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Abstract
Since the induction motor operates in a complex environment, making the stator and rotor of the motor
susceptible to damage, which would have significant impact on the whole system, efficient diagnostic
methods are necessary to minimize the risk of failure. However, traditional fault diagnosis methods have
limited applicability and accuracy in diagnosing various types of stator and rotor faults. To address this issue,
this paper proposes a stator-rotor fault diagnosis model based on time-frequency domain feature extraction
and Extreme Learning Machine (ELM) optimized with Golden Jackal Optimization (GJO) to achieve high-
precision diagnosis of motor faults. The proposed method first establishes a platform for acquiring induction
motor stator-rotor fault data. Next, wavelet threshold denoising is used to pre-process the fault current signal
data, followed by feature extraction to perform time-frequency domain eigenvalue analysis. By comparison,
the impulse factor is finally adopted as the feature vector of the diagnostic model. Finally, an induction motor
fault diagnosis model is constructed by using the GJO to optimize the ELM. The resulting simulations are
carried out by comparing with neural networks, and the results show that the proposed GJO-ELM model
has the highest diagnostic accuracy of 94.5%. This finding indicates that the proposed method outperforms
traditional methods in feature learning and classification of induction motor fault diagnosis, and has certain
engineering application value.
Keywords: Induction motor, time-frequency domain feature extraction, Golden Jackal Optimization, fault
diagnosis.
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1. Introduction

The motor drive system is an important electric energy equipment to support national eco-
nomic development and national defence construction, as well as the key and core of major
infrastructure [1–3]. Once the fault occurs in such a system, it can directly affect the normal
operation of an electrical circuit and even cause serious safety accidents and economic losses.
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Through the monitoring of its running state, faults can be found and eliminated in time [4, 5].
This is why it is extremely important to perform accurate motor troubleshooting. Stator and rotor
faults are the most common faults in motors. Carrying out stator and rotor fault diagnosis is of
great significance for improving the reliability and safety of motor system operation [6].

Traditional fault diagnosis methods mostly rely on manual feature extraction of motor sig-
nals [7, 8]. During fault diagnosis, human factors interfere greatly, resulting in poor accuracy
of diagnosis results and complex diagnosis process. Intelligent fault diagnosis technology ex-
hibits glaring advantages over conventional fault detection techniques [9, 10]. Based on deep
learning, building a fault diagnosis model by learning historical fault data has been widely
concerned [11–13]. Shan et al. [14] extracted fault features from the response signals of the
measurable points of the motor to be tested. Then a back propagation neural network (BPNN)
was optimized using adaptive variational particle swarm algorithm to establish a transformer
fault diagnosis model. This method improved the diagnostic accuracy, however, the high compu-
tational cost limited the application of deep learning model in fault diagnosis. Also, a lightweight
multi-sensor fusion model for induction motor data fusion and diagnosis was proposed in the
literature [15], introducing reverse residual blocks and network architecture search techniques.
Compared with other popular neural networks, this method could accurately determine the fault
category with a shorter prediction time. However, there were few learning samples, and the di-
agnostic accuracy needed to be improved. In response to the problem of insufficient samples for
deep learning, many researchers have made sample expansion efforts [16, 17]. Shu et al. utilized
a Deep Convolutional Generative Adversarial Network (DCGAN) to produce synthetic fault data
and expand the training dataset [18]. However, despite its strong generalization and high recog-
nition accuracy, generating simulation samples could lead to loss of critical features. Zhou et al.
transformed the problem of diagnosing motor faults into identifying the parameters of the fault
and achieving real-time detection [5]. Regrettably, this approach could only detect the presence
of a fault in the motor, and not classify its type. Xue et al. proposed a Fuzzy Operation Safety
Assessment (FOSA) system [19]. The system employed several symptom parameters to represent
electrical and mechanical faults from various perspectives, using the theory of possibility to
obtain membership functions as the assessment model. However, due to the significant level of
subjective bias, the model cold suffer from inaccuracies.

