operation. This is an extremely difficult requirement
because of very frequent use of FPGAs which have high capabilities and flexibility in data
processing but require relatively high power and efficient heat dissipation or cooling.

Spectral resolution and sensitivity. Due to the long imaging distance, which is a feature of
aircraft and space missions, imaging instruments using these platforms must have high resolution
capabilities and high radiometric sensitivity. Currently, a race is underway in the space sector
whose the aim is to achieve the highest possible resolution from the smallest optical instrument
possible. An additional difficulty is that the resolution depends on the sensitivity of the system
and, in the case of hyperspectral instruments, when the photon intensity is too low, individual pix-
els receive residual photons. This is due to the division of the visible spectrum into many spectral
channels which divides the number of photons into individual channels. For example, a panchro-
matic instrument, that is, imaging with broad spectral bands, has much lower requirements for
radiometric sensitivity than a hyperspectral instrument. Very often, hyperspectral sensors are
among the most sensitive solutions on the market of matrix optical sensors.

3. Digital image data processing

The digital-form of images, which enabled various ways of processing and presenting them
had been, at the same time, the most important barrier in the first decades of the development of
industrial and scientific vision systems. It was primarily related to the huge amount of data required
for processing images acquired from two-dimensional matrices of CDD or CMOS sensors. While
in the case of point measurement, its processing at a rate of hundreds of samples per second
may be completely sufficient to automate such processes as, for example, control of temperature,
position, and velocity of an object, in the case of an image this speed is many times too low.
This is because images contain a relatively large amount of information, and even in today’s
highly digitally advanced world, systems for automatic image processing require correspondingly
high computing power. Operations on millions of pixels require computing hardware at the level
of at least a microcomputer. Analysis of massive volumes of data, especially in a real time, is
challenging and requires application of sophisticated data processing. Recently, the application
of deep learning methods seems to have been one of the solutions for an effective and proficient
way of hypercube processing [40]. Nevertheless, key principles and process flow in most data
processing schemes are the same as with the analytical approach – Fig. 1.

Hyper data cubes received from the imaging equipment in their raw form are full of artifacts,
dead pixels, bad bands and redundant data. Removing or compressing these issues is the key
goal of the first layer of the commonly used data processing scheme. In many cases operations
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Fig. 1. Hypercube data processing scheme.

of this first layer are: dead pixel removal (based on sensor calibration data), ROI selection
(or the selection of area to be processed), spectral band selection (based on application-related
known correspondence between selected bands and the reflectance of objects of interest). Spectral
correction is a tool for optimizing the reflectance range to the more comparable levels. There are
several methods for such operations, the most common ones are SNV (Standard Normal Variate)
and MSC (Multiplicate Scatter Correction). In many applications PCA (Principal Component
Analysis) or Wavelet operations are the crucial next step. These operations are especially needed
in high complexity hyperspectral data consisting of many spectral bands. The PCA or Wavelet
approach reduce the number of spectral bands to only a fraction of initial raw data (for example
from 150 bands to 6 bands). The bands are selected with the criterion of most valuable in
the scope of distinguishable spectral signature features. After these pre-processing operations
are completed, more complex tools are implemented, such as the Machine Learning approach.
The steps of segmentation and clustering are the most dynamically developed operations, very
often based on artificial intelligence (AI). Especially the combination and iterative approach to
segmentation (often referred to as the re-representation of an image as a set of 𝑛 one-band images
instead of one 𝑛-band image) and clustering (which clusters similar pixels into regions classified
as one type of object) are the subject of many interesting solutions, such as tree-based data
partitioning structures [41]. This is due to the fact that after logically-determined first steps of
hyperspectral image processing, segmentation and clustering are more challenging and knowledge
or an application-dependent process is applied.

In this paper, the scheme of hyper data preprocessing is traced using an example of hyper-
spectral data collected by an airborne HYDICE instrument [42]. HYDICE was a push broom
scanning, mechanically cooled, double-pass prism imaging spectrometer, placed on a C-141
aircraft pointing at nadir. It provided a wide spectrum of wavelengths from 0.4 μm to 2.5 μm,
divided into two hundred, 10 nm-wide channels [43]. To this day, data from multiple imaging
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campaigns provide high resolution hyperspectral imagery of urban and agricultural areas. Using
one of the hypercubes provided by the HYDICE team [44], it is possible to develop and test new
algorithms for hyperspectral data processing in urban area analysis applications. A preprocessing
scheme, shown in this paper is one of the simplest and most effective approaches used by many
researchers at early stages of data learning or familiarization with the data sets. It is also very
narrow in scope (needing adjustments for every single use) and almost impossible to automate,
since this approach requires human input on determination of fragments of the ground-truth set.
Fig. 2 shows the visualization of a hypercube using spectral channels similar to what human
eyesight perceives as red, green and blue colors.