There are many signals that can be used to detect motor faults such as vibration signals,
stator current signals, etc. Lee, Jong-Hyun proposed a fault diagnosis system for induction mo-
tor using a Convolutional Neural Network (CNN) model that utilized vibration signals [20]. In
the literature [21], an automatic fault diagnosis system based on Residual Neural Network 101
(ResNet101) is proposed, which unifies pre-processing and state sensing of motor fault signals
under one framework to achieve end-to-end intelligent fault diagnosis. However, motors typically
operate under non-stationary conditions, which make fault diagnosis significantly challenging
due to the highly complex nature of the vibration signals. In addition, noise interference af-
fects the effectiveness of feature extraction. Also, a stator-rotor fault detection method based on
the stator current signal has the advantages of low price and non-invasiveness, and is widely
studied and applied. Li W et al. [22] illustrated that the use of stator current signals to detect
stator-rotor faults is superior to vibration signals. In contrast, vibration signals are more suitable
for detecting bearing faults in motors. Fault diagnosis methods based on stator current signal
methods combined with machine learning have recently received a lot of attention. A method
for intelligent fault diagnosis using a residual network optimized initiation - Intelligent Industrial
Fault Diagnosis using Sailfish Optimized Inception with Residual Network (IIFD-SOIR) model
has been proposed in the literature [23]. The proposed model operates on three main processes:
signal extraction, feature extraction and classification. In the literature [24], a novel fault diagnosis
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method combining CNN and ELM is proposed based on the current signal. However, the two
methods above are limited to setting of network parameters.

To address the problems above, a stator-rotor fault diagnosis model for induction motors is
proposed based on time-frequency domain feature extraction and GJO-ELM to achieve high-
precision diagnosis of motor faults. The paper’s primary contributions are:

1. An induction motor stator and rotor fault data collection platform is built. By replacing the
motor model, the faulty motor under different conditions is simulated. Then the current data
of three types of stator and rotor faults: stator winding fault, bent rotor shaft, and broken
rotor strip are collected.

2. Through pre-processing and eigenvalue analysis in the time-frequency domain, the fault
feature vector-pulse factor which can accurately represent the monitored induction motor
is extracted.

3. The parameters of the extreme learning machine are optimized by using the GJO algorithm,
and the fault diagnosis model of the induction motor with the highest accuracy is built to
realize the high-precision fault diagnosis of the induction motor.

The layout of this paper is as follows: First, the purpose of this work is explained in Section 1.
The theoretical approaches to data denoising and time-frequency domain analysis are introduced
in Section 2 together with the data acquisition system. In Section 3, the construction of the GJO-
ELM-based induction motor stator-rotor fault detection model is described. Section 4 provides
the experiments and an analysis of the findings. Section 5 offers the conclusions.

2. Signal data acquisition and time-frequency domain analysis

A reliable and sufficient data set is the key to improve the accuracy of fault diagnosis models.
In this paper, we propose building a data acquisition system to collect a large amount of current
signal data of different fault types. As induction motors are inevitably disturbed by noise during
operation, the current signal data needs to be pre-processed by denoising so that the signal data
retains the characteristics of the original signal data [25]. Time-frequency domain analysis is
performed to obtain the eigenvalues and subsequently perform induction motor fault diagnosis.

2.1. Data acquisition system of induction motor fault

In order to verify the effectiveness of induction motor stator-rotor fault diagnosis, it is first
necessary to collect current signal data for different fault types. Therefore, a power dragging
system as shown in Fig. 1 can be used for fault experiments on induction motors. During the
experiment, the two-phase stator currents are sampled through a current clamp, connected to an
oscilloscope that can generate data. By replacing the motor model, different faulty motors are
simulated to complete the current acquisition experiment under multiple faults. In this paper, the
current signals of three types of stator-rotor faults 𝑖.𝑒. stator winding fault, rotor bending, and
rotor broken strip are collected as the total sample for the experiment. The sampling frequency
is 400Hz, and the time of each sampling is set to 5 seconds, so the data collected for each group
of signals is 2000 each time. The current data collected consists of 500 groups containing 2000
consecutive sampling points for each type of state, containing 3–4 cycles of current signals, as
the total sample for the experiment. The oscilloscope can save the current waveform to the PC,
and the file type selected by us for this purpose is CSV. The selected time and numerical data
are imported into the MATLAB workspace, and the fault diagnosis model can be trained and
tested.
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Fig. 1. Induction motor data acquisition system.