Fig. 2. Visualization of raw hypercube data from HYDICE.

In turn, Fig. 3 shows the subsequent steps of hypercube processing using the Spectronon [45]
software with data gathered by HYDICE. One of the basic operations performed on spectral
hypercubes is normalization because in raw hyperspectral data different objects can be registered
as brighter than their environment due to their surface attitude (angle) between the light source and
instrument. Because this implies an offset in the spectral data, if processed without normalization,
the output data would be full of false object classification. The normalized plots shown in Fig. 3b
are brought to standardized values throughout the spectral range. The resulting image, or more
directly, its representation as an RGB image (Fig. 3a), still shows hardly distinguishable objects in
the image and needs further processing. Standard Normal Variate and bad band removal are the
next steps in the process. Fig. 3c shows the RGB image representation of the data, which shows
much more distinguishable objects with a high definition of small buildings and differentiation
in soil type. Fig. 3d confirms the proper removal of the bad band (compared to Fig. 3b). Such
bad bands in the SWIR spectrum are corelated to atmospheric absorption of light due to water
vapor and CO2. The third important image is visualization presented in Fig. 3e, which is an
RGB representation of the hypercube reduced to only 19 bands obtained by using the Principal
Component Analysis. Three most interesting elements in the image for the urban application, 𝑖.𝑒.
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roof material, asphalt and grass or greens, are easily distinguishable by their reduced spectral
plots seen in Fig. 3f. In the image, we can also see that objects of the same material, 𝑒.𝑔. roads,
are represented with the same color, which is a very good prognosis for further clustering.

Fig. 3. Visualization of: a) normalized RGB data, b) mean spectrum plot (encircled bad channels caused by atmospheric
water band blocking), c), RGB visualization of data after Standard Normal Variate correction, d), mean spectrum plot after
SNV correction and bad band removal, e) RGB visualization of data with mean spectrum plot after Principal Component

Analysis reduction to 19 key bands, f) spectral plots of materials in the image reduced to 19 key bands.
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The classification of objects in the image can be obtained using different algorithms, such as,
for example, k-Nearest neighbors. In Fig. 4, the result of such classification is shown as a map of
abundance (indicated by white pixels) of classified objects. Fig. 4a shows regions with spectra
similar to asphalt, Fig. 4b shows grass, and Fig. 4c shows roofs with ceramic surface. Fig. 4d
shows the bitumic roof of a supermarket store. The last two Figures 4e and 4f represent spectra
similar to soil and trees, respectively.

Fig. 4. Classification maps. White pixels indicate abundance of different classified materials: a) asphalt; b) grass; c) ceramic
roofs; d) bitumic roofs; e) soil; f) trees.

The data used for this classification was generated manually, so individual spectra were
pointed to the algorithm by hand. The novel approach to such data classification is based on the
machine learning approach.
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4. Recent achievements in the field of applications of spectral imaging

Nowadays, remote sensed hyperspectral data is mostly sourced from airplane platforms, UAVs
and satellites [46], with strong commercial push toward orbital data. Historically, remote sensing
campaigns collected considerable amounts of hyperspectral data, since the earlier mentioned
1966 airborne campaign performed by Michigan University of Technology. For almost 60 years,
there have been many initiatives to establish as wide as possible hyperspectral datasets, and many
research institutes, agencies, societies and even commercial data companies opened access to
some of their data. Worth mentioning are datasets such as:

– Hyperspectral Salient Object Detection Dataset (HS-SOD) from National Institute of Ad-
vanced Industrial Science and Technology (Tokyo, Japan) [47],

– Indian Pines Hyperspectral Dataset from AVIRIS instrument available through the Purdue
Research Foundation [48],

– Pavia Centre and University data acquired by an airborne ROSIS sensor and provided by
the Telecommunications and Remote Sensing Laboratory [49],