Stator winding failures are caused by moisture or vibration leading to wear, resulting in the
insulation layer of the winding being rubbed. The resistance of the insulation is reduced. This,
in turn, leads to a 𝑖.𝑒., short circuit. The fault process has the electrical characteristics of a
sudden change in resistance value. Therefore, in this paper the stator winding fault is simulated
by connecting a resistor to one phase of the stator winding. Bending of the shaft can occur when
the motor is not used for a long time, too fast speed, improper maintenance, impact, excessive
load and thermal expansion caused by temperature. In this case, the centre of the rotor does
not coincide with the axis of rotation, so in this paper we simulate the shaft bending fault by
bending the centre of the rotor. A broken rotor bar occurs when the motor is frequently started or
is overloaded during operation. The long-term effect is of such use is that potentially dangerous
phenomena are triggered such as rotor fracture or open welding. In serious cases, the motor will
be burned out, which constitutes a potential accident risk. In this paper, the rotor breakage fault
is tested with a broken rotor installed instead of an operational one.

The experimental induction motor system relies on a symmetric, three-phase power supply
for energy. To regulate the voltage and frequency of the motor, a voltage regulator and frequency
converter are utilized. The experimental motor is a 1.5 kW induction motor and the load is a
1.8 kW DC generator. The two motors are connected through an elastic coupling, and the load
can also be connected with a variable resistor. The experimental motor is a YSP90L-4 induction
motor. Its main parameters are shown in Table 1. The samples of different types of faults were
collected as shown in Table 2.

Table 1. Induction motor experimental parameters.

Model YSP90L-4

Rated power (kW) 1.5 Rated speed (r/min) 1400

Nominal voltage (V) 380 Polar logarithm 2

Rated frequency (Hz) 50 Wiring method Y

Power Factor 0.79 Ambient temperature(oC) 40

Efficiency 88.5% Insulation grade B
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Table 2. Fault samples collected.

Motor state Description Number of samples

Stator winding turn-to-turn short
circuit

A resistor connected to one phase of the
stator winding (500, 2000)

Bending of the rotor shaft Spindle centre bent (500, 2000)

Rotor broken bar Rotor breakage (500, 2000)

2.2. Wavelet thresholding denoising

The effectiveness of the fault diagnosis model mainly depends on the effectiveness of the
extracted feature quantity and the selection of the classifier. There is a certain noise signal in
the original current signal, which will interfere with the diagnosis results. Therefore, a denoising
process is needed first. The principle of wavelet denoising is that when decomposing signal data
and noise interference data, signal data and noise will be decomposed according to different
eigenvalues. And the characteristics of the original signal data can be preserved to a great extent,
so that the preserved signal data is true and feasible [26]. Figure 2 depicts the wavelet threshold
denoising flowchart. Mode maxima denoising, wavelet correlation coefficient denoising, and
wavelet threshold denoising are the three primary fundamental techniques for wavelet denoising.
This section focuses on wavelet-based threshold denoising for data pre-processing.

Fig. 2. Wavelet threshold denoising flow chart of induction motor detection signal.

There is a difference in the wavelet coefficient amplitude between the signal data and the noise
data. The corresponding wavelet coefficients of the two are also different and will show negative
correlation characteristics, thus realizing the processing of wavelet threshold denoising. Different
threshold selection in wavelet threshold denoising has different effects on noise processing. There
are three main thresholds applied here and these are: the hard threshold, the soft threshold and the
fixed threshold. A garrote function is used for fixed thresholds. The hard threshold is shown in (1)
and the soft threshold is shown in (2), where is the wavelet coefficient and is the threshold value:

�̂� 𝑗.𝑘 =

{
𝑤 𝑗.𝑘 𝑤 𝑗.𝑘 ≥ _

0 𝑤 𝑗.𝑘 < _
, (1)

�̂� 𝑗.𝑘 =

{
sgn(𝑤 𝑗.𝑘 )

(��𝑤 𝑗.𝑘

�� − _
)

𝑤 𝑗.𝑘 ≥ _

0 𝑤 𝑗.𝑘 < _
. (2)

The signal-to-noise ratio (SNR) represents the ratio of energy between signal and noise (see
(3)). The root mean square error (RMSE) explains the degree of dispersion between the two
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signals and also responds to the distortion of the signal. It is shown in (4):

SNR = 10 lg
(
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RMSE =

√√√
1
𝑁

𝑁∑︁
𝑗=1

[ 𝑓 (𝑡) − 𝑓 (𝑡)]2 , (4)

here is the power of the original signal; is noise power; 𝑁 is the signal length; denotes the original
signal and denotes the noise cancelling signal.