– Kennedy Space Center data from AVRIS and opened by NASA [49],
– HYPER-VIEW soil dataset acquired by an UAV platform using a XIMEA camera, opened

by KP Labs from Poland within the Hyperview Challenge [50–52].
Despite many selective datasets and more than a dozen orbital hyperspectral missions, cur-

rently hyperspectral data from satellites have not been yet easily accessible to downstream com-
panies. This is slowly changing as various companies are planning to or have already sent their
satellites (constellations) to space, such as Pixel, but it is very difficult to obtain any specific po-
tential application for data processing from such companies. A literature review, however, reveals
certain very interesting trends that can be described. However, one needs to filter the data as
there are many publications and books that are considered as state-of-the-art, but they are simply
outdated and cannot cover today’s hyperspectral data.

Firstly, there is a huge push among the scientists to evaluate and create new, more efficient
ways of processing any kind of hyperspectral data, regardless of the application. What is often
mentioned is a data center needed to process the data, as it weighs more than the usual RGB
image. Apart from the hypercube data processing, there have been many recent research projects
or efforts which use modern data processing hardware – such as space-graded FPGAs to pre-
process the data so that there is no need to download everything from the orbit. Another way to
limit the number of pictures is to perform on-board classification of such data to see if it is usable.
All those operations can be executed either by regular processing algorithms or by AI, which, in
some of the cases, requires changes to the data processing process [53].

One of very promising applications of hyperspectral data, especially when considering climate
change, is water quality monitoring from orbit, which can be performed in the way of detection
of 𝑒.𝑔. ammonia or different microorganisms. Hyperspectral data from orbit might be enhanced
by airborne platforms that can provide more precise measurements with better resolution and
revisit time.

Due to increasing popularity of hyperspectral imagers, more entities are looking towards
integration of 𝑒.𝑔. LIDAR or SAR data with hyperspectral images, which can provide very
detailed information for agriculture industry. One of the examples of such data are individual plant
species identification and 3D characterization at submeter scales. UAV LIDAR can characterize
vegetation canopy and ground elevation, while hyperspectral data can allow to see what the
dominant species on the ground is [54].

Hyperspectral data can be processed to obtain a product – information for customers – related
to very specific and narrow markets, such as soybean, sugar cane farmers or vineyard owners. Such
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services are provided by the Swiss company Gamay, which uses only UAVs for their business. In
some cases, the customer is the government – NASA uses the Aviris imager to 𝑒.𝑔. classify the
ground after severe fires that happen from time to time in California.

Apart from the Earth Observation, there are also hyperspectral imagers that are developed for
various applications that will help to establish human presence on the Moon. One of such case
that is the use of a hyperspectral telescope or by very narrow spectral payload, is detection of
certain minerals on the Moon to prepare places for future space mining operations [55].

5. Summary and future prospects

This paper presents a short review of hyperspectral imaging method illustrated with the
authors’ own example of HYDICE data processing. Recently, spectral imaging has been gaining
new applications faster than ever before. This is connected mostly to broad accessibility of
hyperspectral imagers and a much higher number of imaging campaigns from airborne and
satellite platforms. Also, broader education in the field of image processing, AI and optoelectronics
lead to much quicker development of hyperspectral analysis solutions. One of the examples of
novel hyperspectral application is the detection of PM2.5 and PM10 particle concentration in air
pollution measurements [56]. A research group from Taiwan elaborated on the use of hyperspectral
cameras acquiring images in the visible and NIR ranges to map the poor air quality regions in
urban regions. This method utilized key data processing steps such as brightness normalization
and Principal Component Analysis, which resulted in very consistent measurements. What is
worth noting is that, in the visible light approach, the correlation coefficients between the PM2.5
and PM10 measurements yielded a score of the 0.9789, which is a good indicator of usefulness
of this method. Another, very meaningful example can be application of spectral imaging in
agricultural disease control such as the detection of the ‘orange rust’ problem of sugarcane from
the EO-1 Hyperion instrument [9]. Using the VNIR bands, it was possible to calculate spectral
vegetation indices connected to leaf pigments, internal structure, and water content. Researchers
have shown that, using discriminant function analysis, hyperspectral data can be used to determine
regions of affected areas. Research also resulted in new vegetation indices, which are used in many
problem detection applications in agriculture [9].
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