The larger the signal-to-noise ratio, the more noise is removed from the signal. The denoising
effect is relatively ideal. The root-mean-square error is the opposite of the signal-to-noise ratio.
The larger the value of the root mean square error, the larger the constant deviation between
the two signals, and the worse the denoising effect. Therefore, the SNR and the RMSE of the
estimated signal and the original signal can be used to judge the denoising effect.

2.3. Time and frequency domain analysis

The denoised signal is analysed in the time and frequency domains. The eigenvalues in the
time domain are mean value, RMS, peak value, variance, standard deviation, peak factor, impulse
factor, margin factor, etc. The eigenvalues in the frequency domain are mean frequency, root
mean square frequency, centre frequency, variance frequency, etc. The formulas for the main
time-frequency domain features are shown in Table 3. The time domain eigenvalues mainly

Table 3. Formulas for the main time-frequency domain features.
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represent the relationship between the dynamic signal in terms of the time axis as a coordinate.
The frequency domain eigenvalues mainly describe the frequency structure of the signal and the
relationship between the frequency and the amplitude of the signal at that frequency.

3. Fault diagnosis model of the stator and rotor of an induction motor based on GJO-ELM

In the training process of the network model, the optimization goal has always been to predict
the deviation between the classification results and the real category labels. The GJO algorithm
is used to obtain the optimal fitness value by constantly adjusting the parameters of ELM, so
as to get the optimal parameters of ELM, and then train and learn to obtain the fault diagnosis
model with the highest diagnosis rate. This not only saves the time and workload of repeatedly
adjusting the ELM hyperparameter but, at the same time, it ensures the good diagnostic accuracy
and robustness of the fault diagnosis model.

3.1. GJO optimization algorithm

A metaheuristic optimization method called the Golden Jackal Optimization algorithm is
adopted [27]. By imitating the cooperative hunting behaviour of the Golden Jackal, cooperation
and information sharing among individuals in the group are achieved to find the optimal solution.
Compared with other optimization algorithms, GJO well avoids getting trapped in local optimum.
Its global optimization capability is stronger and the speed of finding the optimal solution is faster.

The GJO algorithm includes two basic steps: searching for prey, surrounding and attacking
prey. They correspond to the exploration and exploitation of the population, respectively. The
male jackal has the best fitness value, and the female jackal has the second-best fitness value.
Jackal pairs obtain corresponding the position of the corresponding prey.

3.2. ELM

ELM is a single hidden layer feedforward neural network. It has the advantages of simple
calculation, strong applicability and high efficiency. The ELM network structure is shown in
Fig. 3. Its input weights 𝑤𝑖1, 𝑤𝑖2 and 𝑤𝑖3 are randomly generated in the ELM itself. It does not
need iterative solution, but only needs to solve the weights from the hidden layer to the output
layer. Therefore, compared with deep learning such as offered by a BP network, the training speed
is greatly improved.

The ELM learning objective function 𝑥 can be represented by the matrix as:

𝐹 (𝑥) =
𝑛∑︁
𝑖=1

𝛽𝑖 · [ (𝑤𝑖 · 𝑥1 + 𝑏𝑖) = 𝐿, (5)

where 𝛽𝑖 is the weight of the hidden layer to the output layer; 𝑤𝑖 is the weight of the hidden layer
to the input layer; 𝑏𝑖 is the bias of the hidden layer; [ is the connection weight of the 𝑖th hidden
layer node to the output node; 𝑛 is the number of hidden points; and 𝐿 is the desired output.

The network training is turned into a linear system to solve the problem, and 𝛽 is determined
according to 𝛽 = 𝐻∗ · 𝐿 where 𝐻∗ is the generalized inverse matrix of 𝐻. The stability of the
neural network is enhanced by introducing the regularization coefficient 𝐶 and the unit matrix 𝐼,
which makes the matrix characteristic roots non-zero. As a result, the stability and generalization
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Fig. 3. Structure diagram of the ELM network.

are also better. The least squares solution of the output weight is:

𝛽 = 𝐻𝑇

(
𝐻𝐻𝑇 + 𝐼

𝐶

)−1
𝐿, (6)

where 𝛽 is the output weight vector connecting the implicit layer and the output layer; 𝐻 is the
feature mapping matrix.

3.3. Construction of the GJO-ELM fault diagnosis model

In this paper, the induction motor stator-rotor fault data acquisition platform is employed
to collect current signals from various fault types. Wavelet threshold denoising is used for the
pre-processing of the current signals. Time-frequency domain eigenvalue analysis determines the
pulse factor as the eigenvector of the diagnostic model, which is then input to the GJO-ELM fault
diagnosis model to enhance the diagnostic accuracy.

In this paper, the Root Mean Square Error (RMSE) of the classification model is chosen as
the fitness function to be minimized by the optimization algorithm, which measures the deviation
between predicted values and actual values.

RMSE(𝑋, 𝑓 ) =

√√√
1
𝑛

𝑛∑︁
𝑗=1

( 𝑓 (𝑥𝑖) − 𝑦𝑖)2, (7)

where 𝑓 (𝑥) is the predicted result and 𝑦 is the true result.
The flow chart of the GJO-ELM induction motor stator-rotor fault intelligent diagnosis based

on GJO-ELM is shown in Fig. 4. The GJO algorithm is used to synchronize the two parameters of
the input weight 𝑤 and the deviation 𝑏 of the hidden node of the ELM to jointly find the optimum.
Thus, the GJO-ELM model with the optimal fault diagnosis results is obtained.

The specific steps are as follows:
Step 1: Set the initial parameters. Initialize ELM related parameters. Initialize the relevant

parameters of GJO optimization algorithm: set population size (pop), dimension (dim),
maximum iteration times (Itermax), upper bound (𝑢𝑏) and lower bound (𝑙𝑏).
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Step 2: Population initialization. The position of the initial Golden Jackal population is obtained.
Step 3: For each position after initialization, two parameters 𝑤, 𝑏 of ELM are assigned. The

fitness value of each individual Golden Leopard is calculated in turn. The ranking is
performed and the position with the best fitness is recorded.

Step 4: The evasion energy E of the prey and the random number 𝑟𝑙 based on the Lévy distribution
are calculated. When |𝐸 | ≥ 1, the exploration phase is entered and the positions of male
and female jackals at that time are calculated separately. Then update the position of the
jackal after the next iteration. At the end of the exploration phase, the fitness value of each
prey is calculated. If the fitness value is lower than the optimal position, the candidate
position of that individual will replace the optimal position.

Step 5: When |𝐸 | < 1, the exploitation phase is entered and the positions of the male and
female jackals are calculated separately at that time. Then the position of the jackals after
the next iteration is updated. At the end of the exploitation phase, a population operation
is performed. In this operation, the fitness values of all prey are calculated. A population
position update is performed, and the best of the fitness values is used as the male jackal
and the second best of the fitness values is used as the female jackal.

Step 6: The maximum iteration number is checked, and if fulfilled, the optimal parameters are
assigned to the ELM. Conversely, if this condition is not met, return to Step 4 to continue
iterating.

Fig. 4. Flow chart of intelligent diagnosis of stator and rotor faults in a GJO-ELM based induction motor.

4. Experiments and results analysis

4.1. Data pre-processing

The experimental motor is a YSP90L-4 induction motor. Its main parameters are shown in
Table 1. The physical diagram of the induction motor data acquisition system is shown in Fig. 5.
The oscilloscope can save current waveform data to PC, and the file type selected by us is CSV.
By importing the selected time and numerical data into the MATLAB workspace, the data can
be pre-processed and the fault diagnosis model can be trained and tested. Figure 6 shows a set
of sampled waveforms of the A-phase stator current signal under different faults of the induction
motor. They are stator winding an inter-turn short circuit, a rotor shaft bending, and a rotor broken
strip fault, respectively.

In the process of wavelet threshold denoising, the selection of wavelet basis and decomposition
levels, the selection criteria of threshold aa well as the design of the threshold function will have
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Fig. 5. Physical diagram of the induction motor data acquisition system.

Fig. 6. Sampling waveform of A-phase stator current signal under different states of induction motor.

great influence on the final signal denoising effect. The Ym8 wavelet basis function has compact
support and good continuity, and symmetry. Therefore, this paper uses the ym8 wavelet basis
function to denoise the continuous and symmetrical stator current signal. After the signal is
decomposed with the wavelet with scale 4, the coefficients of each layer are the thresholds. It
can not only ensure that the signal is not distorted, but also achieve a good denoising effect. The
results of denoising with different thresholds for stator winding inter-turn short circuit, rotor shaft
bending, and rotor broken bar faults are shown in Figs 7, 8, 9.

Fig. 7. Stator winding turn-to-turn short circuit fault.

The wavelet denoising effect of the stator winding inter-turn short circuit at different thresholds
is shown in Table 4. The wavelet fixed threshold denoising method with the largest SNR and the
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Fig. 8. Bending fault of the rotating shaft.

Fig. 9. Rotor broken bar failure.

smallest RMSE is selected. In addition, experiments show that the fixed threshold approach has
the best effects in the case of shaft bending and rotor bar breaking faults. Therefore, the data after
wavelet fixed threshold denoising is derived and feature extraction is carried out.

Table 4. Wavelet denoising effect of stator winding inter-turn short circuit at different thresholds.

Evaluation Indicators Hard Threshold Soft Threshold Fixed Threshold

SNR 8.9261 8.9297 14.3168

RMSE 0.088689 0.088653 0.04768

4.2. Feature Extraction

The process of feature selection aims to remove irrelevant details while improving accu-
racy [27]. It is a crucial step because the performance of fault diagnosis methods heavily depends
on the ability of the chosen features to precisely represent the fault characteristics of the monitored
induction motor. The feature values of different stator-rotor faults after extraction of denoising
are then analysed in the time and frequency domains. Next, the differences in the features of the
different faults are analysed. The intelligent algorithm of machine learning is used to train the
classification and then determine the different fault types to achieve the diagnosis of stator-rotor
faults in induction motors.

The time domain and frequency domain eigenvalues for different faults after feature extraction
are shown in Tables 5, 6 and 7.

From the time-domain and frequency-domain eigenvalues in Tables 5–7, it can be seen that the
peak factor, pulse factor, margin factor and central frequency eigenvalues of the stator winding
fault, the shaft bending fault and the rotor bar breaking fault are obviously different. In order
to better select the feature values, this section focuses on extracting the features from them by
repeating the experiments. The peak factor, pulse factor, margin factor and centre frequency of the
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Table 5. Time domain eigenvalues for different fault types.

Fault location Rectification
average Variance Standard

deviation Cliff factor Skewness

Stator winding fault 0.2143 0.0614 0.2479 2.8416 0.1144

Bending of the rotor shaft 0.1035 0.0151 0.1227 2.8999 0.0173

Rotor broken bar 0.2078 0.0584 0.2416 2.1636 0.0137

Table 6. Time domain eigenvalues for different fault types.

Fault location Root mean
square value

Waveform
factor

Peak
factor

Pulse
factor

Margin
factor

Peak
value

Stator winding fault 0.2478 1.1566 8.7959 10.1731 11.4091 2.18

Bending of the rotor shaft 0.1228 1.1866 8.1453 9.5656 11.1730 1.68

Rotor broken bar 0.2416 1.1626 4.4709 5.1981 5.7270 1.28

Table 7. Frequency domain eigenvalues for different fault types.

Fault location Mean
frequency

Root mean
square

frequency

Centre
frequency

Standard
deviation
frequency

Variance
frequency

Stator winding fault 0.0037 0.2399 –0.0131 0.000231 0.001525

Bending of the rotor shaft 0.0020 0.1267 –0.0199 0.0000563 0.001325

Rotor broken bar 0.0019 0.2314 –0.0411 0.000148 0.001455

five experiments are shown in Figs 10, 11, 12 and 13, respectively. The maximum and minimum
values of each type of fault characteristic value are marked with data cursors in the figures.

Observing the variation of the eigenvalues of each fault, it can be found that the peak factor,
margin factor and centre frequency of both the stator winding fault and the rotor bending fault
have intersecting parts. Therefore, these three eigenvalues cannot represent the characteristics of
these two faults. As can be seen in Fig. 11, the pulse factor for stator winding faults is between

Fig. 10. Peak factor of stator and rotor faults in the five experiments.
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Fig. 11. Pulse factors of stator and rotor faults in the five experiments.

Fig. 12. Margin factor for five experimental stator-rotor failures.

Fig. 13. Centre frequency of five experimental stator-rotor failures.
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10–11, for rotor bending faults between 9–9.6, and for rotor broken bar faults between 4–6.
Therefore, the pulse factor can be used to represent the features of these three faults. Through
the analysis above, the value of the pulse factor is chosen to represent the features of stator-rotor
faults in different parts.

4.3. Comparison analysis

In this section, for the three pre-processed fault current samples, 600 samples are randomly
taken from each class to synthesize a new sample. It is then divided into a training set and a test
set according to 8:2. The training set is fed into the model for learning. Labelling is performed
according to the characteristics of faults with stator winding faults, bent rotor shafts and broken
rotor bars. The average value of the pulse factor is used as the labelling of the faults. Since the
input weight 𝑤 and the deviation 𝑏 of the hidden nodes in ELM are randomly generated, it affects
the recognition accuracy of ELM. Therefore, the positions of male and female golden jackals
of the updated GJO algorithm are used to adjust the input weights and hidden biases of ELM.
Thus, the generalization ability and calculation speed of ELM are improved. Four diagnosis
models of stator and rotor faults of induction motors, GJO-ELM, GJO-BPNN, ELM and BPNN,
are constructed and compared. The intelligent diagnosis model of stator and rotor faults of an
induction motor is trained by training samples. Then, the test set is used to test the diagnosis effect
of each fault diagnosis model. The experimental results are shown in Figs 14, 15, 16 and 17. The
diagnostic accuracy of different stator and rotor fault types is shown in Table 8.

Fig. 14. BPNN test results graph. Fig. 15. ELM test results graph.

Fig. 16. GJO-BPNN test results graph. Fig. 17. GJO-ELM test results graph.

Through comparative analysis of Figs 14, 15, 16, and 17, it is evident that the accuracy of
the GJO-ELM fault diagnosis model is the highest, reaching 94.5%. In contrast, the accuracy
of the GJO-BPNN, ELM, and BPNN induction motor stator-rotor fault models are 92.3%, 90%,
and 88.8%, respectively. This indicates that the diagnostic performance of the GJO-ELM fault
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diagnosis model is significantly superior to that of the other models. Furthermore, when compared
to the BPNN fault diagnosis model, the accuracy of the ELM fault diagnosis model is improved
by approximately 2%, demonstrating the superiority of ELM. When compared to the ELM fault
diagnosis model, the GJO-ELM fault diagnosis model is in accuracy improved by approximately
4%. This confirms the effectiveness and superiority of the GJO algorithm for optimization.
The experiments validate that the proposed GJO-ELM model has robust fault classification
capabilities. This model has high reliability and effectiveness when applied to the diagnosis of
induction motor stator-rotor faults.

Table 8. Classification of different fault types by each model.

Fault Type
Algorithm

Stator
winding fault

Bending of the
rotor shaft

Rotor broken
bar

BPNN 88.67% 89.32% 88.61%

ELM 92.18% 91.37% 89.25%

GJO-BPNN 93.33% 94.00% 89.40%

GJO-ELM 94.03% 96.12% 93.33%

5. Conclusions

In this paper, the fault diagnosis of induction motor stator and rotor is performed by using
an data acquisition platform, wavelet threshold denoising, time-frequency domain eigenvalue
analysis and a GJO-ELM fault diagnosis model. The following conclusions are drawn:

1. Based on the data acquisition platform of stator and rotor faults of induction motor, the
motor model is changed and the current acquisition experiments of different fault types
are completed. The experimental results verify the reliability and accuracy of the data
acquisition platform.

2. Using wavelet threshold denoising to pre-process the fault current signal data can retain
the original information well. And the intrinsic connection of the sequence data is fully
considered.

3. By means of time-frequency domain eigenvalue analysis, the use of the pulse factor can
accurately represent the fault characteristics of the monitored induction motor. It improves
the ability to distinguish between various feature vectors and solves the problem of difficult
feature extraction. The pulse factor is used as the feature vector of the diagnosis model,
which improves the diagnosis accuracy.

4. The GJO algorithm is used to optimize the superior parameters of the ELM, which saves
the time and workload of repeatedly adjusting the ELM super parameters. The proposed
GJO-ELM model has the highest diagnostic accuracy reaching 94.5%.
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